
Faculty of
sciences

UMONS
University of Mons

Reproducibility in Software Engineering
Master’s Thesis in Computer Science

Author : Pol Dellaiera

Supervisor : Prof. Dr. Tom Mens
Academic year : 2023 - 2024

Submission date : 12 June 2024
Build date : Fri Jul 5 15:45:28 UTC 2024

DOI : 10.5281/zenodo.12666899
Revision : 90c453e

Faculty of Sciences ⬩ University of Mons ⬩ 20, Place du Parc ⬩ B-7000 Mons

https://orcid.org/0009-0008-7972-7160
https://orcid.org/0009-0008-7972-7160
https://orcid.org/0009-0008-7972-7160
https://orcid.org/0000-0003-3636-5020
https://orcid.org/0000-0003-3636-5020
https://orcid.org/0000-0003-3636-5020
https://doi.org/10.5281/zenodo.12666899
https://github.com/drupol/master-thesis/commit/90c453e57dd0ad9d2fa433f0a16a8a9f94b55eca

This page is intentionally left blank.

2 Reproducibility in Software Engineering

I confirm that this Master’s thesis is my own work and I have documented all sources and material used.

Mons, 12 June 2024 Pol Dellaiera

Reproducibility in Software Engineering 3

This page is intentionally left blank.

4 Reproducibility in Software Engineering

Abstract
The concept of reproducibility has long been a cornerstone in scientific research, ensuring that results
are robust, repeatable, and can be independently verified. This concept has been extended to computer
science, focusing on the ability to recreate identical software artefacts. However, the importance of
reproducibility in software engineering is often overlooked, leading to challenges in the validation, security,
and reliability of software products.
This master’s thesis aims to investigate the current state of reproducibility in software engineering,
exploring both the barriers and potential solutions to making software more reproducible and raising
awareness. It identifies key factors that impede reproducibility such as inconsistent environments, lack of
standardisation, and incomplete documentation. To tackle these issues, I propose an empirical comparison
of tools facilitating software reproducibility.
To provide a comprehensive assessment of reproducibility in software engineering, this study adopts
a methodology that involves a hands-on evaluation of four different methods and tools. Through a
systematic evaluation of these tools, this research seeks to determine their effectiveness in establishing
and maintaining identical software environments and builds.
This study contributes to academic knowledge and offers practical insights that could influence future
software development protocols and standards.

Reproducibility in Software Engineering 5

This page is intentionally left blank.

6 Reproducibility in Software Engineering

Acknowledgements
First and foremost, I would like to express my deepest gratitude to Professor Tom Mens. I am incredibly
thankful for his availability and guidance throughout my studies. It was a great honour to receive his
proposal to supervise my research in my final year. Beyond that, he generously allowed me to suggest
topics that piqued my interest, ultimately enabling me to focus on a subject that I am truly passionate
about.
I must also express my heartfelt appreciation for my girlfriend, Sandra. Her endless patience and
emotional support have been a constant source of strength, motivation and inspiration for me. However,
it is with a touch of melancholy that I acknowledge the sacrifices we’ve made in our personal lives in
order to pursue this overdue academic endeavour that I should have completed twenty years ago.
I would like to thank my family and in-real-life friends for their continuous support and encouragement
throughout these last years. Your belief in me has provided the foundation upon which this work stands.
I am also deeply grateful to my online friends, especially within the Typst and Nix communities, for
their tremendous support and constant source of solutions, inspiration and motivation.
A special mention is deserved for Izumi, my cat, who was a constant companion and source of comfort
over the last decade. His loss was a profound sorrow, and I deeply miss his presence. The memories of the
countless hours he spent by my side, offering silent support during my work, have left an indelible mark.
Finally, I would like to express my sincere thanks to all the participants in this research. I am particularly
grateful to my colleagues at European Commission, who courageously and continuously supported me
while remaining unaware of my academic activities. Your valuable feedback has greatly contributed to the
development of some parts of this master’s thesis. In fact, your lack of awareness helped me understand
the barriers to implementing software reproducibility from the very beginning and in a real professional
context. Each piece of feedback has been instrumental in helping me better understand and improve
communication about this concept.

Reproducibility in Software Engineering 7

This page is intentionally left blank.

8 Reproducibility in Software Engineering

Accessibility
This master thesis has been written with a focus on accessibility to ensure it can be easily read and
understood by a diverse audience, including individuals with disabilities. The following measures have
been taken to enhance accessibility:

• Links: all hyperlinks within this document are underlined and clearly distinguishable from regular
text. This visual cue helps users identify clickable links easily.

• Symbols and notation: specific symbols and notation have been used consistently throughout the
document to aid comprehension. Mathematical symbols, special characters, and other notation are
presented in a clear and readable manner.

• Text formatting: the document uses high-contrast text formatting and font sizes that are readable
across different devices and screen resolutions. The New Computer Modern [1] font is used, chosen for
its clarity and readability, especially in mathematical and technical contexts.

• Margins: the margins have been alternately adapted to ensure that when the document is printed, it
is suitable for binding and easy to read. This consideration enhances the physical accessibility of the
printed document.

• Headings and structure: the document is structured with clear headings and subheadings to facilitate
navigation. This hierarchical organisation assists readers in quickly finding relevant sections.

• Language and terminology: plain language and concise terminology have been employed to ensure
that the content is comprehensible to a broad audience, including those for whom English is not their
first language.

• Glossary: a glossary is included, containing the most common abbreviations used throughout the
document. This aids readers in quickly understanding the abbreviations and acronyms, improving
overall comprehension. Additionally, comprehensive lists of definitions, figures, and tables are provided.

• Accessible file formats: the document is available in multiple file formats, to accommodate various
reading preferences and assistive technologies.

• Bibliography links: in line with the Institute of Electrical and Electronics Engineers (IEEE) citation
style, numbers in brackets are used to link references in the bibliography. This method provides a clear
and consistent way to reference sources, enhancing the readability and accessibility of the document.

• Images: all images in this document are in Scalable Vector Graphics (SVG) format. This vectorial
format ensures that images are scalable without loss of quality, providing clear and accessible visuals
on different devices and screen resolutions.

Open Source
This master thesis has been developed exclusively using open-source tools. Similar to an open-source
project, it was maintained on GitHub but in a private repository [2]. That repository will be made
public after the oral defense and necessary internal cleanup. Automated and reproducible builds were
managed via GitHub Actions [3], ensuring that a new compiled version was published at each commit
to the project. Additionally, I’m planning to publish it on Zenodo [4] too after the necessary formalities
are completed.
This work is licenced under a dual license: the Creative Commons Attribution 4.0 International (CC
BY 4.0) and the Hippocratic Licence 3.0 (HL3) licences. You are free to share and adapt the material
under the terms of the CC BY 4.0, provided you give appropriate credit to the original author. You must
also use the material in accordance with the ethical guidelines specified in HL3, ensuring it is not used
to contribute to human rights abuses or other unethical practices. In case of any conflict between the
licences, HL3 will take precedence.
For the purpose of the Chapter 3, an open-source project [5] was created to provide a full transparency
on the results shown in that chapter.

Reproducibility in Software Engineering 9

Glossary

CC BY 4.0 – Creative Commons Attribution 4.0 International: The Creative Commons
Attribution 4.0 International License [6] is a widely used license that allows others to distribute, remix,
adapt, and build upon your work, even commercially, as long as they credit you for the original creation.
This is the most flexible of the CC licenses. 9

CDN – Content Delivery Network: A content delivery network is a system of distributed servers
that deliver web content to a user based on the geographic locations of the user, the origin of the
webpage and a content delivery server, making the delivery of content more efficient. 74

CI/CD – Continuous Integration/Continuous Deployment: Continuous Integration (CI) is a
software development practice where developers regularly merge their code changes into a central
repository, after which automated builds and tests are run. Continuous Deployment (CD) is a software
release process that uses automated testing to validate that changes are safe to deploy to production.
10, 52, 66

CPU – Central Processing Unit: The CPU is the primary component of a computer that processes
instructions. It runs the operating system and applications, constantly receiving input from the user or
active software programs. It processes the data and produces outputs. ARM and X86 are two common
CPU architectures. 31, 37, 73

CRA – Cyber Resilience Act: The Cyber Resilience Act [7] is a proposed European Union regulation
that aims to improve the cybersecurity of digital products and services. It includes provisions for
software supply chain security, incident reporting, and security certification. 37

CS – Computer Science: The discipline of Computer Science includes the study of algorithms and
data structures, computer and network design, modelling data and information processes, and artificial
intelligence. Computer Science draws some of its foundations from mathematics and engineering and
therefore incorporates techniques from areas such as queueing theory, probability and statistics, and
electronic circuit design. 16, 18, 19, 24, 25, 30, 31, 33, 34, 35, 46, 81

CycloneDX: CycloneDX [8] is an open-format standard baked by the OWASP foundation and Ecma
Technical Committee designed to provide comprehensive and interoperable information about the
components used within software projects like software bill of materials and advanced supply chain
capabilities for cyber risk reduction. 38

DSL – Domain Specific Language: A domain-specific language is a computer language specialised
to a particular application domain. This is in contrast to a general-purpose language, which is broadly
applicable across various domains. 70

DevOps: DevOps is a set of practices that combines software development (Dev) and IT operations
(Ops). It aims to shorten the systems development life cycle and provide Continuous Integration/
Continuous Deployment (CI/CD). 10, 54

DevSecOps: DevSecOps is an extension of DevOps practices that integrates security (Sec) measures at
every stage of the software development lifecycle, ensuring that security is a fundamental aspect of
development and operations processes. 38

FHS – Filesystem Hierarchy Standard: The Filesystem Hierarchy Standard is a reference document
that describe the conventions used for the layout of Unix-like operating systems. This includes names,
locations, and permissions of many file and directories. 58

HL3 – Hippocratic Licence 3.0: The Hippocratic Licence 3.0 [9] is a software license that ensures that
software is not used to contribute to human rights abuses or other unethical practices. It is designed
to protect users and communities from the potential misuse of software. 9

IEEE – Institute of Electrical and Electronics Engineers: The Institute of Electrical and
Electronics Engineers [10], established in 1963, is the world’s largest technical professional organisation
dedicated to advancing technology for the benefit of humanity. It serves as a professional association
for electronic engineering, electrical engineering, and related disciplines. 9, 11

10 Reproducibility in Software Engineering

MD5 – Message Digest 5: The MD5 message-digest algorithm is a widely used hash function producing
a 128-bit hash value. MD5 was designed by Ronald Rivest in 1991 to replace an earlier hash function
MD4, and was specified in 1992 as RFC 1321. 35, 36

OCI – Open Container Initiative: OCI stands for Open Container Initiative [11], an open governance
project for the purpose of creating open industry standards around container formats and runtime. An
“OCI image” is a container image that conforms to the OCI image format specification. 54, 61, 62, 69

OS – Operating System: An operating system is system software that manages computer hardware
and software resources, and provides common services for computer programs. 26, 31, 37, 56

PDF – Portable Document Format: A file format developed by Adobe in the 1990s to present
documents, including text formatting and images, in a manner independent of application software,
hardware, and operating systems. 19, 61, 62, 63, 64, 81

POSIX – Portable Operating System Interface: POSIX is a family of standards specified by the
IEEE for maintaining compatibility between operating systems. 43, 58

PURL – Package URL: A PURL [12] is a Uniform Resource Locator (URL) string used to identify
and locate a software package in a mostly universal and uniform way across programing languages,
package managers, packaging conventions, tools, APIs and databases. 73

REPL – Read-Eval-Print Loop: A read-eval-print loop is an interactive computer programming
environment that takes single user inputs, evaluates them, and returns the result to the user. 18

SBOM – Software Bill of Materials: The software bill of materials is a comprehensive inventory
of all components, including libraries, dependencies and versions, that constitute a software product,
used for tracking and managing software supply chain security. 18, 38, 73

SE – Software Engineering: Software Engineering is a computing discipline. It is the systematic
application of engineering approaches to the development of software. 16, 17, 18, 19, 20, 25, 29, 37, 40,
46, 47, 50, 52, 53, 66, 68, 71, 73, 74, 76

SHA-1 – Secure Hash Algorithm 1: SHA-1 is a hash function which takes an input and produces a
160-bit (20-byte) hash value known as a message digest – typically rendered as 40 hexadecimal digits. It
was designed by the United States National Security Agency (NSA), and is a U.S. Federal Information
Processing Standard. 35

SHA-2 – Secure Hash Algorithm 2: SHA-2 is a set of cryptographic hash functions designed by the
United States National Security Agency (NSA). It consists of six hash functions with digests (hash
values) that are 224, 256, 384 or 512 bits: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,
SHA-512/256. 35

SPDX – Software Package Data Exchange: The Software Package Data Exchange [13] format,
created and maintained by the Linux Foundation, is a standardised way of documenting and
communicating the components, licenses, and copyrights of software packages. It provides a consistent
method for tracking and sharing information about software contents, particularly in open-source and
collaborative environments. 38

SRI – Subresource Integrity: Subresource Integrity [14] is a security feature that allows web
developers to ensure that resources they fetch are delivered without unexpected manipulation. 53

SVG – Scalable Vector Graphics: SVG is an XML-based vector image format. 9, 61
SWHID – Software Heritage Identifier: The Software Heritage Identifier [15] is a unique identifier

for software artifacts, such as source code, that is used to track and reference software across different
platforms and systems. 53, 73

SemVer – Semantic Versioning: Semantic Versioning [16] is a versioning scheme for software that
uses a three-part version number: MAJOR.MINOR.PATCH. 42

URL – Uniform Resource Locator: A URL is a reference to a web resource that specifies its location
on a computer network and a mechanism for retrieving it. 11

Reproducibility in Software Engineering 11

This page is intentionally left blank.

12 Reproducibility in Software Engineering

Contents

I Introduction ... 15
1.1. History ... 16
1.2. Background .. 17
1.3. Motivation ... 19
1.4. Goals .. 20
1.5. Structure .. 20

II Reproducibility ... 21
2.1. Reproducibility in Science ... 22

2.1.1. Reproducibility Levels ... 23
2.1.2. Formalisation ... 24

2.2. Reproducibility in Computer Science .. 24
2.2.1. Scope ... 25
2.2.2. Quantifying Reproducibility .. 27
2.2.3. Open Source .. 28
2.2.4. Terminology ... 29
2.2.5. Software Security ... 37
2.2.6. Reproducibility Utopia .. 40

2.3. Deterministic Builds And Environments ... 41
2.3.1. Sources Of Non-Determinism .. 41
2.3.2. Comparing Builds .. 45
2.3.3. Fixing Builds ... 46

2.4. Conclusion ... 46

III Software evaluation ... 49
3.1. Methodology .. 50

3.1.1. Evaluation Criteria .. 51
3.1.2. Tools And Technologies ... 51
3.1.3. Scenarios .. 51
3.1.4. Compilation And Execution .. 51
3.1.5. Environment Setup .. 52
3.1.6. Output Comparison ... 52
3.1.7. Expected Outcomes ... 53

3.2. Evaluation 1 - Bare compilation .. 53
3.3. Evaluation 2 - Docker .. 54
3.4. Evaluation 3 - Guix ... 56
3.5. Evaluation 4 - Nix ... 58

3.5.1. Nix legacy method ... 58
3.5.2. Nix Flake ... 59
3.5.6. Dealing With Variability ... 61

3.6. Conclusion ... 65

IV Conclusion ... 67
4.1. Summary ... 68
4.2. Evaluation Of Tools ... 68
4.3. Research Findings .. 72

4.3.1. At A Glance .. 72
4.3.2. Limitations .. 72

4.4. Future Work .. 73
4.4.1. Flaky tests ... 74
4.4.2. Formal Concepts .. 75
4.4.3. Ethical Considerations ... 75
4.4.4. Philosophical Considerations ... 75
4.4.5. Economical Considerations .. 76
4.4.6. Educational Considerations ... 76

List of definitions .. 79

List of figures .. 81

List of tables ... 83

Bibliography ... 85

Reproducibility in Software Engineering 13

This page is intentionally left blank.

14 Reproducibility in Software Engineering

Chapter I

Introduction
Sine experientia nihil sufficienter sciri potest

— R. Bacon [17]

Reproducibility in Software Engineering 15

I - Introduction

1.1. History
R. Bacon [17], an English philosopher and scientist, articulated in 1267 the foundations of what we today
recognise as “reproducibility”. He famously stated in Latin “Sine experientia nihil sufficienter sciri potest”
which means “Without experience nothing can be sufficiently known” [17, p.583]. He was among the first
to underscore the significance of repeated experimentation as a means to test and ultimately confirm
scientific findings. Although the specific term “reproducibility” was not used in his time, his emphasis
on empirical evidence is seen as a precursor to our modern understanding of reproducible research in the
scientific method.
Centuries later, K. R. Popper [18], an Austrian-British philosopher wrote a book on the importance of
falsifiability in the scientific method. He argued that a scientific theory must be falsifiable in order to be
considered valid. He also introduced the concept of falsificationism, which states that a theory can only
be considered scientific if it is possible to conceive of an observation or an argument which proves the
theory false. This principle is now widely accepted as a fundamental tenet of the scientific method.
K. Thompson [19] delivered a lecture “Reflections on Trusting Trust” at the Association for Computing
Machinery (ACM) Turing Award Banquet. Since his talk, the landscape of software has undergone a
radical metamorphosis. The simplicity of his advice to trust people has become significantly more complex
in the current era. The modern software supply chain is extensive, often encompassing dependencies
that lies beneath the surface. Despite the prevalence of open-source software within this supply chain,
it is uncommon for end-users to compile their own software. As a result, the build systems became
a prime vector for malicious exploitation [20, p.1]. This underscores the vital importance of software
reproducibility which ensures that software can be reliably built and verified from its source across
different environments and over time, mitigating the risks associated with trust and the potential for
exploitation within the software supply chain.
J. F. Claerbout and M. Karrenbach [21] wrote about the challenges and implications of reproducibility
in the paper titled “Electronic documents give reproducible research a new meaning”. This work was in
the field of geophysics, but it has been influential across multiple domains of Computer Science (CS). It
was one of the early works to emphasise that the sharing of software and environments is critical to the
reproducibility of computational results.
C. Collberg and T. A. Proebsting [22] has underscored the importance of reproducibility in Software
Engineering (SE) by advocating for and funding initiatives that enhance both repeatability and
reproducibility. They promote the adoption of standardised practices and transparency in research, which
are crucial for ensuring that experiments are repeatable, a foundational aspect of reproducibility. By
encouraging comprehensive documentation and public sharing of methodologies, data, and code, they
facilitate the replication of work by others, thus enhancing the overall reliability and verification of
scientific findings. Their financial support extends to tools and infrastructure that assist in establishing
repeatability, which is paramount to achieving reproducibility in broader research. Recognising and
rewarding efforts to share research artefacts further embeds a culture where both repeatability and
reproducibility are fundamental practices in SE, ensuring that studies can not only be repeated under
the same conditions but also reproduced and validated in different contexts.
In 2020, the United States sustained a sophisticated cyberattack known as SolarWinds. This meticulously
orchestrated campaign apparently attributed to Russia persisted undetected for several months and
was enabled through a backdoor embedded within one of the dependencies of the SolarWinds Orion
(R. Alkhadra, J. Abuzaid, M. AlShammari, and N. Mohammad [23]) software, a network monitoring
tool employed by numerous corporations and government agencies. By exploiting this vulnerability, the
attackers gained unauthorised access to the networks of SolarWinds clients, which allowed them to steal
data and deploy malware.
This incident raises a question “How did such a consequential security breach remain unnoticed for
months?” and underscores the critical importance of reproducibility in SE. Had the SolarWinds Orion
software and its dependencies been subject to stringent reproducibility standards, where every build
could be precisely recreated and examined, the malicious alterations might have been detected earlier.
Reproducibility in this context not only refers to the ability to replicate software builds but also to verify
the integrity and provenance of every component, ensuring that no unauthorised changes have been

16 Reproducibility in Software Engineering

I - Introduction History

made. By prioritising reproducibility, developers and users of software can enhance security measures,
mitigate risks, and foster a more trustworthy digital environment.
In a post from the Joinup - Open Source Observatory [24], institutions like the European Commission
and the European Parliament began recommending Signal [25], a secure open-source instant messaging
platform, for communications. This highlighted a broader, critical issue: the verification of software
authenticity. Users generally trust software obtained from various stores, but this trust brings to the
forefront the question of how they can verify with certainty that the version of the Signal application
installed on their devices indeed derives directly from the source code provided in its repository. Ensuring
an application’s authenticity, confirming it has not been tampered with prior to its public release, has
become a central concern in our everyday lives. This issue underscores the importance of transparent and
reproducible builds where the end product can be reliably traced back to its original source, ensuring
the integrity and security of the software being used.
During the OpenAI DevDay’s keynote [26] in November 2023, OpenAI’s CEO Sam Altman unveiled
a groundbreaking feature called reproducible outputs. This innovation enables users to consistently
replicate the outcomes generated by OpenAI’s models, marking a significant advancement in achieving
reproducibility within the realm of artificial intelligence.
Software companies have increasingly recognised the importance of reproducibility for enhancing security.
Popular messaging platforms like Signal [27] and Telegram [28] have taken significant steps to ensure
the reproducibility of their builds. They support reproducible builds, allowing users to verify that the
open-source code matches the applications available on various app stores, including the Apple Store
and Google Play. This initiative ensures that the distributed binaries are authentic and unaltered,
thereby protecting users from potential vulnerabilities and enhancing trust in the software’s integrity.
By implementing these procedures, software companies highlight the broader industry’s move towards
transparency and reliability in software distribution, reinforcing the essential role of reproducibility in
modern SE.
In the light of these considerations, this master thesis addresses the aforementioned issues and questions
by delving into the principles of software reproducibility. We will explore the mechanisms that can ensure
the integrity of software, and examine how these practices can be standardised to safeguard against the
risks of unauthorised tampering. In doing so, this thesis aims to contribute to the critical discourse on
software security and reliability in an era where digital trust is paramount.

1.2. Background
Curiosity has always been at the core of my being, fuelling an insatiable eagerness to learn and explore
the unknown. I remember myself as an inquisitive boy, constantly delving into the mechanics of how
things work. This curiosity often led to disassembling devices to uncover their hidden secrets, followed
by a harder quest to reassemble them. While my father played a pivotal role in this journey of discovery,
and I simply cannot recall a single moment when he responded with “I don’t know” it was my mother
who truly ignited my path to computers. Her encouragement and unwavering belief in pursuing my
passions were instrumental in shaping my journey towards a deeper understanding of the world around
me, especially computers.
My interest in computers and software development was sparked in my early childhood, before the age
of ten with the Logo language, which soon led to my discovery of the BASIC programming language on
an Atari 1040STE. The capabilities of that machine captivated my young mind, igniting a passion for
technology and its boundless potential. This early fascination was a signpost towards my future; it was
clear that my career would be intertwined with computers. Over the years, I witnessed the remarkable
evolution of the software industry and the advent of groundbreaking technologies. I have also observed
the progression in software development methodologies. However, despite the influx of new technologies
arising, there are certain categories of issues that remain constant along the passing years, sadly.
Transitioning from BASIC, I briefly jumped on Microsoft Windows before moving to Linux, a platform
that has since become my daily driver. In 2019, I found myself grappling with a sluggish laptop running
a popular Linux distribution. In search of a faster, binary-based alternative, I transitioned to NixOS
[29]. This shift marked the beginning of a totally new perspective on software development for me. It

Reproducibility in Software Engineering 17

Background I - Introduction

was through NixOS that I encountered the concept of “reproducibility” which opened my eyes to the
possibilities of making and shipping more reliable software.
We’ve seen in the previous section and will detail further in the next chapters that this concept originates
from researchers and the scientific method. This concept can be transposed to CS and more specifically to
software development. In this context, reproducibility is the ability to recreate the exact same software,
including the operating system, the compiler, the libraries, and the source code, in order to obtain the
same results.
For the past three years, the principle of reproducibility has totally revolutionised my approach to
software development. This concept has captivated me to such an extent that I now devote a significant
portion of my free time to contributing to open-source projects that emphasise reproducible builds. It is
this profound interest that has inspired me to dedicate my master’s thesis to exploring the depths and
implications of reproducibility in SE.
Here’s a non-exhausive list of projects I have contributed to:

• In the Linux NixOS operating system:
‣ I created around 430 pull requests [30].
‣ I made around 1800 reviews [31].
‣ After several months of dedicated effort, I developed a wrapper for building reproducible Composer-

based PHP applications [32], resolving a significant obstacle and positioning Nix as the preferred
distribution for self-hosting PHP applications. An updated version is in preparation [33], which will
be more user-friendly and will provide a more comprehensive solution for PHP developers while
being at least twice faster than the previous version.

• In the PHP [34] community:
‣ In Composer [35], the PHP package manager, I proposed a pull request enabling deterministic

outputs by default [36].
‣ I advocate for reproducibility by giving talks [37].
‣ I open issues in PHP projects that are not shipping required files to enable reproducibility, explaining

the reasons why it should be included:
– In PHPUnit, the PHP testing framework [38];
– In PsySH, a PHP REPL [39];
– In GrumPHP, a code quality tool [40];
– In Psalm, a static analysis tool [41];
– In PHPMD, a static analysis tool [42];
– In PHP-CS-Fixer, a code formatter [43];
– In PHP-Parallel-Lint, a code linter [44];

‣ I initiated and participated in discussions to improve reproducibility in the PHP source code [45].

• In the Reproducible Builds [46] project:
‣ I contributed to the website by making it reproducible [47];
‣ I improved the documentation [48], [49];
‣ I contributed to the monthly reports [50];

• In the Typst [51] project:
‣ I raised awareness about the importance of reproducibility [52];
‣ I engaged in discussions on Discord leading to improving the compilation environment hermeticity

[53];

• At work, I advocate the cause of reproducibility, emphasising its critical importance in our projects.
The objective is to raise awareness amongst my colleagues about the advantages of reproducibility,
with the ultimate aim of establishing it as a norm within our organisational software practices. As an
initial measure, I am developing proofs of concept that illustrate the process of creating reproducible
containers, embedding their Software Bill of Materials (SBOM) within their metadata. Additionally,
I pioneered a project focused on generating ephemeral, reproducible, and tailor-made development
environments and user profiles [54]. Finally, I try to provide reproducible development environments for
each open-source projects [55] we publish to foster a more transparent and secure software development
process but also to encourage contributions.

18 Reproducibility in Software Engineering

I - Introduction Background

• In 2022, I participated in the Summer of Nix, a paid summer program designed to foster learning,
networking, and collaboration within the Nix community. The program caters to both experienced
Nix users and newcomers, offering a unique opportunity to work together on a diverse range of topics.
During this event, I did a talk about how we use Nix at work [56].

• In a recent YouTube interview on “La Tronche En Biais” [57] , in a live titled “SCIENCES: Une crise de
reproductibilité des études?” [58], I briefly discussed the reproducibility crisis in scientific studies and
drew parallels with SE. I shared insights from my master’s thesis on this topic, particularly highlighting
the challenges faced when software compiled in one environment fails in another, highlighting broader
implications for security and consistency across different systems. I also clarified different levels of
reproducibility introduced in Chapter 2, section 1.1.

1.3. Motivation
The pursuit of reproducibility in SE is driven by a fundamental quest for precision, reliability, and trust
in the digital landscape. In an age where software pervades nearly every aspect of our personal and
professional lives, the importance of being able to reliably replicate software builds cannot be overstated.
At its core, software reproducibility addresses a simple yet profound question: can we consistently recreate
the same software product, with the same functionality and performance, across different environments
and over time? This question is not just academic but is deeply rooted in practical necessities and ethical
considerations in the field of CS, but not only.
The principle of reproducibility is essential across various disciplines, ranging from the empirical rigor of
scientific experiments to painting or even culinary art. This concept, at its core, is about the ability to
consistently replicate results under similar conditions.
In cooking, recipes passed down through generations serve as blueprints for recreating cherished family
dishes. Despite meticulously following these recipes, achieving the exact taste and texture of an ancestral
meal can sometimes be elusive. Factors like cooking temperature, ingredient quality, or even altitude
can possibly alter the outcome. This uncertainty in replicating results underscores the complexity and
nuances involved in the process of reproducibility.
In CS, the implications of reproducibility take on a more systemic and critical dimension. Imagine wanting
to use or build a software application, ensuring it is identical to what the original developer intended. For
instance, this thesis itself is a digital artefact, a Portable Document Format (PDF) document derived
from source files hosted in a public repository. A pertinent question arises: how can one be sure that
the document produced from the source code today will be identical to one compiled a year from now?
Ensuring reproducibility in such cases is not just a matter of convenience but a cornerstone for verifying
authenticity and integrity in a digital world increasingly prone to misinformation and security threats.
Reproducibility in SE lies in its potential to enhance reliability and security. Reproducibility aims to
eliminate the all-too-common refrain of “it works on my machine!” by establishing a more robust,
consistent build and deployment process. It is about creating a development environment where software,
when operational on one machine, can be expected to be built and function identically on another,
thereby bridging gaps in consistency and predictability. In a digital era where trust and security are
paramount, reproducibility is not merely a technical objective; it is a fundamental criterion for building
and maintaining digital trust.
One of the driving factors behind this research is the inherent complexity present in modern software
environments. Today’s software systems are built on intricate layers of dependencies, including various
libraries, frameworks, and operating systems. This complexity poses significant challenges in ensuring
consistent behaviour of software products across different environments. Moreover, the escalating
frequency of security breaches and malicious attacks on software supply chains underscores the critical
role of reproducibility. It serves as a vital mechanism for verifying the integrity of software, assuring that
it has not been compromised, and maintaining the transparency of the build process.
Furthermore, the academic and scientific rigors of CS demand a steadfast commitment to reproducibility.
In a field where building upon previous work is the norm, the ability to validate and replicate research
findings is indispensable. This aspect is particularly crucial in open-source software development, which
thrives on community collaboration. The open-source paradigm hinges on the capability of developers
around the world to replicate, modify, and contribute to codebases consistently and efficiently.

Reproducibility in Software Engineering 19

Motivation I - Introduction

Lastly, the evolving nature of software poses its own set of challenges. Software development is a
dynamic process, with systems continually evolving and adapting. Maintaining reproducibility ensures
that earlier versions of software can be reliably reconstructed and understood, a critical factor for long-
term maintenance, auditing, and compliance.
Through this thesis, the aim is to shed light on the significance of software reproducibility, exploring how
it can be effectively achieved and the tools and practices that can facilitate this goal. This exploration
is not only crucial for the technological advancement but also for upholding the principles of reliability,
security, and transparency in an increasingly software-dependent world.

1.4. Goals
In this master thesis, my primary focus will be to provide a comprehensive overview of reproducible
builds, within the sphere of software development, acknowledging that a complete examination of every
aspect of reproducibility is beyond our scope.
I will explore a selection of tools and methodologies that promote reproducibility or, at least, create
favorable conditions for facilitating it. Moreover, this document is intended to enlighten and hopefully
convince the reader that the construction of reproducible software should be a fundamental principle,
not merely a secondary consideration, within the software development lifecycle. Finally, I will delve
into the rationale for adopting this reproducibility paradigm as a standard practice in modern SE, with
particular emphasis on security implications.
By the conclusion of this thesis, the reader will have a comprehensive understanding of the concept of
reproducibility and how best practices can be implemented effectively in software development projects.

1.5. Structure
Organised into several chapters, this thesis systematically explore the multifaceted nature of software
reproducibility.

• Chapter 1 being this introduction, outlining the thesis’s scope and objectives.
• Chapter 2 introduces the origin of the concept of reproducibility, tracing its lineage from scientific

principles. It proposes a terminology, formalisms and its challenges.
• Chapter 3 is a hands-on exploration, delving into specific real-world examples. It will demonstrate

practical applications of the concepts discussed in previous chapters, including proof of concept
implementations, concrete case studies, and detailed analyses of real-world scenarios where
reproducibility plays a crucial role. This chapter aims to bridge theory with practice, showing how
the principles of reproducibility are applied and sometimes challenged in real-world settings.

• The final Chapter 4 synthesises the insights gained throughout the thesis. It offers recommendations
for best practices based on the research and discussions presented. Moreover, it suggests directions
for future work, identifying areas where further research, development, and discussion are needed to
advance the field of software reproducibility.

20 Reproducibility in Software Engineering

I - Introduction Structure

Chapter II

Reproducibility
Reproducibility is a minimum necessary condition for a finding to be believable and informative.

— J. T. Cacioppo, R. M. Kaplan, J. A. Krosnick, J. L. Olds, and H. Dean [59]

Reproducibility in Software Engineering 21

II - Reproducibility

2.1. Reproducibility in Science

“No serious physicist would offer for publication, as a scientific discovery, one for whose
reproduction he could give no instructions.”

K. R. Popper [18]

The concept of reproducibility lies at the heart of scientific inquiry, serving as a critical benchmark for
the validation and acceptance of research findings. It is a principle that transcends scientific disciplines,
insisting that the results of an experiment or study must be consistently replicable under identical
conditions by different researchers. This aspect of the scientific method ensures the reliability and integrity
of scientific knowledge. It establishes a framework where hypotheses are not just tested but also subjected
to repeated verification, underpinning the trust and credibility that society places in scientific discoveries.
The journey of reproducibility, originating from the earliest scientific endeavors, has evolved to adapt to
the complexities and nuances of modern research methodologies. This evolution mirrors the progression
of scientific thought and technology, from rudimentary experiments to sophisticated, computer-assisted
analyses.
One can observe the glimpse of the first traces of this concept in K. R. Popper [18]. The concept of
reproducibility is far from new and has been a cornerstone in the sciences for centuries. It aims to explain
natural phenomena in an objective and repeatable manner.
According to M. Castillo [60], the scientific method (Figure 1), a formalised and widely-adopted process
for exploring observations and answering questions, is inherently designed to be repeatable. However,
this does not guarantee that the results of all experiments conducted using the scientific method will be
reproducible. When results cannot be replicated, it raises questions about the validity of the experiment
and the credibility of the researcher.

In the realm of scientific research, repeatable and reproducible are terms often used
interchangeably, yet they hold distinct meanings.
Repeatable research refers to the ability of a study or experiment to yield the same results
when conducted again under the same conditions with the same materials and methods
by the same researchers. It primarily focuses on the consistency and reliability of results
within the original research context.
On the other hand, reproducible research emphasises the ability of an independent
researcher to attain at the same findings and conclusions using the original study’s raw
data and following the same methodologies, but possibly under different conditions and
with different tools. Reproducibility extends the validation process beyond the original
researchers, ensuring that the results hold up under scrutiny and can be reliably used as
a foundation for further study.
Together, repeatability and reproducibility are foundational to the integrity and
advancement of scientific knowledge, allowing for a deeper trust and understanding of
research findings.

While reproducibility can be considered closely aligned with the scientific method, it is not an
intrinsic part of it. The scientific method is a procedural approach for conducting experiments, whereas
reproducibility is a quality attribute of the experimental results (Figure 2).
As of 2016, some of its basic terms were not standardised. This diverse nomenclature has led to confusion,
both conceptual and operational, about what kind of confirmation is needed to trust a given scientific
result.

22 Reproducibility in Software Engineering

II - Reproducibility Reproducibility in Science

Question

Observation

Analysis

Testing

Prediction

Hypothesis

Figure 1: Scientific method

Question

Observation

Analysis

Testing

Prediction

Hypothesis

Re peat

Figure 2: Scientific method with reproducibility

Reproducibility in research is a major factor that determines the uniqueness of research studies. It
means obtaining consistent results using the same data and protocol as the original study. For example,
researchers confirm the validity of a new discovery by repeating the experiments that produced the
original results. Moreover, other researchers in the field are also able to repeat the same experiments
producing the results similar to the original.

2.1.1. Reproducibility Levels
According to B. T. Essawy et al. [61], reproducibility is organised in four levels:

• Repeatability: Achieved upon obtaining consistent results using the same input data, computational
steps, methods, and code on the original researcher’s machine. This level is normally achieved in
scientific papers.

• Runnability: Achieved when the author of the research can obtain consistent results using the same
input data, computational steps, methods, code and conditions of analysis on a new machine.

• Reproducibility: Achieved when a new researcher, not an original author of the analysis, is able to
reproduce the analysis in their own computational environment [62].

• Replicability: Achieved by obtaining consistent results across studies aimed at answering the same
scientific question, each of which has obtained its own data [62]. Replicability also allows scientists
not involved in the original study to build from and expand on research once they are first able to
reproduce that research.

Table 1: The four levels of reproducibility and their requirements.

Original Other
researcher machine data researcher machine data

Repeatability ✓ ✓ ✓
Runnability ✓ ✓ ✓

Reproducibility ✓ ✓ ✓
Replicability ✓ ✓ ✓

It’s crucial to understand that these levels are interconnected and not isolated. Achieving
reproducibility level means that the criteria for both repeatability and runnability levels
have been met.

Reproducibility in Software Engineering 23

Reproducibility Levels II - Reproducibility

Table 1 delineates four levels of reproducibility, each with specific prerequisites. It’s important to
acknowledge that these levels are organised in ascending order of difficulty to attain, starting from
the simplest to the most challenging. Consequently, progressing through these levels necessitates an
incremental investment of resources, time, and effort.

2.1.2. Formalisation

Definition 1: Experiment
An experiment 𝑒 conducted with a set of parameters and conditions 𝑝 where 𝑟(𝑒, 𝑝)
represents the experiment results, is reproducible if and only if:

∀𝑒 ∈ 𝐸,∀𝑒′ ∈ 𝑅(𝑒), ∀𝑝 ∈ par(𝑒), 𝑟(𝑒, 𝑝) = 𝑟(𝑒′, 𝑝)

where
• 𝐸 is the set of all possible experiments
• par is a function defined as par : 𝐸 → 𝒫(𝑃) where 𝒫(𝑃) is the powerset of 𝑃 , the set

of all possible parameters of all possible experiments
• 𝑅(𝑒) is a function defined as 𝑅 : 𝐸 → 𝒫(𝐸) where 𝒫(𝐸) is a powerset of 𝐸 that gives

for each experiment 𝑒 ∈ 𝐸, its set of independent replications

2.2. Reproducibility in Computer Science

“In their vision of reproducible research, readers should be able to rebuild published results
using the author’s underlying programs and raw data. Implicitly, they are advocating for
open code and data.”

L. A. Barba [63]

As we shift our focus from general scientific domains to the realm of CS, the principles of reproducibility
undergo a unique transformation. In our digital era, where computations and algorithms form the
backbone of research, reproducibility challenges and solutions take on new dimensions. The intricate
interplay of software, hardware, and data in CS demands a re-examination and adaptation of traditional
reproducibility concepts. This is where the principles established in the broader scientific community
intersect with the specificities of computing, leading to a distinct and crucial discourse on reproducibility
in the field of CS.
The initial recorded use of the term reproducible research in an academic paper is believed to have
occurred in 1992, in a presentation by J. F. Claerbout and M. Karrenbach [21]’s team at Stanford, during
the Society of Exploration Geophysics conference. M. Schwab, N. Karrenbach, and J. Claerbout [64], the
same group of researchers updated their definition of reproducibility in computationally oriented research.
In D. L. Donoho, A. Maleki, I. U. Rahman, M. Shahram, and V. Stodden [65], it is stated that
reproducibility depends on open code and data. The authors define reproducible computational research
as that in which all details of computations, code and data, are made conveniently available to others.

Definition 2: Repeatability (Same team, same experimental setup)
The measurement can be obtained with stated precision by the same team using the
same measurement procedure, the same measuring system, under the same operating
conditions, in the same location on multiple trials. For computational experiments, this
means that a researcher can reliably repeat her own computation.

S. N. Goodman, D. Fanelli, and J. P. A. Ioannidis [66] acknowledge the lack of standardisation
in foundational terms like reproducibility, replicability, reliability, robustness, and generalizability. To
address this, they suggest a new lexicon: Methods Reproducibility to align with the original concept of
reproducibility as defined by J. F. Claerbout and M. Karrenbach [21] and D. L. Donoho, A. Maleki, I. U.
Rahman, M. Shahram, and V. Stodden [65], Results Reproducibility corresponding to what R. D. Peng
[67] refers to as replicability, and Inferential Reproducibility to denote a distinct category.

24 Reproducibility in Software Engineering

II - Reproducibility Reproducibility in Computer Science

Definition 3: Reproducibility (Different team, different experimental
setup)
The measurement can be obtained with stated precision by a different team using the
same measurement procedure, the same measuring system, under the same operating
conditions, in the same or a different location on multiple trials. For computational
experiments, this means that an independent group can obtain the same result using the
author’s own artefacts.

The term reproducibility in the context of CS has been refined and explored in many subsequent works
and identifying a single first definition can be challenging due to the evolution of the concept over
times. According to L. A. Barba [63], who conducted a detailed article on the terminology history, the
most appropriate terminology (Definition 2, Definition 3, Definition 4) to describe reproducibility in the
context of CS is the definitions derived from Association for Computing Machinery [68, Artifact Review
and Badging].

Definition 4: Replicability (Different team, same experimental setup)
The measurement can be obtained with stated precision by a different team, a
different measuring system, in a different location on multiple trials. For computational
experiments, this means that an independent group can obtain the same result using
artefacts which they develop completely independently.

In the context of this document, Definition 5 is the definition of reproducibility that we will use when
referring to the concept of reproducibility in CS.

Definition 5: Reproducibility
Reproducibility is the ability to consistently obtain identical results across multiple runs
of a computer task when using the same methods and data, regardless of method, space
and time. Note that this does not necessarily imply that the outputs are correct or the
desired outputs.

Space and Time are terms borrowed from physics. In the context of reproducibility in
SE, space refers to different systems, while time refers to different moments in time [69].
(more about that in Definition 14).

2.2.1. Scope
In this master thesis, the exploration of reproducibility will focus on a specific aspect: ensuring the
reproducibility of building source code to ensure that the resulting application works. This critical area
is paramount in the field of SE, where the ability to consistently recreate identical software artefacts
from a given source code under varying conditions and environments stands as a paramount concern.
The intent is not to undermine the importance of these other facets, but rather to mainly concentrate
the efforts and analysis on the reproducibility of source code building and compilation.

We acknowledge that languages like JavaScript, PHP, Python are not compiled but
merely interpreted by their respective interpreter. Often, these scripting languages
require dependencies provided by their respective package manager as well. Ensuring the
availability of these dependencies is an integral part of the software build process and, to
some extent, corresponds to the compilation in non-compiled languages. Consequently,
in the context of this thesis, “compiling source code” is applicable to both types of
programming languages.

The concept of reproducibility can be distinctly categorised into multiples phases like: reproducibility at
build time (Definition 6) and reproducibility at run time (Definition 7). It is important to note that these
phases are not mutually exclusive and can be combined to achieve a higher level of reproducibility.

Reproducibility in Software Engineering 25

Scope II - Reproducibility

Definition 6: Reproducibility at build time
Reproducibility at build time refers to the ability to consistently generate the same
executable or software artefact from a given source code across different builds on different
environments, across different space and time. This aspect is crucial in ensuring that the
software compilation process is deterministic and immune to variances in development
environments, compiler versions, or build tools. It involves a meticulous standardisation
and documentation of the build environment and dependencies to guarantee that the
same executable is produced regardless of when or where the build occurs.

Definition 7: Reproducibility at run time
Reproducibility at run time addresses the consistency of software behaviour and output
when the software is executed in different environments or under varying conditions. This
type of reproducibility focuses on ensuring that the software performs identically and
produces the same results regardless of the Operating System (OS), underlying hardware,
or external dependencies it interacts with during execution.

To illustrate these phases, the C source code in Listing 1 implements the Monte Carlo method to
approximate the value of π. This is an example of reproducibility at build time, but not at run time.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4

5 int main(int argc, char* argv[]) {
6 srand(time(NULL));
7

8 double x,y,z,count;
9 int n = atoi(argv[1]);

10

11 for (int i = 0; i < n; i++) {
12 x = (double) rand() / RAND_MAX;
13 y = (double) rand() / RAND_MAX;
14 z = x * x + y * y;
15 if (z <= 1) count++;
16 }
17

18 printf("π approx.: %g", (count / n) * 4);
19

20 return(0);
21 }

Listing 1: montecarlo-pi.c

1 $ gcc montecarlo-pi.c -o montecarlo-pi
2 $ sha256sum montecarlo-pi
3 241d0d05314472c6472fd90814f253ccc1b4fd10366ab828201aab1ac1a0d376 montecarlo-pi
4 $ rm montecarlo-pi
5 $ gcc montecarlo-pi.c -o montecarlo-pi
6 $ sha256sum montecarlo-pi
7 241d0d05314472c6472fd90814f253ccc1b4fd10366ab828201aab1ac1a0d376 montecarlo-pi

Terminal session 1: Building the same source code multiple times always yields the same binary
executable

The Monte Carlo algorithm is inherently stochastic, it uses random sampling or probabilistic simulation
as a core part of its computation. This randomness is intrisic to the algorithm’s design and purpose.
The distinction between build time and run time reproducibility for the Monte Carlo algorithm arises
from its usage of a random source. While the algorithm can be reliably built into a consistent binary
(build time reproducibility), its outputs can vary on different executions under the same conditions due
to its inherent randomness (lack of runtime reproducibility). This does not undermine the validity of the
algorithm but rather is a characteristic of its probabilistic approach to problem-solving.

26 Reproducibility in Software Engineering

II - Reproducibility Scope

1 $ gcc montecarlo-pi.c -o montecarlo-pi
2 $./montecarlo-pi 10
3 3.6
4 $./montecarlo-pi 10
5 4
6 $./montecarlo-pi 1000000
7 3.13989
8 $./montecarlo-pi 1000000
9 3.14048

Terminal session 2: Running the binary multiple times does not always yields the same result

In practice, for certain applications, runtime reproducibility can be attained by controlling the random
number generator, specifically by setting a fixed seed as an input parameter.
In the next example, the source code is not reproducible at build time and we might erroneously think
that the program is reproducible at run time.
We observed that compiling the same source code multiple times results in different binaries. This
variation occurs because the source code includes the macros __TIME__ and __DATE__, which are substituted
with the current time and date during compilation. As a result, we cannot achieve reproducibility at
build time.

1 #include <stdio.h>
2

3 int main() {
4 printf(
5 "Built the %s at %s.\n",
6 __DATE__,
7 __TIME__
8);
9 return 0;
10 }

Listing 2: Sourcecode of datetime.c, a C program with macros

Upon executing the produced binary, the outcome appears consistent. This might suggest that the binary
is reproducible at run time, however, this assumption is incorrect. Consider a scenario where a different
user compiles the same source code. In such a case, runtime reproducibility between the original and
another user is not assured.

1 $ gcc datetime.c -o datetime
2 $ sha256sum datetime
3 a123b...c8dba datetime
4 $ rm datetime
5 $ gcc datetime.c -o datetime
6 $ sha256sum datetime
7 937da...1284f datetime
8 $./datetime
9 Built the Nov 21 2023 at 17:19:34.
10 $./datetime
11 Built the Nov 21 2023 at 17:19:34.

Terminal session 3: An example of program that it neither reproducible at build time and run time.

2.2.2. Quantifying Reproducibility
Quantifying reproducibility is traditionally viewed as a binary state: it is either reproducible or
not. However, this perspective oversimplifies the complexity of software environments. In reality,
reproducibility exists on a spectrum, where the focus shifts from a mere yes-or-no assessment to evaluating
the extent and conditions under which a computation is reproducible.

Not re producible Partially re producible Re producible

Figure 3: Reproducibility states

Reproducibility in Software Engineering 27

Quantifying Reproducibility II - Reproducibility

We will explore this concept with Docker images as a primary example. Docker, a popular containerization
platform, uses Dockerfiles (Listing 3). Basically, a Dockerfile is a script with a set of instructions to
build images. These images are then used to run software in a consistent environment. However, many
images on the Docker Hub [70] present challenges to reproducibility. The reasons vary: some Dockerfiles
are not publicly available but especially because most of them include significant variability in their
build processes, making exact replication of the images pretty much impossible. We will consider these
challenges in more detail in Chapter 4.

1 FROM node:18-alpine
2 WORKDIR /app
3 COPY . .
4 RUN yarn install --production
5 CMD ["node", "src/index.js"]
6 EXPOSE 3000

Listing 3: An example of Dockerfile

Determining a precise value for a Docker image’s temporal reproducibility is complex. Thus, for the
purposes of this thesis, we simplify the classification into three broad categories as outlined in Figure 3:
Not reproducible, Partially reproducible, Reproducible. While more nuanced classifications are possible,
this simplified tripartite model provides a sufficient basis in this thesis.
Despite these challenges, Docker images are widely used. They remain static between updates, creating
a window during which their environment is consistent. This period (the interval between two successive
updates) can serve as an indirect measure of reproducibility. Essentially, the longer the time between
updates, the more stable and, by extension, reproducible the image is considered. In considering
the temporal dimension of reproducibility, it is essential to recognise that software artefacts are not
unchanging entities; they offer a predictable environment for a finite period. Imagine a scale where
0 represents non-reproducibility and 1 indicates full reproducibility. On this scale, the temporal
reproducibility of Docker images would be positioned between 0 and 1, acknowledging the nuanced nature
of this concept.
However, this reproducibility is inherently dynamic due to the nature of software evolution. Each update
to a Docker image might introduce changes affecting the software’s behaviour, thereby impacting its
reproducibility over time. Understanding this aspect of temporal reproducibility is crucial for managing
software environments in a continuously advancing technological landscape.
The Docker use case can be classified under the Partially reproducible class. This is because, while
Docker images ensure reproducibility at run time by providing a consistent execution environment,
they often fall short of reproducibility at build time due to the variability inherent in their Dockerfiles.
This dichotomy highlights the spectrum of reproducibility, where Docker images occupy an intermediate
position. They are neither fully reproducible (due to build-time variability) nor completely irreproducible
(thanks to their runtime stability). This categorization not only helps in understanding the reproducibility
status of Docker images but also underscores the need for a nuanced approach to classifying
software reproducibility, acknowledging the various shades that exist between the Not reproducible and
Reproducible boundaries.

2.2.3. Open Source

“If everyone on a research team knows that everything they do is going to someday
be published for reproducibility, they’ll behave differently from day one. Striving for
reproducibility imposes a discipline that leads to better work.”

D. L. Donoho, A. Maleki, I. U. Rahman, M. Shahram, and V. Stodden [65]

Open Source refers to a type of software whose source code is freely available for anyone to view,
modify, and distribute. This model encourages collaborative development and sharing, allowing users and
developers to improve the software and adapt it to their needs.
Open-source software development, known for managing complex projects with high quality, significantly
enhances reproducibility by fostering professionalism and transparency. Making open-source software
reproducible offers numerous advantages: it streamlines the onboarding of new contributors, improves

28 Reproducibility in Software Engineering

II - Reproducibility Open Source

testing and feature implementation, ensures transparent build processes, facilitates security audits, and
quickens response times in the dependency supply chain in case of issues.
Reproducibility, intrinsically linked with Open Source, is fundamentally an activity that builds trust (L.
A. Barba [71]), making it a leading method for ensuring software can be reliably built and verified by a
diverse global community .
A direct correspondence can be established with the taxonomy of B. T. Essawy et al. [61] when
considering the process of building software from source code. This process can be analogised to a scientific
experiment. In this context, the act of an individual building the source code of another developer on
their own machine mirrors the concept of “Reproducibility” as described in Table 1. This signifies that
the software, when compiled by different users from its source code, consistently results in the same
executable or software artefact. The transparency inherent in open-source software is a foundational
advantage. Since the source code is publicly available, it allows researchers to scrutinise how the software
operates, understand how results are generated, and validate the reliability and accuracy of the software.
This level of openness is crucial for replicability and trust in scientific research.
Furthermore, open-source software promotes a culture of collaboration and community involvement.
Active communities that grow around open-source projects contribute to the software’s continual
improvement. This community-driven development leads to the identification and resolution of bugs,
thereby enhancing the software’s reliability and, consequently, the reproducibility outcomes that depend
on it.
A key feature of open-source software is the permissive nature of its licencing, which, depending on the
specific licence, facilitates the reuse and modification of software without legal or technical barriers. This
flexibility is vital for verifying and replicating studies, as researchers can adapt the software for their
specific needs without restrictions, though some licences may impose certain conditions. Additionally,
open-source development tools provide excellent record-keeping capabilities, like version control systems
(e.g., git, Mercurial, Pĳul), enabling researchers to track changes and understand the context of each
update. This aspect is essential for reproducing and validating research findings.
Lastly, the open source approach aligns well with the scientific values of openness and sharing, promoting
a culture that values transparency and reproducibility in scientific inquiry. Moreover, the community-
driven nature of open-source software reduces the risk of obsolescence, ensuring that research tools remain
accessible and up-to-date for future replication efforts.
In essence, open-source software embodies a framework that is not only conducive to the scientific
pursuit of knowledge but also reinforces the integrity and sustainability of SE through its emphasis on
transparency, collaboration, and adaptability.
Open-source development, by its nature of allowing anyone to build, verify and use software, stands out
as an effective, if not the best, approach to bolstering both confidence and safety in software systems.
This widespread participation and verification process inherent in open-source development contributes
significantly to the reliability and security of the software.

2.2.4. Terminology
Establishing formal definitions and terminology is crucial for aligning researchers, practitioners, and
readers on the same wavelength. By articulating a clear and precise mathematical representation, we
facilitate a universal understanding of what it means for a computation to be reproducible.
The following section is dedicated to constructing such a formal definitions, a balance between the rigor
required by the academic community and the clarity needed for widespread adoption.

2.2.4.1. Computation
A computation is a process that involves the execution of algorithms or a series of operations to obtain a
result, usually performed by a computer. It can be complex, involving multiple steps, conditions, and data
manipulations (Figure 4). The formal definition of computation takes into account the computational
environment variable, reflecting the specific context where the computation occurs.

Reproducibility in Software Engineering 29

Computation II - Reproducibility

→→→→→→→→→→→→→→→→→→→→→→→→ →→→→→→→→→→→→→→→→→→→→→→→→

Inputs Computation Outputs

Figure 4: Inputs, computation, outputs

In the context of CS, defining a computation involves considering the broader scope of activities and
processes that a computer performs, extending beyond the traditional mathematical abstraction of a
function. A computation can be understood as a sequence of steps or operations performed by a computer
to transform input data into output data. This process can involve various types of functions, algorithms
and data manipulations. Essentially, a computation can be depicted as an abstraction involving one or
multiple functions.
Examples of computations could be: a program build, a compilation, a program execution, a data analysis,
a data transformation.

• When source code is compiled, the input is the source code and the output is the binary executable.
• When a program is executed, the input is the binary and the output is the result of the program.
• When making a data analysis, the input is the raw data and the output is the analysis.
• When evaluating a function, method, or procedure in any programming language, the input consists

of the function itself along with its parameters. The output is the result of the function applied to
these parameters, including any potential side effects (e.g., changes in the program’s state).

Definition 8: Computation
A computation 𝑐 is a set of one or more functions 𝑓 : 𝐼 × 𝐸 → 𝑅.
where
• 𝐼 is the set of all possible arguments or inputs the computation needs
• 𝐸 is the set of all possible execution environments (hardware, software, space, time)
• 𝑅 is the set of all possible outputs

It is crucial to distinguish functions, both of which are integral in the realms of Mathematics and CS. In
Mathematics, a function is a deterministic construct defining a specific relationship between sets of inputs
and outputs, mapping each input to exactly one output. It acts as a fundamental building block within
computations to describe how values are transformed. In CS, functions are similar but can be classified
as pure (Chapter 2, subsection 2.4.4) or impure (Chapter 2, subsection 2.4.5), with pure functions having
no side effects and impure functions potentially affecting the state or relying on external variables. While
a function provides the rules for individual transformations within a computation, the computation itself
represents the broader and more dynamic process of achieving a result, often involving the execution of
complex algorithms, data handling, and the application of multiple functions and operations.

Functions

Environment
Figure 5: Functions in the context of Mathematics

pureimpure

Functions

Computational environment
Figure 6: Functions in the context of CS

30 Reproducibility in Software Engineering

II - Reproducibility Computation

In CS (Figure 6), a function necessitates an environment in which it will be evaluated, effectively making,
to some extent, this environment an extra input parameter per se. This computational environment,
which encompasses the hardware (e.g., filesystem, memory, CPU), software (e.g., OS) and date (e.g.,
the current date and time), may influence the function’s behaviour and output. Consequently, functions
in CS are inherently designed to interact with and adapt to their environment, thereby making them
dynamic and versatile but also potentially non-deterministic.
Conversely, in Mathematics (Figure 5), a function is evaluated independently of any environment, or with
the environment variable effectively set to null, ensuring its behaviour is entirely predictable and self-
contained. This means its behaviour is entirely predictable and self-contained. This distinction highlights
the adaptability and complexity of functions in computational contexts, compared to their more stable
and defined mathematical equivalents.

2.2.4.2. Inputs and Outputs
An input is the data provided to a computation. The output is the result of a computation or any other
changes made to the environment the computation is being evaluated in.

Definition 9: inputs and outputs
The function 𝑓 : 𝐼 → 𝑅 is a function mapping the domain input set 𝐼 on the codomain
output set 𝑅.

Inputs and outputs can vary widely, ranging from user interactions and network connections to files
and directories. The nature of these inputs and outputs significantly impacts the reproducibility of
computational processes.
Consider user interactions, such as mouse or eyes movements. These are inherently challenging to replicate
precisely due to their dynamic and unpredictable nature. For instance, reproducing the exact trajectory of
a mouse movement is virtually impossible due to the minute variations in human actions. However, a more
reproducible approach would be to capture these interactions in a structured format like in eyeScrollR (N.
Larigaldie, A. Dreneva, and J. L. Orquin [72]). Recording the coordinates of mouse movements over time
in a file creates a detailed log that can be replayed. This arbitrary method transforms a non-reproducible
user interaction into a reproducible set of data.
For a computation to be considered reproducible, its inputs and outputs must be storable and retrievable.
Typically, the most feasible types for such storage are files or directories, primarily due to the ubiquity
and accessibility of file systems in computing environments. Files and directories offer a stable and widely
accessible medium to store and retrieve data.
In this thesis, the focus will be on scenarios where inputs and outputs are in the form of files, unless
specified otherwise. This assumption aligns with the common practices in computational processes and
aids in maintaining the reproducibility of the computations discussed.
In the context of software compilation, an output is correct when it faithfully reflects the state of its
transitive inputs. Basically, the output represents all direct and indirect dependencies used in the build
process. “Transitive inputs” refer to not only the direct inputs (e.g., source code) but also to the inputs
of those inputs (e.g., libraries, frameworks, compilers, data resources).
From the point of view of the software build process as shown in Figure 7, the inputs are all the source
code files, configuration files, and dependencies required to build the software.

→→→→→→→→→→→→→→→→→→→→→→→→ →→→→→→→→→→→→→→→→→→→→→→→→

Inputs Computation Outputs

Figure 7: Inputs, computation, outputs

In Figure 8, the process has been refined from the perspective of the user running the software, where the
input is now composed of the program and its parameters. This distinction is crucial as it highlights the

Reproducibility in Software Engineering 31

Inputs and Outputs II - Reproducibility

dynamic nature of computational processes. The user’s interaction with the software, such as providing
parameters or executing commands, is integral to the inputs and can significantly influence the output.

→→→→→→→→→→→→→→→→→→→→→→→→ →→→→→→→→→→→→→→→→→→→→→→→→

Inputs Computation Outputs

Figure 8: The input is now composed of the program and its parameters

In Figure 9, the environment where the computation is evaluated is added to the input. This environment
includes the hardware, software, space, and time in which the computation is executed. This addition
further refines the definition of inputs and outputs, emphasising the dynamic and context-dependent
nature of computational processes.

→→→→→→→→→→→→→→→→→→→→→→→→ →→→→→→→→→→→→→→→→→→→→→→→→

Inputs Computation Outputs

Figure 9: The input is now composed of the program and its parameters and the environment where it
is going to be evalued.

We could break down the environment further. However, as we delve deeper into segmenting the
components essential for a computation, the process becomes increasingly subjective (K. Hinsen [73]).
Reproducibility implies to compare outputs to determine if they are equivalent. According to P. Ivie and
D. Thain [74, p.5], there are multiple equivalence classes:

Table 2: Classes of reproducibility

Equivalence class Examples
Same phenomenon Human experts
Same statistics Software like GNUplot, Matplotlib, R
Same data Checksum of file contents
Same bits Checksum of file contents and metadata

• Two natural phenomena could be observed by human experts and considered as the same.
• Two results could be statistically equivalent, in that the numeric values are different, but they both

convey the same statistical interpretation.
• Two results could be the same data in the sense that they encode the same numeric contents, but

differ in some irrelevant detail. For example, an output file might incidentally contain the system time
and the name of the user who ran the program.

• Two results could be equivalent, in every way, bit-per-bit. This is the strictest form of equivalence.

In the context of this thesis, we will assume that two results are equivalent if they are the same, bit-
per-bit.

32 Reproducibility in Software Engineering

II - Reproducibility Inputs and Outputs

It is important to clarify that in the context of reproducibility, the time taken to compute
the output is not typically considered. This means that two results can be deemed
equivalent or reproducible even if the computational time to achieve these results varies.
For instance, consider a situation where a piece of code is refactored: if the output
data remains unchanged, the process is considered reproducible from a data consistency
perspective. Nonetheless, even if the refactored code requires significantly more time and
resources to execute, it is still classified as reproducible as long as the output remains
consistent with the original.
This distinction underscores that reproducibility focuses on the consistency of the output
data rather than the performance or efficiency of the computational process. This aspect
is particularly relevant in environments where hardware or system efficiencies may differ,
yet the integrity and equivalence of the output data remain the primary concern. While
this might provoke debate regarding resource efficiency and computational time, for the
purposes of this thesis, it is assumed that the temporal and resource aspects of computing
the output are secondary to the consistency of the results themselves.

2.2.4.3. Evaluation of a Computation
The evaluation of a computation is the process of determining the resulting output of a function for
a given set of arguments. It involves applying, in a specific computational environment, the function’s
defined operations to the inputs to produce an output. This does not necessarily imply that the outputs
are correct. Note that, correct means that the evaluation has successfully completed without errors.

Program

Parameters

Environment

→→→→→→→→→→→→→→→→→→→→→→→→
→→→→→→→→→→→→→→→→→→→→→→→→
→→→→→→→→→→→→→→→→→→→→→→→→

Evaluation →→→→→→→→→→→→→→→→→→→→→→→→

Inputs Computational
environment Outputs

Figure 10: The evaluation of inputs into outputs where the input is composed of the program and its
parameters and the environment where it is going to be evaluated.

Definition 10: Evaluation
eval : (𝐹 , 𝐼, 𝐸) → 𝑅 is a function that evaluates a function 𝑓 and its parameters 𝑖 in a
specific computational environment 𝑒 to produce a result, an output.
∀𝑓 ∈ 𝐹,∀𝑖 ∈ 𝐼, ∀𝑒 ∈ 𝐸, eval(𝑓, 𝑖, 𝑒) = 𝑓(𝑖, 𝑒)
where
• 𝐹 is the set of all possible computations
• 𝐼 is the set of all possible arguments the computation needs
• 𝐸 is the set of all possible execution environments (hardware, software, space, time)
• 𝑅 is the set of all possible outputs

In the realm of mathematics, a function is typically isolated, operating solely on its provided arguments,
with no external environmental factors influencing its output. Contrarily in CS, it is quite common for
a computation to interact with, and be influenced by, its surrounding environment during evaluation,
which necessitates Definition 10.

2.2.4.4. Pure Function
As seen in Figure 5, the concept of a pure function as defined in Definition 11 does not explicitly exist
in Mathematics. This is because functions are always inherently considered to be deterministic and side-
effect free, here functions in maths are by default pure. Any mathematical function evaluates under the
assumption that given the same inputs, the output will always be the same, and the evaluation of the
function does not alter any external state or variable.

Reproducibility in Software Engineering 33

Pure Function II - Reproducibility

Definition 11: Pure function
A pure function can be defined as a function where the same input always yields to the
same output.
Let 𝑓 : 𝐼 × 𝐸 → 𝑅 be a function. Then 𝑓 is pure if and only if:
∀𝑖 ∈ 𝐼, ∀𝑒1, 𝑒2 ∈ 𝐸, eval(𝑓, 𝑖, 𝑒1) = eval(𝑓, 𝑖, 𝑒2)
where
• 𝐼 is the set of all possible inputs arguments
• 𝐸 is the set of all possible execution environments (hardware, software, space, time)
A bridge can be drawn between the mathematical definition of a function 𝑓 : 𝐼 → 𝑅
and this definition by considering the environment variable 𝐸 as an empty set, making
the function independent of any external state or variable. This effectively reduces the
definition of a pure function in CS to the mathematical definition of a function.

However in CS, it makes sense to define what are pure and impure functions because a function might
behave differently depending on the environment in which it is executed. Therefore, the purity of a
function in the context of CS is vital for understanding and managing side effects and state in software,
it is a distinction that doesn’t apply in the static, deterministic realm of pure mathematics.
This distinction highlights how the same term can have different implications in different disciplines,
reflecting the unique nature of challenges and concepts in programming versus pure mathematics.
However, we can still try to define such a function in a theoretical CS context.
A pure function is a specific type of function in programming characterised by the following properties:

• Deterministic: for a given set of inputs, a pure function always returns the same output. This means
the function’s output is solely determined by its input values and does not rely on any external state
or data.

• No side effects: A pure function does not cause any observable side effects in the system. This means
it does not modify any external state, global variables, or data outside its scope. It also does not
produce outputs other than its return value, such as printing to the console or altering the state of
the program beyond the scope of the function.

A checksum(Chapter 2, subsection 2.4.6) is an example of pure function. It will constantly
return the same output for the given output.

2.2.4.5. Impure Function
An impure function is the opposite of the above definition of a pure function.

Definition 12: Impure function
An impure function is a function that does not always yields the same output for a given
input. This can be formally expressed as:
Let 𝑓 : 𝐼 × 𝐸 → 𝑅 be a function. Then 𝑓 is impure if and only if:
∀𝑖 ∈ 𝐼, ∃𝑒1, 𝑒2 ∈ 𝐸, eval(𝑓, 𝑖, 𝑒1) ≠ eval(𝑓, 𝑖, 𝑒2)
where
• 𝐼 is the set of all possible inputs arguments
• 𝐸 is the set of all possible execution environments (hardware, software, space, time)

It is a specific type of function in programming characterised by the following properties:

• Non-deterministic: the function can yield different outputs for the same set of input values at different
times, depending on the state of the system or environment in which it is executed.

34 Reproducibility in Software Engineering

II - Reproducibility Impure Function

• Side effects: the function performs actions that modify some state outside its local environment or has
observable interactions with the outside world. This can include altering global variables, modifying
input arguments, I/O operations, or calling other impure functions.

As seen in Figure 6, this concept only exists in programming, as it is a direct consequence of the mutable
nature of the state in programming. In pure mathematics, functions are conceptualised as mappings from
elements of one set (the domain) to elements of another set (the codomain), without any side effects or
external dependencies. This distinction highlights the difference between the theoretical framework of
mathematics and the practical aspects of programming, where functions often interact with a mutable
state or environment.
Given this, we will allow ourselves to define such a function in the theoretical context of computer science.
Implying that to define such a function, an additional parameter, which will be used to calculate the
time, must be passed as a parameter to the function. This parameter corresponds to the E parameter
in Definition 12.
Given this, we will allow ourselves to define such a function within the theoretical context of CS.

An example of an impure function is one that returns the current date and time, as its
output depends on external state and can vary with each call.

2.2.4.6. Checksum
Although understanding the concept of a checksum is not essential for understanding the definitions, it
is crucial to define it due to its recurring presence in the next chapters.
A checksum is the result of a computation. It is a one-way pure function which takes an input of an
arbitrary size and returns a string of a fixed size, depending on the checksum algorithm in use. For
example when using a git, each commit ID is a checksum of the current commit’s content and the previous
commit’s ID.

→→→→→→→→→→→→→→→→→→→→→→→→ →→→→→→→→→→→→→→→→→→→→→→→→
2aae6c35c9

4fcfb415db

e95f408b9c

e91ee846ed

Inputs Checksum Outputs

Figure 11: Inputs, checksum, string output

A one-way function is easy to compute but is practically impossible to reverse. This is mostly due to
the fixed size output, the number of possible inputs (domain) exceeds the number of possible outputs
(codomain). The time complexity of such a function is usually linear, which means that the time it takes
to compute the checksum is proportional to the size of the input, therefore 𝒪(𝑛).
A checksum is a function that returns a string called hash, which is supposedly unique for a given input.
Checksum algorithms are designed to produce a unique hash for each unique input. However, the term
“supposedly unique” is used because, in theory, it is possible for two different inputs to produce the same
hash, an occurrence known as a collision. The ability to find collisions undermines the security of the
algorithm. There are different types of algorithms to calculate a checksum (e.g., MD5, SHA-1, SHA-2).
Older algorithms like MD5 have known vulnerabilities that allow collision attacks while more modern
algorithms like SHA-256 (SHA-2) are currently considered to be pretty much impossible to crack.
While the mathematical theory allows for the possibility of collisions in checksum hashes, the reality of
their application in modern checksum algorithms is substantially different. The sophisticated design of
these algorithms significantly reduce the likelihood of such occurrences. This ensures a high level of trust
in their effectiveness for generating distinct and reliable representations of data, despite the theoretical
potential for identical hashes of different inputs.

Reproducibility in Software Engineering 35

Checksum II - Reproducibility

Choosing an appropriate checksum algorithm is paramount due to the rapid evolution
of computational power as described by Moore’s Law, which leads to previously secure
algorithms becoming vulnerable as computing capabilities expand.
For instance, MD5 checksums, once deemed secure for storing passwords, are now easily
compromised through brute force attacks. This underlines the need for an adaptable
approach to checksums, continually updating them to stay ahead of advancements in
computational attack strategies. According to L. Courtès [75, Notes on SHA-1, p.16], the
SHA-1 algorithm family is now approaching end of life.
To ensure the highest level of security and adaptability to future computational
capabilities, it is advisable to use SHA-2 algorithm family such as SHA-384 or SHA-512.
These algorithms provide a longer bit length, offering enhanced security and a lower risk
of collisions, making them well-suited for securing sensitive data in the face of evolving
technological threats.

2.2.4.7. Reproducibility
The concept of reproducibility can be applied in many situations, this thesis will concentrate on a
particular application area, thus narrowing its scope. In this thesis, a computation will typically refer
to the process of compiling source code into a binary file, except in cases where it is explicitly defined
differently.
Reproducibility is a property of a computation. It is the ability to consistently obtain identical results
across multiple runs of a computation.

Definition 13: Reproducibility
Reproducibility is a property of a computation satisfying the following condition:

∀𝑐 ∈ 𝐶,∀𝑖 ∈ 𝐼, ∀𝑒1, 𝑒2 ∈ 𝐸, eval(𝑐, 𝑖, 𝑒1) = eval(𝑐, 𝑖, 𝑒2)

where
• 𝐶 is the set of all possible computations
• 𝐼 is the set of all possible inputs arguments
• 𝐸 is the set of all possible execution environments (hardware, software, space, time)
Once that condition is met, the computation is considered to be reproducible.

The set 𝐼 and 𝐸, respectically representing the set of all possible inputs and the hardware and software
environment including the date and time, are also considered as abstractions. In reality, these sets are
complex and intricate entities, that could potentially be composed of many interdependent components.
However, for the purpose of this definition, they are treated as atomic.
We could consider expanding the list of arguments to achieve greater specificity, delving deeper into the
intricate details that influence reproducibility. However, the objective here is to provide the reader with
an initial understanding of reproducibility through a formal definition. This approach is about finding a
balance between comprehensive detail and conceptual clarity, thereby offering a foundational glimpse into
the formalism that underpins reproducible computational processes without becoming mired in excessive
complexity.
The definition of reproducibility (Definition 13) closely matches the definition of pure function
(Definition 11) and, inherently, mathematical functions. However, as seen in Table 3, understanding
the nuances between theoretical functions and practical computations is essential. Theoretically,
mathematical functions are conceptualised as 𝐼 → 𝑅, reflecting the abstract nature of mathematics where
the function’s result 𝑅 is purely dependent on its inputs 𝐼 and external factors are considered non-
existent. In the practical world, this theoretical construct is transposed through an evaluation function
(Definition 10). For mathematical functions, this environment parameter is known and intentionally left
empty, symbolising the deliberate exclusion of external influences and striving to maintain the purity
of the theoretical definition. This is in contrast to practical computations in programming, where the
environment parameter 𝐸 is often filled with various real-world parameters and factors, reflecting the
nature of computations where outcomes are influenced by the environment variable.

36 Reproducibility in Software Engineering

II - Reproducibility Reproducibility

Table 3: Nuances between functions and computations

Theoretically Practically
Function 𝐼 → 𝑅 eval(𝐹 , 𝐼, ∅) → 𝑅
Computation 𝐼 × 𝐸 → 𝑅 eval(𝐹 , 𝐼, 𝐸) → 𝑅

Reproducible if and only if
∀𝑒1, 𝑒2 ∈ 𝐸 eval(𝐹 , 𝐼, 𝑒1) = eval(𝐹 , 𝐼, 𝑒2)

This fundamental distinction underscores the challenges of achieving reproducibility and predictability in
the practical realm, necessitating robustness and adaptability to manage the variability and complexity
of real-world conditions. Together, these definitions provide a comprehensive paradigm for understanding
the interplay between the idealised theoretical constructs and their practical applications, emphasising
the importance of environmental control in ensuring the computations’ reproducibility. The concept of
reproducibility, a computational property, underscores the ability to replicate results across different
environments within 𝐸, serving as a cornerstone for verifying and validating scientific work.
The process of controlling the computational environment 𝐸 underscores a fundamental challenge in
SE: achieving reproducibility through environment standardisation. The environment often encompasses
factors such as hardware and software configurations, (CPU, OS, library versions, and runtime
conditions), which can significantly impact a function’s behaviour and output. The Monte Carlo
simulation algorithm (Listing 1), exemplifies this challenge: it may be reproducible at build time but can
exhibit variance at run time due to environmental factors.
This singularity highlights the essence of reproducibility: the need to meticulously control or normalise
the environment in which computations occur. By ensuring that ideally environment remains constant,
we can more closely approximate the behaviour of pure computations in practical software systems. This
approach does not merely aim to simplify the computational model but serves as a strategic endeavor to
minimise the unpredictability introduced by varying environments.
In conclusion, while the formalism of computations’ purity and reproducibility provides the basis of
a theoretical framework, the practical application in SE involves the intricate task of environment
management. It is through this lens that we understand reproducibility not just as a characteristic of the
function itself, but as a holistic property of the entire computational ecosystem, encompassing both the
function and its operating environment. This broader view acknowledges that while pure functions offer
a paradigm for reproducibility, achieving this in complex, real-world systems often necessitates rigorous
control and standardisation of the computational environment which is virtually impossible to deliver.

2.2.5. Software Security
The concept of reproducibility is pivotal in software security for several reasons. Reproducibility ensures
that software can be consistently recreated or regenerated from its source code, guaranteeing that the
software’s behaviour remains unchanged across different builds. This consistency is crucial for verifying
the security of software systems. If a software build is reproducible, security experts can confidently
assess that the build has not been tampered with or altered to include malicious code. This becomes
increasingly important in an era where cybersecurity threats are both sophisticated and prevalent.
In the context of software security, reproducibility also aids in the traceability and verification of software
components. It allows for the thorough examination and validation of all parts of the software, ensuring
they are exactly as intended and free from vulnerabilities or unauthorised alterations. This traceability
is particularly relevant in light of the executive order 14028, Improving the Nation’s Cybersecurity, issued
by Joe Biden [76]. This document underscores the importance of enhancing cybersecurity across federal
agencies and emphasises the integrity of the software supply chain.
The european counterpart, the Cyber Resilience Act (CRA) by the European Union reinforces these
efforts by setting cybersecurity requirements for software. This act aims to reduce vulnerabilities
in software products, enhancing security throughout their lifecycle. Software must come with clear
information on their features and instructions for secure installation, operation, and maintenance. This
strategy reflects a commitment to producing and using reproducible software.

Reproducibility in Software Engineering 37

II - Reproducibility

2.2.5.1. Software Bill Of Materials
The SBOM is an essential element, acting as a detailed inventory of all the components required to build
and operate a piece of software, including all applied patches and licensing information in a structured
and well-known format.
There are multiple existing formats and standards, the most common ones are:
• Software Package Data Exchange (SPDX): A comprehensive standard maintained by the Linux

Foundation, designed to facilitate license compliance, security, and broader software component
analysis through a detailed documentation approach, supporting multiple formats like RDF, JSON,
and YAML. It caters to a wide range of stakeholders, including software companies, legal teams, and
open-source projects, with a particular strength in granular licensing details.

• CycloneDX: A lightweight SBOM standard aimed at enhancing application security and managing
software supply chain risks. It emphasises simplicity and efficiency, supporting formats such as XML,
JSON, and ProtoBuf, and is particularly tailored towards the identification of software components,
their vulnerabilities, and risk assessments, making it a favorite in the application security and
DevSecOps communities.

The key differences between the SPDX and CycloneDX formats lie primarily in their focus, structure, and
community support. The choice between SPDX and CycloneDX should be guided by an organisation’s
specific needs, whether the focus is on extensive licensing compliance or streamlined security and risk
management within the software supply chain.

2.2.5.2. Supply Chain
A software application is composed of many components, each of which is developed by different teams or
organisations. These components are then composed together into a final product, which is the software
application itself. This process is known as the software supply chain [77].
Contemporary software development leverages the concepts of composability and reusability, preferring
the integration and reuse of existing libraries over developing new functionalities from scratch. This
methodology enhances productivity and contributes to the creation of more reliable software by allowing
each component to concentrate on executing a specific function effectively. Nevertheless, this reliance on
external components leads to the accumulation of both direct and indirect dependencies, complicating the
software supply chain significantly. The build environments, which encompass all necessary components
and their precise versions for software compilation, become intricate and challenging to replicate across
different systems and over time. This complexity is often described as dependency hell. While Semantic
Versioning (Chapter 2, subsection 3.1.4) offers a strategy to mitigate these issues, it alone is insufficient
to ensure reproducibility [78, p.11].
To illustrate this concept, the graph in Figure 12 acts as a simplified SBOM for “My App”
version 1.2.3, highlighting its runtime dependencies essential for the application’s operation. This
visualization selectively excludes the build-time dependencies required for the application’s compilation
to maintain conciseness. A vulnerability has been identified in xz (marked in red), a critical runtime
dependency. Consequently, this vulnerability could potentially compromise its dependent components
(marked in orange), including the application itself, underscoring the interconnected risk within the
software’s dependency graph. This scenario, while being a simplified representation, mirrors the recent
CVE-2024-3094 [79] in the xz project [80], which affected numerous software applications and highlighted
the criticality of managing software supply chain risks.

38 Reproducibility in Software Engineering

II - Reproducibility Supply Chain

my-app-1.2.3

bzip2-1.0.8

ncurses-6.4

sqlite-3.43.1readline-8.2p1

xz-5.6.1

gdbm-1.23

openssl-3.0.10

glibc-2.37-8

libidn2-2.3.4

libunistring-1.1

libxcrypt-4.4.36 expat-2.5.0

xgcc-12.3.0-libgcc

zlib-1.3

bash-5.2-p15gcc-12.3.0-lib

gcc-12.3.0-libgcc

libffi-3.4.4

Figure 12: Dependency graph of my-app version 1.2.3, where a flaw has been detected in xz dependency

These issues are known as supply chain attacks, a type of cyber attack that targets vulnerabilities in
the supply chain of software or hardware products, with the aim of compromising the final product by
infiltrating its development or distribution process. This can involve tampering with the production of
components, the assembly of systems, or the delivery of software updates, thereby infecting end users
who trust these sources. One particular aspect of supply chain attacks is that even the original authors
of the software may be unaware that their product has been compromised, as the malicious alterations
often occur downstream in the supply chain. Although not as frequent as direct attacks on software or
systems, supply chain attacks are becoming increasingly common due to their potential for widespread
impact. Gartner predicts that by 2025, 45% of organisations worldwide will have experienced attacks on
their software supply chains, a three-fold increase from 2021¹ while Cybersecurity Ventures predicts that

¹https://www.gartner.com/en/newsroom/press-releases/2022-03-07-gartner-identifies-top-security-and-risk-
management-trends-for-2022

the global cost of software supply chain attacks to businesses will reach nearly $138 billion by 2031².

²https://go.snyk.io/2023-supply-chain-attacks-report.html

Notable examples include the Stuxnet worm in 2010 [81], the Heartbleed bug discovered in 2014 [82], and
the SolarWinds breach in 2020 [23]. These incidents highlight the exploitation of interconnectedness and
inherent trust within the supply chain, making supply chain attacks particularly insidious and effective
methods of cyber warfare that can simultaneously affect a large number of users or organisations.

2.2.5.3. Reproducibility And Security
Reproducibility is a fundamental aspect of software security, particularly in the context of the software
supply chain. It ensures that software can be reliably and consistently regenerated from its source
code, thereby safeguarding against malicious alterations or tampering. This is particularly relevant in
the context of supply chain attacks, where the integrity of the software supply chain is compromised,
potentially leading to widespread security breaches.
It is paramount to have a clear understanding that having something reproducible doesn’t mean that it
is secure. It is a necessary condition but not a sufficient one. If a compiler is flawed, it might produce
reproducible builds that could also be potentially insecure.

Reproducibility in Software Engineering 39

https://www.gartner.com/en/newsroom/press-releases/2022-03-07-gartner-identifies-top-security-and-risk-management-trends-for-2022
https://www.gartner.com/en/newsroom/press-releases/2022-03-07-gartner-identifies-top-security-and-risk-management-trends-for-2022
https://go.snyk.io/2023-supply-chain-attacks-report.html

Reproducibility And Security II - Reproducibility

Figure 13: The reproducible builds approach to increasing trust in executables built by untrusted third
parties.

In Figure 13 inspired from C. Lamb and S. Zacchiroli [83], end-users should disregard the binary
artefact supplied by their software vendor if its checksum (806e7...9c271) diverges from those generated
by independent third parties (4e14e...4c0a9). The security of software is deemed more robust when its
reproducibility is confirmed across multiple environments. It is the consensus among these environments
that contributes to the perception of security. The premise here is not merely the reproducibility, but the
uniformity of this reproducibility across space and time, which strengthens the trust in the software’s
integrity and security.
As cyber threats evolve, ensuring that software can be reliably and consistently bit-per-bit reproduced
from its source code becomes a cornerstone for maintaining security integrity. Reproducibility not only
facilitates the verification of software for tampering or malicious alterations but also strengthens trust in
software systems amidst the growing complexity of cyber threats. Therefore, integrating reproducibility
into software development and distribution processes is a crucial step towards enhancing overall
cybersecurity resilience and safeguarding against the ever-increasing sophistication of cyber attacks.

2.2.6. Reproducibility Utopia
Reproducibility in SE is often considered as an utopia. The exact replication of a software
poses a significant challenge. Thus, while striving for reproducibility is essential, achieving absolute
reproducibility is frequently unattainable in practice.
One of the primary impediments in achieving reproducibility lies in the dependency on hardware
architecture. Software compiled for different architectures, such as x86 and ARM, inherently produces
disparate binaries [84]. These differences stem from the instruction sets and optimizations that are specific
to each platform, leading to divergent outputs despite using identical source code. This variance highlights
a significant reproducibility challenge, as achieving bitwise identical results across architectures is not
feasible as of today.
Compilers (e.g., GCC, Rustc, LATEX, Typst) also play a role in software development, transforming high-
level code into machine-level instructions. However, not all compilers operate deterministically. In this
context, non-determinism refers to the phenomenon where compilers produce different outputs given
the same input source code across different compilations. Factors contributing to this non-determinism
include variations in memory allocation, inclusion of timestamps, and embedding of file paths in the
binary output. These variances pose challenges to achieving consistent, reproducible builds.

40 Reproducibility in Software Engineering

II - Reproducibility Reproducibility Utopia

A compiler is essentially an application that transforms input into output. Tools like
GCC are referred to as compilers because they convert high-level code into machine-level
instructions. However, the term compiler is not limited to programming languages alone.
For example, LATEX is a compiler that transforms a .tex file into a .pdf file, rustc compiles
a .rs file into a binary file, and Typst compiles a .typ file into a .pdf file. Typically,
compilers convert human-readable files into machine-readable files.

In Chapter 3, acknowledging the reality that full reproducibility may not be entirely achievable, we
will delve deeper into these challenges by exploring the impact of non-deterministic compilers and the
strategies to mitigate these challenges using different methods.

2.3. Deterministic Builds And Environments
In this section, we will explore the concept of deterministic builds, and the potential sources of non-
determinism in software builds.
The concept of deterministic builds is essential for ensuring reproducibility. A build is termed
deterministic when it consistently generates identical outputs from a given set of inputs, irrespective of
the environment or time of execution. This predictability is central to software reproducibility, yet several
sources of non-determinism frequently challenge its realisation. One single non-deterministic component
in a build process can render the entire build non-deterministic. Therefore, it is crucial to identify and
understand these sources of non-determinism to ensure reproducibility. Many of these sources of non-
determinism are related to the environment in which the build occurs. This environment encompasses
the hardware, software, and runtime conditions in which the build process is executed. These factors can
significantly influence the build process, thereby impacting the stability of the output.

Definition 14: Deterministic build
Let 𝐵 be a build process defined as a function:
𝐵 : 𝐼 × 𝐸 → 𝑂
where
• 𝐼 is the set of all possible input arguments
• 𝐸 is the set of all possible execution environments (hardware, software, space, time)
then the build B is deterministic if 𝐼 × 𝐸 is deterministic:
Determinism(𝐼 × 𝐸) → Determinism(𝐵)
where Determinism is a function asserting that its argument is deterministic.

According to C. Lamb and S. Zacchiroli [83], a reproducible build environment is essential for achieving
deterministic and reproducible builds. It ensures consistency in the software building process by providing
a controlled and predictable set of conditions under which the software can be built. J. Malka, S.
Zacchiroli, and T. Zimmermann [69, p.1] further elaborate that a build environment is reproducible in
both space and time when it is possible to replicate the same build environment on any machine and at
any point in the past or future .

When a process exhibits a lack of reproducibility over time, it indicates a fundamental
instability within the process. While it would be technically feasible to replicate the same
output in a different environment, within the same architecture, achieving exact temporal
replication of the build process is practically impossible. This temporal variability serves
as a critical indicator of potential difficulties in ensuring reproducibility across diverse
environments or machines.

2.3.1. Sources Of Non-Determinism
In this section we will explore the sources of non-determinism in software builds and usage. The list is
not exhaustive, it just includes the most common sources of non-determinism. The list is created from C.
Lamb and S. Zacchiroli [83]’s paper and information of the Reproducible Builds [46] project, a website
aiming at improving reproducible builds in software development.

Reproducibility in Software Engineering 41

II - Reproducibility

2.3.1.1. Randomness
Using random data in a computation is a common source of non-determinism and must be avoided. When
random data is required, the solution is to use a predetermined value acting as a seed to the pseudo-
random number generator. Using a predetermined value as a seed ensures that the same random data is
generated each time the computation is executed, thereby guaranteeing reproducibility.
Hardcoding the seed in the source code would be nonsensical because it wouldn’t be random anymore, the
seed should be passed as a parameter to the computation. This parameter can be passed as a command-
line argument, an environment variable, or a configuration file, leaving the responsibility to the user to
provide a seed.

2.3.1.2. Build Paths
Build paths are paths used by the source code to locate files and resources. Sometimes, it can happen
that absolute paths are used in the source code, which means that the build will only be reproducible
on the same machine where it was built.
To avoid this, relative paths should be used instead of absolute paths and sometimes post-processing is
required to remove the build path or to normalize it with a predefined value.

2.3.1.3. Volatile Inputs
Volatile inputs are inputs that can change over time. For example, the current date and time are volatile
inputs, network streams as well. Dealing with date and time will be done in Chapter 2, subsection 3.1.7.
For network streams, the solution is to never rely on remote data while building. Instead, the data should
be downloaded beforehand and stored locally.
This is a common issue in the context of software compilation, where the build process might download
dependencies from the internet during the build.

2.3.1.4. Package Managers
Package managers are tools that automate the process of installing, upgrading, configuring, and removing
packages, typically from a central repository or package registry. They are widely used in software
development to manage dependencies and facilitate the build process. For example, Cargo for Rust, Composer
for PHP, NPM for NodeJS, Dune for OCaml. They are also used to manage software at the operating system
level like: apt in Debian based distributions, pacman in Arch Linux, dnf in Fedora, brew in MacOS, chocolatey
in Windows.
Package managers can inadvertently introduce non-determinism by automatically downloading or
updating dependencies to their latest versions. This process can lead to inconsistencies, particularly
when a newer version of a package includes changes that are incompatible with the project’s codebase.
To mitigate this, the Semantic Versioning (SemVer) scheme is widely adopted, offering a structured
version naming convention that aids dependency management. However, while packages may declare
SemVer compliance, adherence levels vary, with some strictly following SemVer principles and others
adopting them more leniently [78, p.5]. Notably, there has been a trend towards increasing adoption and
stricter adherence to SemVer principles by package managers over time [78, p.13]. It provides a structured
version naming convention designed to convey the nature of changes between releases, thereby aiding in
the management of dependencies with a syntax that succinctly specifies version constraints. While this
mechanism greatly facilitates dependency resolution by leveraging a minimalistic syntax, it inherently
permits variability over time, potentially compromising reproducibility.

1 {
2 "name": "awesome/php-library",
3 "require": {
4 "foo/http": "^1",
5 "foo/bar": "1.2.3"
6 }
7 }

Listing 4: A composer.json file, used by the PHP package manager, Composer

In Listing 4, the dependency foo/http is specified with version ̂ 1, where the caret symbol (^) indicates that
Composer should install the latest minor version within the major version 1. In contrast, the dependency
foo/bar is locked to version 1.2.3, signalling that Composer must install that specific version, regardless

42 Reproducibility in Software Engineering

II - Reproducibility Package Managers

of newer releases. This distinction underscores the importance of using package managers judiciously to
achieve determinism. For Composer, determinism is further ensured by including a composer.lock file in the
project, which explicitly pins each dependency to a particular version, thus facilitating reproducibility.
The decision to require this file varies by project and is not in the scope this master thesis.
Ensuring reproducibility in the context of package managers is particularly challenging due to the amount
of different ecosystems and the lack of standardisation. For example, in the Python realm³, there have

³https://linuxfr.org/news/l-installation-et-la-distribution-de-paquets-python-1-4

been and there are still multiple package manager ecosystems: distutils, setuptools, pip, pypi, venv, conda,
anaconda, poetry, hatch, rye. Each of these has its own configuration file format, which can be used to specify
the version of each dependency. However, there is no standardisation which makes it difficult to ensure
reproducibility. The same issue applies to operating system’s package managers. For example, in Debian
based distributions, there are multiple package managers: apt, aptitude, dpkg.
The solution would be to use a universal package manager that would work for all Linux distributions
and programming languages. This is what tools like AppImage, snap and flatpak are trying to solve, only at
the level of the operating system. These tools are partially fixing the issue by just being available only
for installing package at the operating system level.
These tools, while being a step in the right direction, are also coming with their own set of issues, like
the lack of standardisation between them, the lack of adoption and the lack of support from major
distributions.
There are also package managers like Nix and Guix that are trying to solve the issue by being universal.
They provide a way to build and install packages in a sandboxed environment, which means that packages
are isolated from the rest of the system at build time. This is a great way to ensure reproducibility, we
will discover them in Chapter 4

2.3.1.5. Version Information
Version information like commit identifiers can be used to precisely identify the source code used to build
a program.

1 $ typst --version
2 typst 0.10.0 (f2433bd1)

Listing 5: Example of program including a commit ID

As illustrated in Listing 5, incorporating specific version information, such as a commit ID, helps
reproduce a build by facilitating the retrieval of an identical source code version. Nevertheless, the
efficacy of commit IDs as reproducibility anchors remains debatable. These identifiers may frequently be
unavailable at the time of build. It is essential to recognize that git, a distributed version control system
designed to handle everything from small to very large projects with speed and efficiency, metadata,
including commit IDs, is not an intrinsic element of the source code. Instead, it is part of the version
control system in use. git allows multiple developers to work together on the same project simultaneously,
providing a robust system for tracking changes, version history, and collaboration. However, the potential
for easy substitution of one version control system for another renders reliance on such ephemeral
metadata a precarious foundation for software reproducibility.
In scenarios where a version number is necessary, it can be derived from a dedicated file, such as
a changelog or eventually provided through an environment variable. This approach decouples the
versioning process from the underlying version control system, potentially offering a more stable and
reliable method for software version identification.

2.3.1.6. File Order
It is important to ensure that processing multiple files in a stable order remains stable.
Listing files relies on the low-level POSIX call readdir, which itself is dependent on the filesystem in use
and therefore doesn’t guarantee any consistent ordering.

Reproducibility in Software Engineering 43

https://linuxfr.org/news/l-installation-et-la-distribution-de-paquets-python-1-4

File Order II - Reproducibility

According to S. Loosemore, R. Stallman, R. McGrath, A. Oram, and U. Drepper [85,
p.415]: The order in which files appear in a directory tends to be fairly random. A more
useful program would sort the entries before printing them.
In M. Kerrisk [86, p.354]: The filenames returned by readdir() are not in sorted order,
but rather in the order in which they happen to occur in the directory. This depends on
the order in which the file system adds files to the directory and how it fills gaps in the
directory list after files are removed.

There are numerous situations where relying on an existing list of files can result in non-determinism. For
instance, when generating an archive from the contents of a directory, many file systems do not provide
consistent ordering when listing files within that directory. Consequently, the arrangement of files in the
archive may differ between builds, causing unpredictable archives. Although these archives might contain
identical content, they could have been compressed with varying file orders.
To address this, one could enforce a stable order by explicitly sorting the inputs before processing them.
This can be done by sorting the list of files in the directory based on a specific criterion, such as their
names or modification timestamps.

1 $ tar --sort=name -cf archive.tar /tmp

Listing 6: Use of --sort=name flag to ensure a stable order of files in an archive

2.3.1.7. Timestamps
Timestamps are among the biggest sources of non-determinism in software builds, as they can lead to
differences due to changing times between builds. Since reproducibility checks the content of the output
and its metadata, building multiple times some source code will create output artefacts with possibly
the same content but with different metadata, like file timestamps, making them irreproducible.
Often, timestamps are used to approximate which version of the source were built. Since file timestamps
are volatile, the source code needs to be tracked more accurately than just a timestamp. Just like for
version information, the solution would be to extract the date from a dedicated file like a changelog, or
a specific commit [87].
To circumvent this issue, SOURCE_DATE_EPOCH is a specific environment variable convention for pinning
timestamps to a specific value that has been introduced by the reproducible-builds.org community and it
is now widely used by many compilers and build tools.
Another option is to use libfaketime, a library that intercepts system function calls retrieving the current
time of day and replies with a predefined date and time instead.
When none of these options are viable, using a tool like strip-nondeterminism [88] is a temporary workaround
for stripping non-deterministic information such as timestamps and filesystem ordering from various file
and archive formats.

2.3.1.8. Locale Environment Variables

1 $ date -d@2147483647
2 Tue Jan 19 04:14:07 AM CET 2038
3 $ date -d@2147483647 -u
4 Tue Jan 19 03:14:07 AM UTC 2038
5 $ LC_ALL=C date -d@2147483647 -u
6 Tue Jan 19 03:14:07 UTC 2038

Listing 7: Use LC_ALL and -u flags to configure the date format

LC_ALL is a locale environment variable that can modify various aspects of an application’s behaviour. It
can change the date format, string collation order, and character encoding. Although each parameter
can be set individually, LC_ALL enables you to configure them all simultaneously and override any other
locale environment variables.
In Listing 7, we methodically incorporate various flags, such as -u, and the LC_ALL environment variable
to the date command. This approach ensures that the output we receive is predictable and consistent,
regardless of the underlying system configuration.

44 Reproducibility in Software Engineering

II - Reproducibility

2.3.2. Comparing Builds
In the quest for software reproducibility, identifying and understanding the differences between two builds
of the same software becomes paramount, especially when those builds are not identical. This section
introduces a tool designed specifically for this purpose.
Developed under the umbrella of the Reproducible Builds [46] effort, diffoscope [89] is a comprehensive,
open-source tool that excels in comparing files and directories. Its unique capability to recursively
unpack archives of various types and transform binary formats into a human-readable form makes it an
indispensable tool for software comparison. It seeks to simplify the process of identifying discrepancies
between software builds. This functionality is crucial for developers and researchers striving to pinpoint
and resolve the causes of non-reproducibility. An online version of the tool is also available4.

4https://try.diffoscope.org/

To demonstrate the effectiveness of diffoscope in identifying differences between non-reproducible builds,
Listing 8 considers the hypothetical example of a simple program that outputs the current date and time.
Due to its nature, compiling this program twice, even with the same source code, will inherently produce
two different builds.
First, we compile the sourcecode twice, creating build1 and build2:

1 $ gcc -o build1 datetime.c
2 $ gcc -o build2 datetime.c
3 $ sha256sum build*
4 5d0b1ae966c719862971bd51b4c035a478863a409caa605b2c529d45f2ac137d build1
5 7cbfd989b49c7336dc495a055db223253f0c1d6dc232b66b0fe0f7b6103c274c build2

Listing 8: Compilation of non-reproducible programs and the use of their checksums for comparison

Then, we use diffoscope to compare these builds:

1 $ diffoscope build1 build2

The tool will generate a detailed report (Figure 14) highlighting the differences between build1 and build2.
In this hypothetical example, differences might include timestamps or other build-specific metadata
embedded within the binary.

Reproducibility in Software Engineering 45

https://try.diffoscope.org/

Comparing Builds II - Reproducibility

Figure 14: A diffoscope report using HTML format

2.3.3. Fixing Builds
In this subsection, we delve into strategies for addressing non-reproducible builds, acknowledging the
vast array of potential causes and the impossibility of covering every solution comprehensively.
Previously in Listing 8, we encountered an issue, where compiling the sourcecode (Listing 2) twice resulted
in different binaries. Using diffoscope, we identified, as shown in Figure 14, the source of variability as
date and time strings embedded within the binaries.
A solution has been proposed in Chapter 2, subsection 3.1.7, we can leverage the SOURCE_DATE_EPOCH
environment variable to address this specific challenge in achieving reproducible builds. This approach
standardises the date and time used during the build process, ensuring consistency across compilations
and thus contributing to reproducibility.

1 $ export SOURCE_DATE_EPOCH=1709373544
2 $ gcc -o build1 datetime.c
3 $ gcc -o build2 datetime.c
4 $ sha256sum build*
5 98f0419783bb3b06b45eaf5cc0efeef9408c4dad1e9eec9eb153dc7a6cc6962f build1
6 98f0419783bb3b06b45eaf5cc0efeef9408c4dad1e9eec9eb153dc7a6cc6962f build2

Listing 10: Fix builds using an environment variable

2.4. Conclusion
This chapter embarked upon a detailed journey through the landscape of reproducibility, focusing
particularly on its pivotal role within the realms of science and, more specifically, CS and SE. Through
rigorous analysis, we unveiled the multifaceted nature of reproducibility.
We dissected the concept of reproducibility, from its foundational elements in science to its intricate
implications in computer science, delineating the essential terminology that frames our discussion:
computations, pure and impure functions, inputs, outputs, and the environmental variables that
intertwine to influence reproducibility. The exploration into deterministic builds and the sources of non-
determinism not only highlights the inherent challenges but also sets the stage for the subsequent focus
on the tools and methodologies designed to tame these complexities.

46 Reproducibility in Software Engineering

II - Reproducibility Conclusion

As we pivot toward the next chapter, our narrative will transition from the theoretical underpinnings to
the practical arsenal at our disposal for enhancing reproducibility in SE. While the groundwork laid in
this chapter paves the way for an in-depth exploration, it is important to acknowledge the vast landscape
of tools and methodologies available in this domain. Given the scope of this thesis, we will focus on four
evaluation methods using three key tools, with the understanding that this selection is not exhaustive
but rather representative of the broader ecosystem. Through the lens of real-world applications and case
studies, we will explore how these chosen tools are used to mitigate the challenges identified herein and
to foster an ecosystem where reproducible research and development are not merely aspirational goals
but operational norms.
In fine, this chapter serve as both a foundation and a bridge. It offers a comprehensive understanding
of reproducibility that is critical for appreciating the significance of the solutions and methodologies
discussed in the chapters that follow. It is within this framework that we continue our quest to demystify
reproducibility, moving from conceptuals clarity to practical application, with the ultimate aim of
enhancing the reliability, security, and transparency of SE practices.

Reproducibility in Software Engineering 47

Conclusion II - Reproducibility

This page is intentionally left blank.

48 Reproducibility in Software Engineering

II - Reproducibility Conclusion

Chapter III

Software evaluation
Any sufficiently advanced technology is indistinguishable from magic.

— A. C. Clarke [90]

Reproducibility in Software Engineering 49

III - Software evaluation

This chapter explores the pivotal role of tooling in achieving reproducibility within SE, highlighting the
importance of environment consistency, dependency management, and process isolation.
Reproducibility in SE is not merely a desirable attribute but a cornerstone of trustworthy, reliable, and
verifiable software development practices. As software systems grow increasingly complex and integral to
every facet of the modern world, from critical infrastructure to personal devices, the stakes for ensuring
their reproducibility have never been higher. This chapter introduces and examines four distinct methods
for building software, each with its unique approach:

• Bare compilation
It is the most rudimentary method, depends on the operating system’s compilers and libraries for
software construction.

• Compilation with Docker
Using containerization technology, encapsulates not just the software and its dependencies but also
the entire runtime environment.

• Compilation with Nix
Nix uses a unique store for packages built in isolation, each with a unique identifier that includes
dependencies, preventing conflicts and ensuring reproducible environments.

• Compilation with Guix
Inspired by Nix, Guix offers a transactional package management system that isolates dependencies
to ensure consistent and reproducible software environments through specific version-linked profiles.

The four evaluation methods chosen for detailed evaluation in the context of reproducibility represent
a wide range of approaches to managing software build environments, each addressing different aspects
of reproducibility. Bare compilation was selected to provide a baseline, demonstrating the fundamental
challenges encountered without the aid of advanced tooling, such as environmental inconsistencies and
dependency conflicts. This method serves as a contrast to the more sophisticated techniques that follow.
Docker is included for its widespread adoption and popularity, as well as its approach to encapsulating
the runtime environment, which significantly mitigates issues arising from system variability. Guix and
Nix are examined due to their unique approach to dependency management and environment isolation,
employing a package management approach that is based on the functional paradigm (Definition 15)
to ensure exact reproducibility of environments across different systems. The chapter aims to cover a
spectrum from the most basic to the most advanced strategies.

Definition 15: Functional package management
From L. Courtès and R. Wurmus [91], functional package management is a discipline
that transcribes the functional programming paradigm to software deployment: build and
installation processes are viewed as pure functions (Definition 11) in the mathematical
sense whose result depends exclusively on the inputs (Definition 9), and their result is a
value that is, an immutable directory.

This chapter aims to provide readers with an understanding of how these contribute to the broader goal
of reproducible SE. Through a detailed exploration of each approach, readers will gain insight into the
strengths, weaknesses, and applicability of Bare compilation, Docker, Guix and Nix in various software
development scenarios.

3.1. Methodology
Our primary objective is to assess the reproducibility of a software build using four different methods:
Bare compilation, Docker, Guix, and Nix. By compiling a C program (Listing 2) with each tool, we can
evaluate reproducibility both over space and time (Definition 5).
The study uses a quantitative research design, focusing on the comparison of binary files generated
from compiling identical source code with different methods, on the same environment. This approach
allows for an empirical assessment of reproducibility challenges inherent to each compilation tool and
environment.

50 Reproducibility in Software Engineering

III - Software evaluation

3.1.1. Evaluation Criteria
We will consider three primary criteria.
Firstly, reproducibility in time assesses whether the outputs of builds are identical across repeated
compilations in the same environment. This criterion involves compiling the same source code twice with
a few seconds of interval between compilations. By comparing the outputs of these compilations, we can
determine if the build process produces consistent results over time.
Secondly, reproducibility in space focuses on the consistency of build outputs across different
environments. To evaluate this, the same source code is compiled in various environments. This process
helps to ensure that the software build process is not dependent on specific environmental factors and
can produce identical outputs regardless of where it is compiled.
Lastly, the reproducibility of the build environment evaluates the stability and consistency of the
environment itself, including the dependencies required for building the output. This criterion ensures
that the environment, which encompasses all necessary tools and libraries, remains stable and consistent
across different instances and setups.

3.1.2. Tools And Technologies
The evaluation of reproducibility tools in this study encompasses several approaches to software
compilation and package management, each with its unique methodology.
In Chapter 3, section 2, the bare compilation method involves direct compilation on the host system
without the use of containerization or package management tools.This approach relies on the default
tools and libraries installed in the operating system, providing a straightforward but less controlled
environment for building software. This method is assessed to understand the baseline reproducibility
and potential variability introduced by the host system’s native environment.
In Chapter 3, section 3, Docker is used to provide a containerized environment for software compilation.
Using Docker containers ensures that the build process occurs in a consistent and isolated environment,
independent of the host system’s configuration. This method helps in evaluating how containerization
can enhance reproducibility by encapsulating all necessary dependencies and tools within a controlled
and replicable environment.
In Chapter 3, section 4, the Guix package ecosystem is employed to manage the software build process.
Guix focuses on providing a reproducible and declarative approach to package management, ensuring that
the build environment and dependencies are precisely defined and versioned. This approach is examined
for its ability to maintain consistency and reproducibility across different systems and environments by
leveraging Guix’s robust package management features.
In Chapter 3, section 5, the Nix package ecosystem is used to manage and build software. Similar to
Guix, Nix offers a declarative and reproducible package management system, allowing for precise control
over the build environment and dependencies. The evaluation of Nix focuses on its capability to provide
a reproducible build environment that can be consistently replicated across various systems, enhancing
the reliability and stability of the software development process.

3.1.3. Scenarios
Our examples and builds focus on custom-made scenarios to highlight the differences in reproducibility
across the four tools. There are multiple scenarios being evaluated:
In the first scenario, using Chapter 3, section 2, a C program is built using the host default C compiler.
The second scenario involves Chapter 3, section 3, where a C program is built in a Docker container
utilizing the C compiler. The third scenario, with Chapter 3, section 4, involves building a C program
using Guix. Finally, there are two scenarios for Chapter 3, section 5: one involves building a C program
using Nix legacy (not flake), and the other uses Nix flake to build the same program.

3.1.4. Compilation And Execution
A trivial C program (Listing 2) has been chosen for its straightforwardness, allowing the focus to remain
on the build process and output rather than software complexity.
Each method will compile the same C program (Listing 2) twice. Detailed steps for compilation and
execution within each environment will be documented, ensuring transparency and reproducibility of the

Reproducibility in Software Engineering 51

Compilation And Execution III - Software evaluation

process itself by the readers. Each compilation’s resulting output will be executed to verify functionality,
although the correctness of the execution’s output will not be evaluated.

3.1.5. Environment Setup
To ensure the robustness and universality of our reproducibility assessment, all test scenarios described
in this chapter are executed through GitHub Actions [3]. GitHub Actions is an automation platform
that enables CI/CD, allowing builds to be performed, tested, and deployed across various machines and
architectures directly from GitHub repositories [92].
Our testing environments supports three distinct architectures:

• x86_64-linux: This represents the widely used Linux operating systems on Intel and AMD processors.
To ensure a thorough evaluation, two instances, each running the different versions of Ubuntu (20.04
and 22.04), are employed.

• x86_64-darwin: Dedicated to supporting macOS on Intel processors.
• aarch64-darwin: Addressing the latest generation of macOS powered by the ARM-based Apple Silicon

processors.

This selection encompasses both x86 and ARM architectures, as well as Linux and MacOS operating
systems, providing a comprehensive view of reproducibility across the most commonly used development
platforms in SE. The choice of these architectures ensures the results are relevant to a broad spectrum
of development environments and application targets.
Each of our scenarios is streamlined through the use of a Makefile. A Makefile as seen in Listing 11 is a
text file that contains a set of directives used by the GNU make [93] utility to automate the build process
of software projects. These directives contain specific shell commands.

1 clean:
2 # This `clean` step is a dependency of the build step
3 # It will remove the files and artefacts generated by the `build` step
4 rm -rf test.txt
5

6 build: clean
7 # This `build` step will compile the source code and generate the
8 # output artefacts.
9 # It has a dependency on the `clean` step

10 echo "hello world" > test.txt
11

12 check:
13 # This `check` step will print the checksum of the output artefacts
14 sha256sum test.txt
15

16 run:
17 # This `run` step will execute the output artefacts and print the result
18 # In case of a non-executable output, it will print the content of the # file or its checksum.
19 cat test.txt

Listing 11: An example of Makefile used in a scenario.

Each scenario’s Makefile essentially contain four essential steps:

• clean: Removes the build artefact of a build process, if any.
• build: Executes a build process, generating an output artefact.
• check: Prints the checksum of the build artefact.
• run: Execute the artefact

Incorporating these Makefile steps into our GitHub Actions workflows not only automates the execution
of each scenario, ensuring consistency and repeatability in our testing process, but also empowers the
reader with the ability to locally reproduce the steps outlined in this document in full transparency.
This approach facilitates and encourages the direct replication of methods and scenarios, aligning with
best practices in SE for reproducibility, but also extends these principles to broader scientific research
practices.

3.1.6. Output Comparison
To compare the results, we will compare the checksums of the resulting outputs. We exclusively use the
nix hash path command provided by the Nix package manager to compute the hash of a path.

52 Reproducibility in Software Engineering

III - Software evaluation Output Comparison

The nix hash path command is provided by Nix, a tool we will explore in this chapter. Nix
provides this command as part of its suite, but it can be applied anywhere, not just to
files within the Nix ecosystem. This command distinguishes itself by its capacity to hash
directories in addition to files. An alternative to this approach could have been the use
of a Software Heritage Identifier (SWHID) [15].

The nix command is available on systems with Nix installed. The difference with a traditional sha256sum is
that the former computes the hash of the path, which includes the content and the metadata while the
latter computes the hash of the content only. Another advantage of using that command is its ability to
create a hash prefixed by the algorithm used, similar to Subresource Integrity (SRI) [14] hashes.

3.1.7. Expected Outcomes
At the opposite of the previous more theoretical chapters, this practical chapter aims to empirically
compare the differences in reproducibility achievable with Bare compilation, Docker, Guix, and Nix.
Insights into the challenges and benefits of each method will inform best practices in SE for achieving
reproducible builds.

3.2. Evaluation 1 - Bare compilation
This method is the most rudimentary approach to software compilation, relying on the host system’s
installed compilers and libraries to build software. This build method correspond to Scenario 1, with the
corresponding Makefile in Listing 12, that can be executed on any system, with the commands: make build
to compile, make check to print the checksum, make run to run the compiled binary. As explained in Chapter
3, section 1.4, we notice that the steps are executed twice and in Terminal session 4, the steps to build,
check and run the build are detailed.

1 clean:
2 rm -rf datetime
3

4 build: clean
5 gcc src/datetime.c -o datetime
6

7 check:
8 nix hash path datetime
9

10 run:
11 ./datetime

Listing 12: Makefile of Scenario 1

1 $ cd lib/scenario-1
2 $ make -s build
3 $ make -s check
4 sha256-fnmArVyFozZkU/T0hrABdyq5M1kmAlUXSWvYodJm9bw=
5 $ make -s run
6 Built the Mar 15 2024 at 14:51:27.
7 $ make -s build
8 $ make -s check
9 sha256-aFgPLDbv2BY+rCKDzsE+0fr9ylGr2R4fbWMhr4lfEQo=
10 $ make -s run
11 Built the Mar 15 2024 at 14:52:18.

Terminal session 4: Terminal log of the steps to build, check and run Scenario 1

At lines 4 and 9 of Terminal session 4, we notice that the make check step prints two different checksums,
indicating that the output of the two builds is different at each run. As a result, this build is not
reproducible. This discrepancy in the output is likely caused by the dynamic replacement of the __DATE__
and __TIME__ macros in the source code, which are replaced with the current date and time at the moment
of compilation.

3.2.1. Reproducibility In Time
This method involves directly compiling source code on a system with only the essential compilers and
libraries available on the host. This method’s primary advantage lies in its simplicity and direct control
over the build process, allowing for a clear understanding of dependencies and compilation steps. However,
it lacks isolation from the system environment, leading to potential it works on my machine issues due to

Reproducibility in Software Engineering 53

Reproducibility In Time III - Software evaluation

variations in system configurations. Additionally, the lack of encapsulation and dependency management
can lead to difficulties in achieving consistent and reproducible builds across different environments. This
method is therefore classified as non-reproducible in time.

3.2.2. Reproducibility In Space
This method is not reproducible in time, therefore we will consider it as not reproducible in space either.
Technically it would be possible to reproduce the same output on another environment, but it would be
practically impossible to run the build at exactly the same time. This method is therefore classified as
non-reproducible in space.

3.2.3. Reproducibility Of The Build Environment
The virtual machines used on Github Actions are versioned. However, the software installed on the
images are not. From one build to another, we can have a different version of gcc or any other software
installed on the image. Therefore, we have absolutely no control over the build environment and it is
very complicated to reproduce the same environment on another machine. Therefore, reproducibility of
the build environment is not guaranteed.

3.3. Evaluation 2 - Docker
Docker [94] has revolutionised software deployment by encapsulating applications in containers, ensuring
they run consistently across any environment. Unlike traditional virtual machines, Docker containers
are lightweight, share the host’s kernel, and bundle applications with their dependencies, promoting the
principle of “build once, run anywhere”. This approach streamlines development, testing, and production
workflows, significantly reducing compatibility issues and, to some extent, simplifying scalability.
Central to Docker’s appeal is its contribution to the DevOps movement, fostering better collaboration
between development and operations teams by eliminating the “it works on my machine” problem.
Docker’s ecosystem, including the Docker Hub [70], offers a vast repository of container images, facilitating
reuse and collaboration across the software community.
Docker uses the Open Container Initiative (OCI) standard for its container images, ensuring
interoperability across different containerization technologies, including Podman [95] and Kubernetes [96].
The OCI specification outlines a format for container images and a runtime environment, aiming to create
a standard that supports portability and consistency across various platforms and cloud environments.
Due to its popularity, Docker is a key player in modern software development, enabling efficient,
consistent, and scalable applications through containerization, supporting agile and DevOps practices,
and accelerating the transition from development to production.

1 FROM alpine@sha256:c5b1261d6d3e43071626931fc004f70149baeba2c8ec672bd4f27761f8e1ad6b as build-env
2 RUN apk add --no-cache build-base
3 WORKDIR /app
4 COPY . .
5 RUN gcc datetime.c -o datetime
6

7 FROM alpine@sha256:c5b1261d6d3e43071626931fc004f70149baeba2c8ec672bd4f27761f8e1ad6b
8 COPY --from=build-env /app/datetime /app/datetime
9 WORKDIR /app

10 CMD ["/app/datetime"]

Listing 13: From Scenario 2, the dockerfile used by Docker

This method involves creating an OCI image, compiling Listing 2, through a Dockerfile and setting the
compilation result as default command as shown in Listing 13. This ensures that each time the image
is executed, the compiled executable runs within the container. However, instead of printing only the
checksum of the resulting binary, the check step also outputs the checksum of the image.

54 Reproducibility in Software Engineering

III - Software evaluation Evaluation 2 - Docker

1 $ cd lib/scenario-2
2 $ make -s build
3 Loaded image: datetime
4 $ make -s check
5 sha256-zV0YiwaUrvtHP8Xyn3wfQqkHkeRJonEI6c7BZVnEKQo=
6 sha256-VKMisMOGn3qq3/TeGmk2NLWhU4Aez3FigY1TWiZvBOQ=
7 $ make -s run
8 Built the Mar 26 2024 at 13:36:07.
9 $ make -s build
10 Loaded image: datetime
11 $ make -s check
12 sha256-pY/buhRq1FZzVoMsImuWpqS0NONp7VRpinODlDIm1To=
13 sha256-e1VCDdKYA2WMW9SKBXD/BqzDBSbCdXejLejEUx1XZi4=
14 $ make -s run
15 Built the Mar 26 2024 at 13:37:30.

Terminal session 5: Terminal log of the steps to build, check and run Scenario 2

3.3.1. Reproducibility In Time
In Terminal session 5, it is observed on lines 5 and 12 that building the image twice and extracting
the resulting binary produces different checksums. Additionally, on lines 6 and 13, it is evident that
the checksums of the images are inevitably different. Consequently, this method is classified as non-
reproducible over time.

3.3.2. Reproducibility In Space
This scenario was executed on various machines and architectures, resulting in different binaries and
images. Therefore, this method is classified as non-reproducible in space as well.

3.3.3. Reproducibility Of The Build Environment
The reproducibility of build environments in Docker images, while generally reliable in the short term,
can face challenges over time. Docker images are built on layers, often starting from base images provided
by specific vendors. These base images can receive updates that alter their contents, meaning a Dockerfile
that successfully built an image at one time might not produce an identical image later due to changes
in its base layers. Additionally, not pinning specific versions of base images and external dependencies
in the Dockerfile can lead to inconsistencies, making the exact reproduction of a Docker environment
challenging if not managed carefully. Therefore, while Docker simplifies the consistency of deployment
environments, ensuring long-term exact reproducibility requires careful management of image sources
and dependencies.
Docker is intrinsically designed to facilitate reproducible builds, with the capability to generate identical
containers across multiple executions. However, the challenge to reproducibility arises not from Docker’s
fundamental features but from the use of specific base images within Docker containers. A significant
illustration of this problem is shown in Terminal session 5, where rebuilding the image results in different
containers even though the base image version has been pinned to a specific commit at lines 1 and 7.

Reproducibility in Software Engineering 55

Reproducibility Of The Build Environment III - Software evaluation

“Pinning” refers to the practice of specifying exact versions of software, base images,
or dependencies to use when building a Docker container. This practice helps ensure
that the build environment remains consistent and predictable over time, despite updates
or changes to those dependencies. Pinning is crucial for maintaining consistency as
it prevents the build environment from changing unexpectedly due to updates in
dependencies. It also enhances reproducibility, allowing developers to recreate the same
environment at a later date, which is vital for debugging and development. Moreover,
it enhances reliability by reducing the likelihood of encountering unexpected issues or
conflicts caused by differing versions of dependencies.
For example, specifying FROM alpine:3.19.1 in a Dockerfile instead of FROM alpine ensures
that the Alpine 3.19.1 version is always used, providing stability. This mechanism applies
similarly across different programming language ecosystems. However, it is important
to note that version tags, like 3.19.1, can be replaced or updated by the maintainers,
potentially altering the contents associated with a pinned version.
To overcome this, the use of digests or checksums (Chapter 2, subsection 2.4.6) can anchor
images to a specific snapshot, offering a stronger guarantee of immutability. For instance,
specifying FROM alpine@sha256:c5b1261d6d3e43071626931fc004f70149baeba2c8ec672bd4f27761f8e1ad6b
as shown in Listing 13 ensures that exactly the same image is used consistently, regardless
of any updates.

Docker’s containerization technology offers a way to create consistent software environments across
various systems by encapsulating both the software and its dependencies within containers. This
encapsulation aids in ensuring a uniform deployment process. However, the approach’s reliance on base
images and the package managers they use brings forth challenges in maintaining reproducibility. This is
primarily because base images might not be strictly version-controlled, and the package managers used
within these images can result in the installation of varying dependency versions over time.
For example, traditional package managers like apt (used in Debian-based OSes) or yum (used in RedHat-
based OSes) do not inherently guarantee the installation of the exact same version of a software package
across space and time. Typically, this variability stems from updates in the package repositories, where an
apt-get install command might fetch a newer version of a library than was originally used. Such updates
could potentially introduce unexpected behaviour or incompatibilities.
Docker and similar containerization technologies act as sophisticated assemblers, piecing together the
diverse components required to create a container. This process, while streamlined and efficient, is not
immune to the introduction of variability at any stage of the assembly line. Whether due to updates in
base images, fluctuations in package versions, or differences in underlying infrastructure, these variables
can compromise the reproducibility of the resulting container (Definition 14). Recognising this, it becomes
crucial for developers and researchers to approach container creation with a keen awareness of these
potential pitfalls. By meticulously managing base images, employing reliable package managers, and
adhering to best practices in Dockerfile construction, one can mitigate the risks of variability and move
closer to achieving true reproducibility in containerised environments.

3.4. Evaluation 3 - Guix
Guix [97] is an advanced package manager, designed to provide reproducible, user-controlled, and
transparent package management. It leverages functional programming concepts to ensure reproducibility
and reliability, using the GNU Guile [98] programming language for its core daemon, package definitions
and system configurations (L. Courtès [99]).
Central to Guix’s philosophy is the concept of reproducible builds and environments. This ensures that
software can be built in a deterministic manner, enabling exact replication of software environments at
any point in space and time. Guix achieves this by capturing all dependencies, including the toolchain
and libraries, in a way that they can be precisely recreated. It supports transactional package upgrades
and rollbacks, making system modifications risk-free by allowing users to revert to previous states easily.
Guix uses GNU Guile [98], a Scheme [100] implementation, allowing for more expressive and
programmable package definitions. This choice reflects Guix’s emphasis on customization and alignment
with the Free Software Foundation [101] project’s philosophy, rejecting proprietary blobs and aiming for

56 Reproducibility in Software Engineering

III - Software evaluation Evaluation 3 - Guix

complete software freedom, which may limit hardware compatibility. Guix’s approach can pose a high
entry barrier due to its use of a general-purpose functional programming language but offers extensive
flexibility for those familiar with Lisp-like languages. That said, users are free to extend Guix with custom
packages, free or not.
Guix is committed to ensuring reproducibility and reliability, based on the functional deployment model
first introduced by E. Dolstra [102]. It assures reproducible builds by treating software environments
as immutable entities, thereby minimising variability across different systems. Guix’s approach to
software building and package management, grounded in the principles of functional programming and
transactional package upgrades, places a strong emphasis on reproducibility. However, this functional
paradigm (Definition 15) introduces a learning curve and necessitates a shift from traditional imperative
package management methods. Additionally, the adoption of Guix might be further complicated by the
absence of non-free software availability, marking a significant consideration for teams considering Guix.

1 (use-modules (guix)
2 (guix build-system gnu))
3

4 (define-public datetime
5 (package
6 (name "datetime")
7 (version "1.0")
8 (source (local-file "./src" #:recursive? #t))
9 (build-system gnu-build-system)
10 (arguments
11 '(
12 #:tests? #f
13 #:phases
14 (modify-phases %standard-phases
15 (delete 'configure)
16 (replace 'build
17 (lambda _ (invoke "gcc" "datetime.c" "-o" "datetime")))
18 (replace 'install
19 (lambda* (#:key outputs #:allow-other-keys)
20 (let ((out (assoc-ref outputs "out")))
21 (install-file "datetime" (string-append out "/bin"))))))))
22 (synopsis "DateTime Program")
23 (description "This package contains a simple program that shows the current date and time.")
24 (home-page #f)
25 (license #f)))
26

27 datetime

Listing 14: From Scenario 3, the Guix build file (guix.scm)

1 $ cd lib/scenario-3
2 $ make -s build
3 /gnu/store/d3gnj6zakm7kwfcrzfdbjxqq41j0x3j1-datetime-1.0
4 $ make -s check
5 sha256-iOGz7Lg3BlQLjIi+RMCSqhL6c1UHPLg4U/W0HSQJsJA=
6 $ make -s run
7 Built the Jan 1 1970 at 00:00:01.
8 $ make -s build
9 /gnu/store/d3gnj6zakm7kwfcrzfdbjxqq41j0x3j1-datetime-1.0
10 $ make -s check
11 sha256-iOGz7Lg3BlQLjIi+RMCSqhL6c1UHPLg4U/W0HSQJsJA=
12 $ make -s run
13 Built the Jan 1 1970 at 00:00:01.

Terminal session 6: Building the C sourcecode from the Guix build file of Scenario 3

3.4.1. Reproducibility In time
In Terminal session 6, we notice on lines 5 and 11 that the output hashes are the same. This is therefore
classified as reproducible in time.

3.4.2. Reproducibility In Space
Building the program in a different environment with the same architecture (x86_64-linux) resulted
in identical output. Compiling the source code on another architecture (aarch64_darwin) also produced
consistent results, though different from those obtained on x86_64-linux. Therefore, we can conclude that
the program is reproducible across different environments, modulo the hardware architecture.

Reproducibility in Software Engineering 57

III - Software evaluation

3.4.3. Reproducibility Of The Build Environment
The reproducibility of the build environment is heavily controlled when using Guix. The dependencies
are locked and pinned, it is simply not possible to create a different build environment.

3.5. Evaluation 4 - Nix
Nix [103] is a revolutionary package management system that dramatically reshapes the landscape of
software construction, consumption, deployment and management. Its distinctive methodology, grounded
in the principles introduced in E. Dolstra [102], marked its inception, setting a new standard for handling
software packages. Central to Nix’s core is its use of the Nix language, a domain specific Turing-complete
language that facilitates the description of software packages, their dependencies, and the environments
in which they operate.

The term “Turing-complete” is named after the British mathematician and logician
Alan Turing, who introduced the concept of a Turing machine as a fundamental model
of computation. A Turing-complete language is a programming language that can
simulate a Turing machine, a theoretical device that can solve any computation that
can be described algorithmically. Turing completeness is a fundamental property of any
programming language that can perform any computation that a Turing machine can,
given enough time and memory. This property allows a language to express any algorithm
or computation, making it a powerful tool for software development. Examples of Turing-
complete languages include: Python, PHP, C++ and JavaScript. On the other hand,
non-Turing-complete languages, which are limited in their computational capabilities,
include: SQL, Regex and HTML.

This language enables Nix to implement a functional deployment model, ensuring reproducibility,
reliability, and portability across different systems by treating packages as functions of their inputs, which
results in deterministic builds.
Nix emphasises a deterministic build environment, allowing developers to specify and isolate dependencies
explicitly. This method significantly mitigates “it works on my machine” issues by providing a high
degree of control over the build environment. Nix’s strength in ensuring reproducibility comes with the
need to embrace its unique approach to system configuration and package management, representing a
paradigm shift for new users.

Nix essentially modifies the POSIX standard by installing software in unique locations
rather than following the shared file structure described by the Filesystem Hierarchy
Standard (FHS). This seemingly minor change brings about several advantageous
properties, such as software composition, immutability, configuration rollback, caching
and reproducibility.

Nix provides two principal methodologies that are not mutually exclusive: the legacy method (±2006)
and the relatively newer Flake (±2020) approaches.

3.5.1. Nix legacy method
The legacy way of using Nix involves defining a default.nix file that is similar to a function definition
in the Nix programming language. This file contains a set of inputs, specifies dependencies, the build
command and its output. By default, this method does not enable pure evaluation mode, meaning the
hermeticity of the build process is not guaranteed. As a result, potential uncontrolled side effects may
occur during the build process. For instance, as demonstrated in Listing 15 at line 2, we manually enforce
a very specific version of the pkgs variable, a specific snapshot of the Nix package repository that fixes
the versions of all packages and libraries. Similarly to the process outlined in Chapter 3, section 3.3 for
Docker, this approach, known as “dependency pinning,” ensures consistency and reproducibility in the
build environment.

58 Reproducibility in Software Engineering

III - Software evaluation Nix legacy method

1 {
2 pkgs ? import (fetchTarball "https://github.com/NixOS/nixpkgs/archive/7872526e9c5332274ea5932a0c3270d6e4724f3b.tar.gz") { }
3 }:
4

5 pkgs.stdenv.mkDerivation {
6 name = "datetime";
7

8 src = ./src;
9

10 buildPhase = ''
11 $CC datetime.c -o datetime
12 '';
13

14 installPhase = ''
15 install -D datetime $out/bin/datetime
16 '';
17 }

Listing 15: The Nix build file (default.nix) from Scenario 4

1 $ cd lib/scenario-4
2 $ make -s build
3 /nix/store/kr0wn1hsxj0hx86ybxbqda25zza1805p-datetime
4 $ make -s check
5 sha256-UiRzZFmePpkBYnAFZe9NeKRb1h1XUJ80OBxv9fRPQCQ=
6 $ make -s run
7 Built the Jan 1 1980 at 00:00:00.
8 $ make -s build
9 /nix/store/kr0wn1hsxj0hx86ybxbqda25zza1805p-datetime
10 $ make -s check
11 sha256-UiRzZFmePpkBYnAFZe9NeKRb1h1XUJ80OBxv9fRPQCQ=
12 $ make -s run
13 Built the Jan 1 1980 at 00:00:00.

Terminal session 7: Building the C sourcecode with Nix in Scenario 4

3.5.2. Nix Flake
Nix Flake introduces a structured approach to managing Nix projects, focusing on reproducibility and
ease of use. Currently in an experimental phase, Flake is anticipated to transition to a stable feature
soon due to increasing community endorsement (Figure 15) and the tangible reproducibility advantages
it offers.

Figure 15: On the left, new repositories containing a flake.nix file, and on the right, containing a
default.nix file (Determinate System)

Flakes aim to simplify and enhance the Nix experience by providing an immutable, version-controlled
way to manage packages, resulting in significant improvements in reproducibility and build isolation.
Flakes manage project dependencies through a single, top-level flake.lock file, which is automatically
generated to precisely pin the versions of all dependencies, including transitive ones, as specified in the
flake.nix file. This file ensures project consistency and reproducibility across different environments.

Reproducibility in Software Engineering 59

https://x.com/DeterminateSys/status/1794394407266910626

Nix Flake III - Software evaluation

In addition to altering the Nix command-line syntax, Flakes enforce a specific structure and entry point
for Nix expressions, standardising project setup and evaluation. They enable pure evaluation mode by
default, which enhances the purity and isolation of evaluations, making builds more consistent and
reducing side effects. For instance, making external requests during a build is not possible with Flakes,
ensuring that every dependency must be explicitly declared. Flakes require changes to be tracked through
git, enabling the exact reversion of the project to be pinned in the flake.lock file.
The files flake.nix and flake.lock are complementary and central to the locking mechanism that ensures
reproducibility. Together, when committed in a project, they guarantee that every user of a Flake,
regardless of when they build or deploy the project, will use the exact same versions of dependencies,
thereby ensuring that the project is built consistently every time. However, it is possible to have only
a flake.nix file without a flake.lock file. In such cases, having a reproducible build environment is not
guaranteed since dependencies could drift to newer versions.

1 {
2 inputs = {
3 nixpkgs.url = "github:NixOS/nixpkgs/nixpkgs-unstable";
4 flake-parts.url = "github:hercules-ci/flake-parts";
5 };
6

7 outputs = inputs @ { flake-parts, ... }: flake-parts.lib.mkFlake { inherit inputs; } {
8 systems = ["x86_64-linux" "x86_64-darwin" "aarch64-darwin"];
9

10 perSystem = { pkgs, ... }: {
11 packages.default = pkgs.stdenv.mkDerivation {
12 name = "datetime";
13

14 src = ./src;
15

16 buildPhase = ''
17 $CC datetime.c -o datetime
18 '';
19

20 installPhase = ''
21 install -D datetime $out/bin/datetime
22 '';
23 };
24 };
25

26 };
27 }

Listing 16: The Nix Flake file (flake.nix) from Scenario 5

1 $ cd lib/scenario-5
2 $ make -s build
3 $ make -s check
4 sha256-UiRzZFmePpkBYnAFZe9NeKRb1h1XUJ80OBxv9fRPQCQ=
5 $ make -s run
6 Built the Jan 1 1980 at 00:00:00.
7 $ make -s build
8 $ make -s check
9 sha256-UiRzZFmePpkBYnAFZe9NeKRb1h1XUJ80OBxv9fRPQCQ=
10 $ make -s run
11 Built the Jan 1 1980 at 00:00:00.

Terminal session 8: Building the C sourcecode with Nix flake in Scenario 5

3.5.3. Reproducibility In Time
In Terminal session 7, we notice on line 5 and 11 that building twice the sourcecode using Nix’s legacy
method produces the same output. In Terminal session 8, on line 4 and 9 we notice the same thing. This
is therefore classified as reproducible in time.

3.5.4. Reproducibility In Space
Just like Guix, building the program in a different environment with the same architecture (x86_64-
linux) resulted in identical output. Compiling the source code on another architecture (aarch64_darwin)
also produced consistent results, though different from those obtained on x86_64-linux. Therefore, we
can conclude that the program is reproducible across different environments, modulo the hardware
architecture.

60 Reproducibility in Software Engineering

III - Software evaluation

3.5.5. Reproducibility Of The Build Environment
The reproducibility of the build environment is heavily controlled. The dependencies are locked and
pinned, it is simply not possible to create a different build environment.

3.5.6. Dealing With Variability
This section will focus on how Nix deals with unstable outputs, highlighting how they have abstracted
this issue behind the scenes. The scenarios that will be used are:

• Scenario 6: Building an OCI image with Nix
• Scenario 7: Compiling a Typst document tp a PDF file
• Scenario 8: Compiling a Typst document to a PDF file with Nix, showing how Nix abstracts the issue

of non-deterministic builds.
• Scenario 9: Compiling a Typst document with Nix, fixing the issue of non-deterministic builds.

Typst [51] is an advanced markup-based typesetting language that compiles to PDF or
SVG. It was initiated in 2019 at the Technical University of Berlin by Laurenz Mädje and
Martin Haug. Developed in Rust, this programmable markup language for typesetting
became the subject of their master’s theses, which they wrote in 2022. After several years
of closed-source development, Typst was open-sourced and released to the public in 2023.
Despite being relatively recent and lacking a stable version, Typst’s maturity has allowed
it to be used for writing this master’s thesis.

Building OCI images using Docker is a common use case in the software development process. However,
the output of the build can be non-deterministic due to the nature of the build process. In scenario 6,
we will build an OCI image using Nix only.

1 {
2 inputs = {
3 nixpkgs.url = "github:NixOS/nixpkgs/nixpkgs-unstable";
4 flake-parts.url = "github:hercules-ci/flake-parts";
5 };
6

7 outputs = inputs @ { flake-parts, ... }: flake-parts.lib.mkFlake { inherit inputs; } {
8 systems = ["x86_64-linux" "x86_64-darwin" "aarch64-darwin"];
9

10 perSystem = { pkgs, ... }: {
11 packages.default =
12 let
13 datetime = pkgs.stdenv.mkDerivation {
14 name = "datetime";
15

16 src = ./src;
17

18 buildPhase = ''
19 $CC datetime.c -o datetime
20 '';
21

22 installPhase = ''
23 install -D datetime $out/bin/datetime
24 '';
25 };
26 in
27 pkgs.dockerTools.buildLayeredImage {
28 name = "datetime";
29 tag = "latest";
30 contents = [datetime];
31 config.Cmd = ["/datetime"];
32 };
33 };
34 };
35 }

Listing 17: The Nix Flake file (flake.nix) to build an OCI image in Scenario 6

Reproducibility in Software Engineering 61

Dealing With Variability III - Software evaluation

1 $ cd lib/scenario-6
2 $ make -s build
3 load image: datetime
4 $ make -s check
5 sha256-dJ3nqJW2bsnSnAca1tOivmWEbk6005mu14N3soM1xxQ=
6 $ make -s run
7 Built the Jan 1 1980 at 00:00:00.
8 $ make -s build
9 load image: datetime
10 $ make -s check
11 sha256-dJ3nqJW2bsnSnAca1tOivmWEbk6005mu14N3soM1xxQ=
12 $ make -s run
13 Built the Jan 1 1980 at 00:00:00.

Terminal session 9: Building an OCI image with Nix

In Terminal session 9, line 5 and 11, we notice that building twice an OCI image using Nix produces the
same output. The Flake file in Listing 17 shows that it is possible to create reproducible OCI containers
with Nix, in a simple and declarative way.
In scenario 7, we will compile a trivial Typst document.
Consider the following Typst document on the left, and it’s rendering on the right:

1 #set page(width: 10cm, height: auto)
2 #set heading(numbering: "1.")
3

4 = Fibonacci sequence
5 The Fibonacci sequence is defined through the
6 recurrence relation $F_n = F_(n-1) + F_(n-2)$.
7 It can also be expressed in _closed form:_
8

9
$ F_n = round(1 / sqrt(5) phi.alt^n), quad phi.alt
= (1 + sqrt(5)) / 2 $

10

11 #let count = 8
12 #let nums = range(1, count + 1)
13 #let fib(n) = (
14 if n <= 2 { 1 }
15 else { fib(n - 1) + fib(n - 2) }
16)
17

18 The first #count numbers of the sequence are:
19

20 #align(center, table(
21 columns: count,
22 ..nums.map(n => $F_#n$),
23 ..nums.map(n => str(fib(n))),
24))

Listing 18: Typst document Figure 16: Rendering of the Typst document

Terminal session 10 shows that manually compiling the same document twice yields different resulting
files.

1 $ cd lib/scenario-7
2 $ make -s build
3 $ make -s check
4 sha256-aOmj1feG5+7h8BDz+URLxr82DxZVrOakDR3B0ULW41c=
5 $ make -s build
6 $ make -s check
7 sha256-CBeUSxEHXqHx0bsERt9cg8hO9qRR/qp2DS9/SrPTtMs=

Terminal session 10: Manually compiling a Typst document to a PDF document in Scenario 7

While viewing the resulting PDF files side by side, we notice that they appear totally identical to
Figure 16. However, the checksum of those files are different. This discrepancy is common, where the
same input can produce different outputs due to non-deterministic behaviour in the build process. Even
if the resulting outputs are identical, there can be internal differences. Therefore, given an arbitrary
build output, it is impossible to determine if a build is valid or not. It is important to acknowledge that
tools like Guix or Nix address this issue by ensuring that the build environment only is consistent and
reproducible. In Listing 19, we will show how to compile the same Typst document using Nix and how
to eventually fix the discrepancy.

62 Reproducibility in Software Engineering

III - Software evaluation Dealing With Variability

1 {
2 inputs = {
3 nixpkgs.url = "github:NixOS/nixpkgs/nixpkgs-unstable";
4 flake-parts.url = "github:hercules-ci/flake-parts";
5 };
6

7 outputs = inputs @ { flake-parts, ... }: flake-parts.lib.mkFlake { inherit inputs; } {
8 systems = ["x86_64-linux" "x86_64-darwin" "aarch64-darwin"];
9

10 perSystem = { pkgs, ... }: {
11 packages.default = pkgs.stdenv.mkDerivation {
12 name = "typst-hello-world";
13

14 src = ./src;
15

16 nativeBuildInputs = [pkgs.typst];
17

18 buildPhase = ''
19 typst compile hello-world.typst hello-world.pdf
20 '';
21

22 installPhase = ''
23 install -D hello-world.pdf $out/hello-world.pdf
24 '';
25 };
26 };
27 };
28 }

Listing 19: The Nix flake.nix file to build a Typst document to a PDF in Scenario 8

Compile it twice and observe the outcome:

1 $ cd lib/scenario-8
2 $ make -s build
3 $ make -s check
4 sha256-7c79JDFrrC+MJJd2WavQD1kCsM9wh+knRUOOdAeqMyk=
5 $ make -s build
6 $ make -s check
7 sha256-aq9cxJiiRUxBqxGGV1JjR6+m2JYR7M9h/90R8GGnyxs=

Terminal session 11: Building a Typst document in Scenario 8

At lines 4 and 7 of Terminal session 11, we notice that compiling twice a Typst document with Nix
produces two different PDF files, their respective checksums are different. While the visual output appears
identical, the underlying files are not. At line 3 of Terminal session 12, we leverage a command with
specific flags to verify if a build output is reproducible.

1 $ cd lib/scenario-8
2 $ nix build
3 $ nix build --rebuild --keep-failed
4 note: keeping build directory '/tmp/nix-build-typst-hello-world.drv-0'

5

error: derivation '/nix/store/bsg67bk2csqbjbkib6jfqjqxyncq3l2q-typst-hello-world.drv' may not be
deterministic: output '/nix/store/1n4g9gsq34xzmg351r7sa87rrcazh8gf-typst-hello-world' differs from '/nix/
store/1n4g9gsq34xzmg351r7sa87rrcazh8gf-typst-hello-world.check'

Terminal session 12: Checking if a build output is reproducible

Nix will build the document once (line 2), then a second time (line 3) and then compare the output
hashes. Thanks to the --keep-failed argument, we inform Nix to keep the failed builds so we can do a
more introspective analysis of the issue and try to find the root cause of the discrepancy, for example,
using diffoscope [89] in Terminal session 13.

1 $ diffoscope /nix/store/1n4g9gsq34xzmg351r7sa87rrcazh8gf-typst-hello-world \
2 /nix/store/1n4g9gsq34xzmg351r7sa87rrcazh8gf-typst-hello-world.check

Terminal session 13: Checking discrepancies between two builds using diffoscope

Reproducibility in Software Engineering 63

Dealing With Variability III - Software evaluation

Figure 17: A visual comparison with diffoscope of two PDF files generated from the same Typst document

diffoscope visually compares the discrepancy between the two PDF files. From the report in Figure 17,
the highlighted difference seems to be the creation date metadata. Doing a quick search on Typst
Documentation [104] confirms that Typst is able to change the creation date of the output file. Listing 20
implements the trivial change at line 1:

1 #set document(date: none)
2 #set page(width: 10cm, height: auto)
3 #set heading(numbering: "1.")
4

5 = Fibonacci sequence
6 The Fibonacci sequence is defined through the
7 recurrence relation $F_n = F_(n-1) + F_(n-2)$.
8 It can also be expressed in _closed form:_
9

10 $ F_n = round(1 / sqrt(5) phi.alt^n), quad phi.alt = (1 + sqrt(5)) / 2 $
11

12 #let count = 8
13 #let nums = range(1, count + 1)
14 #let fib(n) = (
15 if n <= 2 { 1 }
16 else { fib(n - 1) + fib(n - 2) }
17)
18

19 The first #count numbers of the sequence are:
20

21 #align(center, table(
22 columns: count,
23 ..nums.map(n => $F_#n$),
24 ..nums.map(n => str(fib(n))),
25))

Listing 20: On line 1, the Typst document date is now set to none

1 $ cd lib/scenario-9
2 $ nix build
3 $ nix build --rebuild --keep-failed
4 $ # No more error message - the build is fully reproducible now.

Terminal session 14: Checking if compiled Typst document is reproducible in Scenario 9

Now we notice that running the command to check if the output is reproducible returns nothing, meaning
that the output is fully reproducible.

64 Reproducibility in Software Engineering

III - Software evaluation Dealing With Variability

Often, raising an issue with the upstream project is the most effective method for
informing the authors about a problem and monitoring its resolution. In the case of Typst,
an issue [52] was documented to describe the problem, and in less than two weeks, it had
been addressed and resolved. Consequently, the discrepancy in Terminal session 11 is no
longer applicable for Typst versions newer than 0.11.0.

3.6. Conclusion
In this concluding section of the chapter, a summary of the reproducibility assessment can be found in
Table 4. Following the table, this section provides a detailed explanation of our categorization process,
outlining the specific criteria used for classifying. Each classification is justified based on the results
obtained from our comprehensive empirical evaluation process.

Table 4: Software evaluation comparison
Reproducible

within the same
hardware architecturePro Cons

In space In time Environment

1. Bare compilation

• Full control over compilation
• Direct understanding of de-

pendencies inherited from
host system

• Prone to “it works on my ma-
chine” issues

• Lacks isolation and depen-
dency management

× × ×

2. Docker

• Better isolation and depen-
dency management thanks to
containerization

• Isolation from host system
• Popular solution, widely

adopted

• Potential variability due to
base images and package
management

• Additional layer of abstrac-
tion due to containerization

∼ ∼ ∼

3. Guix

• Deterministic builds with ex-
plicit dependency specifica-
tion

• Functional package manage-
ment

• Immutable software environ-
ments

• Isolation and environment re-
producibility

• No containerization overhead

• Steep learning curve
• Paradigm shift from tradi-

tional package management
systems required

• Very limited package avail-
ability

• Unfree packages are not offi-
cially allowed

✓ ✓ ✓

4. Nix

• Deterministic builds with ex-
plicit dependency specifica-
tion

• Functional package manage-
ment

• Immutable software environ-
ments

• Isolation and environment re-
producibility

• No containerization overhead
• Vast repository of packages,

unfree packages are autho-
rized.

• Steep learning curve
• Pradigm shift from tradi-

tional package management
systems required

Legend: ✓ = Supported, ∼ = Partially supported, × = Not supported

In evaluating the reproducibility of various tools and methodologies within, a particular focus has
been set on the bare compilation method (Chapter 3, section 2). This approach, characterised by its
reliance on the host operating system’s installed software for compiling source code into executable
programs, presents a nuanced challenge to reproducibility. Theoretically, bare compilation allows for
a straightforward reproduction of computational results, assuming a static and uniform environment
across different computational setups. However, the practical application of this method exposes inherent
vulnerabilities to environmental variability. The reliance on the host’s installed software means that
the exact version of compilers, libraries, and other dependencies can significantly impact the outcome

Reproducibility in Software Engineering 65

Conclusion III - Software evaluation

of the compilation process. These elements are seldom identical across different systems or even over
time on the same system, given updates and changes to the software environment. Consequently, the
reproducibility promised by Bare compilation is compromised by these external variables, which are often
not documented with sufficient rigor or are outside the user’s control. Acknowledging these challenges,
we categorise the bare compilation (Chapter 3, section 2) as non-reproducible by default, reflecting a
practical assessment rather than a theoretical limitation. The classification underscores the significant
effort required to document and manage the dependencies on the host’s software to achieve a reproducible
build process. This perspective is supported by the literature [64], which advocates for standardising
and simplifying the management of computational research artefacts. The classification of the method 1
(Chapter 3, section 2) as non-reproducible is a pragmatic acknowledgment of the difficulties presented
by the dependency on the computational environment.
Docker and similar containerization technologies (Chapter 3, section 3) can facilitate reproducible
environments. The reason is that while they provide a high degree of isolation from the host system, they
are still subject to variability due to the base images and package managers used within the containers.
This variability, however, can be effectively managed with low effort. By meticulously selecting and
managing base images and dependencies, it is indeed feasible to elevate Docker from partially to fully
reproducible. For these reasons, they are categorised as partially reproducible.
Nix (Chapter 3, section 4) and Guix (Chapter 3, section 5) provide a high level of control over the
build environment and dependencies, facilitating deterministic and reproducible builds across different
systems. By capturing all dependencies and environment specifics in a declarative manner, Nix and Guix
offer a reliable and transparent approach to software development. The functional deployment model
implemented by Guix, Nix and their forks (like Lix [105]), along with their transactional package upgrades
and rollbacks, further enhances reproducibility by enabling exact replication of software environments
within the same architecture at any point in space and time.Under the hood, they introduces a novel
approach to addressing the challenges of reproducibility. By using a very specific storage model, they
ensures that the resulting output directory is determined by the hash of all inputs. This model, while
not guaranteeing bitwise identical binaries across all scenarios, especially across different hardware
architectures, ensures that the process and environment for building the software are reproducible. Nix
and Guix’s model represents a significant step forward in mitigating reproducibility challenges within
SE. By ensuring that every build can be traced back to its exact dependencies and build environment,
it enhances the reliability of software deployments. This approach is particularly beneficial in CI/CD
pipelines, where consistency and reliability are paramount. Achieving reproducibility in SE is filled with
challenges, from architecture dependencies to non-determinism in compilers. These solutions offers a
compelling solution by ensuring reproducible build environments. The exploration of the concepts used
in Guix and Nix, and its methodologies provides valuable insights into the complexities of software
reproducibility and the necessity for continued research and development in this field. They both are
categorised as reproducible.

66 Reproducibility in Software Engineering

III - Software evaluation Conclusion

Chapter IV

Conclusion
Reproducibility has the potential to serve as a minimum standard for judging scientific claims when full
independent replication of a study is not possible

— R. D. Peng [106]

Reproducibility in Software Engineering 67

IV - Conclusion

4.1. Summary
This thesis embarked on an in-depth exploration of reproducibility in SE, motivated by the growing
necessity for reliable and repeatable results in research and software development. In this chapter, we
summarise our findings and discuss the implications of our research. We also suggest future work that
could be done to improve reproducibility.
In the introductory Chapter 1, I provided an overview of my personal journey and the experiences that
have led me to pursue this specific area within SE. This chapter offered readers contextual information
about my background, especially highlighting my active involvement in open-source communities and my
dedicated advocacy for the adoption of reproducibility tools and practices. I delved into my motivations
for choosing this topic, underscoring the critical importance of reproducibility in SE. The relevance of
establishing reliable and repeatable processes to enhance the integrity of software products and to foster
a culture of transparency and collaboration. To guide the reader through the thesis, I recall the goals
and a structured overview of the document, chapter by chapter.
In Chapter 2, the theoretical foundations of reproducibility were explored, tracing its origins from
classical scientific disciplines where it has long been a cornerstone for validating experimental findings
and theories. The chapter began with a historical overview, highlighting how reproducibility emerged
as a fundamental principle in the natural sciences and the shifts it has undergone with the advent of
the digital era. Following this introduction, a comprehensive set of concepts central to understanding
reproducibility in SE was presented. Formal definitions for key terms were introduced, establishing a
rigorous and foundational basis for subsequent developments. The narrative then extended into the
realms of open source and software security, pivotal areas where reproducibility intersects with broader
concerns. Open source software, with its ethos of transparency and collaboration, enhances reproducibility
by making the source code readily available. This transparency facilitates the verification of software
builds and improves security. With the source code accessible and inputs correctly declared, it allows for
immediate identification of dependencies and quicker identification of vulnerabilities. The focus shifted to
the specific challenges that software engineers and researchers face in achieving reproducible builds. This
discussion delved into obstacles such as non-deterministic build processes, variability of environments,
and the lack of, to some extent, standard practices for documenting and sharing the necessary details to
replicate software builds. By examining these challenges, the groundwork was laid for identifying effective
strategies to address them. Lastly, it introduced third-party tools designed to compare build outputs.
In Chapter 3, I systematically explored and assessed different tools and strategies used to build
software with an emphasis on their potential to facilitate reproducible results. The chapter presented
a comprehensive analysis of four distinct strategies: Bare compilation, Docker, Guix, and Nix. Each
strategy was evaluated through multiple objective criteria. This approach allows for a balanced
assessment of each method, providing insights into how well they help in achieving reproducible builds.
For Bare compilation, the focus was on the traditional approach of building software directly on
the system without containerization or virtual environments, highlighting its limitations and potential
issues in reproducibility. Next, Docker was evaluated as a popular containerization technology that
encapsulates the software environment, aiming to enhance reproducibility by isolating dependencies.
Following Docker, I examined Guix and Nix, two functional package managers that offer more granular
control over environment configurations. The chapter concluded with a comparative analysis that ranked
these strategies according to their reproducibility potential. This evaluation serves as a resource for
developers making decisions about which tools and strategies to implement in their projects to enhance
reproducibility.
In the remaining sections of this conclusion chapter, we will summarise the key findings and the broader
implications of my research. Additionally, I will expand the discussion by exploring other facets of
reproducibility. Finally, I propose future research directions aimed at enhancing reproducibility.

4.2. Evaluation Of Tools
Chapter 3 was dedicated to evaluating different tools and strategies for building software with an emphasis
on their potential to facilitate reproducible results.
Bare compilation is the traditional approach to building software directly on the system without
containerization or virtual environments. This method offers minimal isolation and control over the build

68 Reproducibility in Software Engineering

IV - Conclusion Evaluation Of Tools

environment, making it challenging to achieve reproducibility. However, it is still widely used in practice
due to its simplicity and familiarity, usually with the underlying operating system ecosystem. Debian
based Linux distributions are a common choice for this method due to their extensive package repositories
and long-term support, therefore, the usage of the package manager apt became a standard practice for
installing dependencies when one is missing. This imperative method for installing missing dependencies
can lead to non-reproducible builds due to the lack of version pinning. The apt package manager does
not provide snapshots where all the dependencies are frozen at a given state, which makes it challenging
to reproduce the exact build environment. However, it has the advantage of being popular and widely
supported.
Using Docker for building software is a popular choice due to its increasing popularity and the ease
of creating shareable containers through Docker Hub [70]. However, sharing a container as a single
OCI file requires a bit more work and is not as straightforward as sharing a Docker image on their
dedicated platform Docker Hub. In a way, thanks to Docker, users have been introduced to the concept
of containerization, immutability, and to some extent, reproducibility.
While discussing Docker with people, I noticed a common misconception about reproducibility that is
worth noting. To illustrate this, let’s consider a project shipping builds of their open-source software
through Docker images. At each release, they publish a new version of their image. These Docker images
are immutable, and users can use and reuse them at will. However, it is simply impossible to reproduce
those images themselves from the sources. While this illustrates the Docker leitmotif “build once, use
everywhere”, it does not demonstrate true reproducibility. The essence of reproducibility lies in our
ability to recreate identical copies of these images from the sources on any machine. If something can be
reproduced multiple times but yields different results each time, it is not truly reproducible. Similarly,
if something is produced only once and is not meant to be reproduced, it is, to some extent, also not
reproducible.

In declarative configuration management [107], tools such as Docker, Kubernetes [96],
and Terraform [108] are used to specify the desired end state of the system rather than
the steps to achieve it. For example, a Dockerfile describes the final environment for
a container, ensuring that the system matches predefined specifications. This method
aligns with the congruent system management [109] approach, focusing on consistency
and predictability. Declarative configurations ensure idempotence, meaning the same
configuration can be applied multiple times without altering the system beyond its
intended state. This abstraction makes it easier to understand and maintain, as the system
determines the necessary actions to achieve the desired state.
In contrast, imperative configuration management [107]involves detailing the exact steps
required to transition a system from its current state to a desired state, providing
granular control over the configuration process. Tools such as Ansible [110], Chef [111],
Puppet [112], and Bash scripts exemplify this approach. This method aligns with the
convergent system management [109] approach, focusing on achieving a goal through a
series of specific actions. While imperative configurations allow for complex logic and
conditional operations, they can be challenging to maintain due to their non-idempotent
nature, meaning the same script can produce different results depending on the system’s
initial state. This approach requires meticulous management to ensure consistency and
repeatability, offering detailed control at the expense of simplicity and predictability.
The expressiveness of imperative tools comes at a significant cost. These tools allow
developers to make stronger assumptions about the current state of the system. This
creates a strong likelihood of like environments diverging over time in a process known as
configuration drift. The declarative approach to configuration management reduces the
possibility of configuration drift by favoring idempotence, explicit dependency graphs,
and maintaining a strong awareness of the current state of the environment [107, p.348].

During the evaluation, I found Docker to be very easy to use. By using a simple declarative syntax
to define the build steps, the Dockerfile is one step forward into making configurations more explicit
and this has contributed a lot to the success of the Docker ecosystem. On a less positive note, using
Docker on other platforms than Linux can be challenging and a deal breaker for some users. On non-

Reproducibility in Software Engineering 69

Evaluation Of Tools IV - Conclusion

Linux systems, Docker relies on a virtual machine to create a Linux environment, which can lead
to performance overheads and latency issues. The differences in filesystems between Linux and non-
Linux platforms can also result in inconsistencies and unexpected behaviour in container operations.
Additionally, networking configurations and capabilities can vary significantly, causing more complex
setups and potential connectivity issues. Resource allocation and management can be less efficient on
non-Linux platforms due to the intermediary VM layer. On Linux based architectures, the performance
are not as good as running the software natively, but it is still acceptable for most use cases. However,
while initiatives such as DevContainer [113] are trying to provide a more integrated experience with
Visual Studio Code [114], working with and inside a container adds an extra layer of complexity that
can be challenging to manage, especially when dealing with networking, storage and security.
Guix has been an interesting tool to evaluate. While the learning curve is steeper than Docker, the
benefits are significant. I appreciated the strict and declarative approach to package management, which
aligns well with the reproducibility goals. The idea of using an existing general purpose language for
declaring packages and configurations is a powerful idea. The community is small but active, however
since no proprietary tools are packaged, it can be a challenge for users to find the software they need.
There are workarounds existing but it is not advertised by the Guix community which tend to focus and
adhere to the free software philosophy [101]. The performance of Guix is great, since no containerization
is involved, the software runs natively on the system and accessing storage and network is a breeze. Guix
extensively uses git [115] for fetching packages and configurations, and the information displayed to the
user while running it is very clean and clear.
Nix has been the most interesting approaches to evaluate, technically but also politically. The learning
curve is steep, but the benefits are significant. The Nix language while being Turing-complete (Info
box 32) has a very specific and limited Domain Specific Language (DSL), it is remarkably clean and
powerful, making it highly suitable for managing package builds and configurations. Additionally, the
simplicity of the Nix language enhances its efficiency and usability, positioning it, in my own opinion, as
one of the best languages for this task.
During the making of this thesis, I contributed to Nix and I really appreciated how easy it is to contribute
but also the transparency of the process when it comes to making a change. The Nix community is very
large, active and welcoming, and the Nix package repository nixpkgs is one of the most active repository
on Github [116]. Nix has completely changed the way I think about software management, how I consume
software and how I ship software. I wish I had discovered it earlier.
While Nix offers many advantages, it also has some drawbacks, primarily concerning its installer. The Nix
installer is a shell script that downloads and installs Nix on the system. However, there are alternative
installers available. During my evaluation, I explored these different installers and ultimately chose one
developed by a United States-based company founded by Eelco Dolstra, the creator of Nix. Given this
connection, I felt confident using their installer. Nevertheless, I found it peculiar to maintain multiple
installers for the same software, which I suspect might be a source of confusion for many users, both new
and experienced. Could this indicate a deeper governance problem?
Another drawback of Nix is the documentation. While the Nix manual is extensive and well-written,
it can be overwhelming for new users. The manual is comprehensive but it lacks a clear and concise
structure, examples and a lot of topics are not covered. A lot of energy, initiative and effort are being
made and things are slowly moving in the right direction.
While working with Nix the first time, I got introduced to the concept of Nix channels. Nix channels
is a mechanism used to distribute and update collections of Nix expressions. These channels provide
users with a way to receive updates for Nix packages and configurations. While Nix extensively uses
git, the unique concept of channels adds an extra cognitive load for users who want to simply upgrade
their machines. I preferred the simplicity Guix offers by just using git to update the system. When using
Flakes, the concept of Nix channels is no longer needed.
Flakes is an experimental feature as of writing. Released in November 2021 with Nix 2.4 [117], Flakes is
powerful yet controversial. For example, some companies, including one founded by the creator of Nix, are
advocating for the adoption of Flakes, while the Nix community awaits its stabilization. Although these
differences do not affect Nix’s functionality in the short term, they can be confusing for new users and may

70 Reproducibility in Software Engineering

IV - Conclusion Evaluation Of Tools

lead to fragmentation within the community. One might ask why such companies are not contributing
to the same codebase as the rest of the community, a situation that has already led to some division.

There are currently around 230 committers spread across the globe taking care of the
Nix package repository on Github [118]. On June 1st 2023, I’ve been granted the status
of project committer [119]. This status allows me to merge commits, review code, and
contribute to the Nix ecosystem in a more direct way. However, I want to clarify that the
conclusions of this thesis were not influenced by my role in the Nix project. I have worked
to maintain the highest level of objectivity in this document, with only reproducibility
as the primary focus.

At the time of writing, the Nix community was facing a significant crisis, leading to the creation of two
new forks of Nix, Lix [105] and Aux [120]. This fragmentation is a major concern for the project’s future.
While a new governance structure is being established, the community remains divided over different
installers, the experimental Flake feature, the sponsorships policy and now forks. Although the current
situation is not ideal, I am confident that the community will overcome this crisis and continue to provide
an excellent tool for the SE community. The controversial Flake feature has attracted many new users
to the Nix ecosystem, and the community is growing rapidly. These issues are likely a result of this rapid
growth and the initial lack of clear and transparent governance, a problem that needs to be resolved.
To conclude, it is essential to recognise that Nix is the result of extensive research and development,
used in production by numerous companies and individuals. The Nix community is dynamic and vibrant,
promising a bright future for the project. The core value of Nix lies in its package repository, nixpkgs,
which hosts thousands of packages readily accessible to any Nix user. Regardless of which Nix variant
or fork one chooses, the true asset remains that package recipe repository, likely to be shared across
different forks, ensuring consistency and reliability in package management.

I have concluded that the ideas implemented by Nix stand out as the optimal choice.
With two decades of maturity and robustness, the Nix ecosystem is, in my view, currently
the best concept for implementing reproducibility in SE. I am convinced that Nix, or
a similar technology that embraces the same principles (e.g., Guix [97], Lix [105], Aux
[120]), has the potential to revolutionise the way software is built, used, audited, deployed
and shared.

Reproducibility in Software Engineering 71

IV - Conclusion

4.3. Research Findings
During this research, I have discovered in Chapter 3 that the reproducibility of software builds is a
multifaceted challenge that requires a combination of skills, tools and strategies to address it effectively.
In this section, I present a summary of the key findings and some other facets of reproducibility that I
briefly explored, but could be expanded in future research.

4.3.1. At A Glance
Reproducibility in SE refers to the ability to consistently recreate the same software product, with
identical functionality, using the same methods and data across different environments and over time.
This involves ensuring that the software build process, dependencies, and computational environments
are well-documented and standardised.

Table 5: Pros and cons of reproducibility

Pros Cons
Facilitates collaboration and onboarding:
Reproducibility enables easier collaboration
among researchers, developers, as they can
replicate and extend each other’s work more
efficiently.

Steep learning curve:
Implementing reproducibility practices may
require learning new tools and methodologies,
which can be time-consuming and challenging.

Transparency and trust:
By sharing the methods, data, and tools used in
research and development, other collaborators can
verify and build upon the work, fostering a culture
of openness and collaboration.

Complexity:
The process of making software reproducible can
be complex, especially if it hasn’t been setup from
the beginning of the project.

Improves software quality:
Reproducibility practices help in identifying and
fixing bugs, improving the software’s overall
quality and robustness.

Proliferation of package managers:
The existence of too many package managers that
are built without reproducibility in mind can add
another layer of complexity when trying to build
software reproducibly.

Enhanced reliability and validity:
Reproducible results provide confidence that
findings are accurate and not due to random
chance or specific initial conditions of a single
experiment.

Factors limiting reproducibility:
Factors such as proprietary software, licensing
issues, and evolving hardware can pose challenges
to achieving full reproducibility.

Security and integrity:
Ensuring that software can be reliably rebuilt from
its source helps in detecting unauthorized changes,
enhancing security, and maintaining the integrity
of the software supply chain.

Potential for misuse:
Over-reliance on automated reproducibility tools
can lead to complacency, where developers might
not fully understand the underlying processes and
methodologies.

Facilitates troubleshooting and debugging:
Reproducible experiments serve as a clear
benchmark for comparison, assisting teams in
identifying discrepancies, tracing error origins, and
incrementally enhancing model performance .

Potential for stagnation:
Emphasis on reproducibility might slow down
innovation as developers might spend more time
ensuring reproducibility rather than exploring new
ideas and methodologies .

4.3.2. Limitations
Each of the tools evaluated in Chapter 3 offers unique advantages and features, yet they also possess
limitations that can impact their effectiveness in achieving reproducibility. Below are some key points
noted during the evaluation.

72 Reproducibility in Software Engineering

IV - Conclusion

4.3.2.1. Cross Architecture Reproducibility
Achieving software build reproducibility across different operating systems and architectures is not
feasible for certain types of build outputs, typically binaries (Chapter 2, section 2.6). Binary build
outputs depend on the CPU architecture (e.g., x86, ARM) because converting source code into machine
code uses a set of CPU instructions directly inherited from the CPU architecture. Therefore, obtaining
binaries that are identical across every architecture is unlikely to occur. This inherent dependency means
that the binaries produced on different architectures will have variations, making exact cross hardware
architecture reproducibility unattainable.

4.3.2.2. Unavailability Of Upstream Packages
To illustrate this limitation, I will use the example of a software package that has been removed from the
upstream repository and is no longer available for download. In this scenario, the software package cannot
be built, as the source code is no longer accessible. Furthermore, any other packages that depend on
this now-unavailable package also become impossible to build. This limitation highlights the importance
of maintaining a robust and reliable infrastructure for software repositories to ensure the longevity of
software packages and facilitate reproducibility. In the absence of such infrastructure, reproducibility
becomes increasingly challenging, as software packages may become obsolete or unavailable over time.
To circumvent this limitation, researchers and developers can adopt proactive measures to ensure the
reproducibility of their software builds. One approach is to archive the source code and dependencies
of the software package, preserving them in a secure and accessible repository. This is what projects
like Software Heritage [121] is trying to achieve. By archiving the source code and dependencies,
researchers and developers can safeguard against the loss of critical software components and maintain
the reproducibility of their builds over time. Additionally, implementing a caching layer to store build
outputs can significantly enhance reproducibility. This allows users to retrieve precompiled build outputs,
thereby avoiding the need to compile the source code on their machines if the corresponding cached build
exists. Nix facilitates the creation of such cached build layers due to its principles (Definition 15), as it
produces immutable directories based on sources. This means that modifying existing cached builds is
not possible, mitigating potential security issues related to accidental modifications. It’s worth noting
that this level of immutability and reproducibility is not the case with all package managers.

4.3.2.3. Standardisation
Another limitation is the lack of standard practices for documenting and sharing the necessary details to
replicate software builds. This limitation underscores the need for clear and comprehensive documentation
to facilitate reproducibility. An exemplary initiative addressing this challenge is the Package URL
(PURL) project, which seeks to standardise the identification and location of software packages across
various ecosystems and tools. The PURL specification [12] provides a universal syntax to reliably
reference software packages, thereby mitigating the inconsistencies that arise from diverse package
management conventions. By establishing a common framework, PURL enhances the interoperability
and reproducibility of software builds across different platforms and tools, illustrating the critical role of
standardisation in reproducible research and development. In addition to PURL, the SWHID is another
significant development aimed at improving standardisation. The SWHID provides a unique, persistent
identifier for software source code, facilitating the precise identification and retrieval of specific software
versions from the Software Heritage Archive [122].
To illustrate this, the 11 June 2024, GitHub announced [123], that generated SBOM files will now include
a PURL. By including the PURL, GitHub improves the completeness of the SBOM data, helping users
in more clearly identifying the packages in their repositories. This new Github feature exemplifies the
practical benefits of adopting a standardised specification, as it addresses a critical need in reproducibility
by providing the precise identification of software components used in a build, thereby improving
transparency and reproducibility in software development through the inclusion of PURLs in GitHub’s
SBOMs.

4.4. Future Work
The exploration of reproducibility in SE is an ongoing endeavour. As technology advances and new tools
emerge, the landscape of reproducibility continually evolves.

Reproducibility in Software Engineering 73

Future Work IV - Conclusion

A foundational step towards enhancing reproducibility in SE, and by extension, in the broader realm of
science, is to raise awareness of its importance from the outset. This can be achieved through educational
initiatives, workshops, and seminars that highlight the benefits of reproducibility and provide researchers
with the necessary tools and resources. Embedding reproducible practices into the research culture
from the beginning will help establish these practices as standard requirements rather than optional
enhancements .
On the technical side, the frameworks and tools evaluated in this thesis provide a robust foundation
for reproducible software builds. However, significant scope for improvement remains. Currently, various
Linux distributions continue to develop their own package managers, resulting in redundant efforts
and inefficient use of resources. While this idea seems utopic, adopting Nix as a universal package
manager could be a potential solution. Nix abstracts away the underlying system, making it an ideal
candidate for standardizing software deployment across different Linux distributions. By providing a
consistent environment, Nix could streamline the deployment process, reduce inconsistencies, enhance
reproducibility across diverse systems, and improve security. With a universal package manager, security
vulnerabilities could be addressed more efficiently, as fixes could be deployed across all systems
simultaneously. However, implementing Nix universally presents several challenges, such as ensuring
compatibility with all distributions, overcoming resistance from communities accustomed to their current
systems, and managing the scalability and maintenance of such an initiative. To address these challenges,
a phased approach could be adopted, starting with specific use cases or distributions where Nix has
demonstrated clear benefits. Additionally, collaborative efforts and open dialogue among stakeholders
could facilitate a smoother transition. Furthermore, adopting Nix could significantly reduce our carbon
footprint by eliminating the need to store prebuild binaries for different distributions. Instead, binaries
would be prebuilt once, then stored and made available on a Content Delivery Network (CDN) for all
the Linux distributions, thus streamlining the deployment process and contributing to environmental
sustainability.

The complexity of reproducibility is comparable to that of replicating a painting. While
explaining this thesis to a painter, I used the example of creating an indistinguishable copy
of another painting. The painter explained that the likelihood of achieving such perfect
replication is comparable to the chance of a monkey writing Shakespeare’s work due to
the numerous variables involved, such as the type of paint, the brush, the canvas, the
lighting, the environment, the painter’s mood, and the time of day. This carefully chosen
analogy underscores the multifaceted nature of reproducibility in SE, where numerous
variables and intricate interplay influence the final outcome .

The challenges in achieving reproducibility in artistic works highlight the complexity and necessity of
considering various factors. This broader context emphasises that reproducibility is not limited to SE
but is a universal issue that requires ongoing attention and innovation. Across different fields such as the
arts, social sciences, and natural sciences, achieving reproducibility involves addressing a wide array of
considerations. Specifically, these considerations include ethical, economic, philosophical and educational
aspects.

4.4.1. Flaky tests
Flaky tests are tests that exhibit inconsistent outcomes without changes to the code being tested. This
means that they can fail or pass sporadically, leading to uncertainty and mistrust in the test outcomes.
These unreliable tests are not only problematic for developers but also hinder the effectiveness of
valuable techniques in software testing research. Essentially, flaky tests pose a threat to the validity of
methodologies that rely on the assumption that a test’s outcome is solely determined by the source code
it evaluates. From a recent paper [124], a survey of software developers found that 59% claimed to deal
with flaky tests on a monthly, weekly, or daily basis.
Reproducibility is directly linked to the issue of flaky tests because their inconsistency directly impacts the
ability to reproduce results reliably. For effective reproducibility in scientific software and other domains,
it is crucial that tests yield consistent and predictable results. Unstable tests hinder the verification
process, making it difficult to assert whether observed issues are due to actual code defects or just the

74 Reproducibility in Software Engineering

IV - Conclusion Flaky tests

flakiness of the tests themselves. This discrepancy affects validation, verification, and the confidence in
computational results.
Future work on this issue should focus on developing techniques to identify and mitigate flaky tests,
ensuring that test outcomes are consistent and reliable. Research could explore advanced methods for
detecting flakiness, such as machine learning algorithms that analyze test behavior patterns. Additionally,
creating tools to automatically stabilize flaky tests and integrating these solutions into continuous
integration pipelines would significantly enhance the reliability and trustworthiness of software testing
processes.

4.4.2. Formal Concepts
There is potential for further describing and refining the formal definitions related to reproducibility
introduced mostly in Chapter 2. While this thesis has introduced formal definitions of key terms related
to reproducibility, these definitions can be expanded, refined and improved.
Having a set of formal definitions related to reproducibility is important because they provide clarity and
consistency in terminology, helping researchers communicate more effectively. Standardised definitions
allow for consistent evaluation criteria, making it easier to compare results across different studies
and ensuring reliable assessments. This standardisation also supports the development of tools and
methodologies for verifying reproducibility, making the evaluation process more rigorous.
Moreover, formal definitions play an educational role by instilling a culture of reproducibility among new
researchers and students. They guide policy-making and governance in research institutions, promoting
best practices. Ultimately, these definitions ensure the reliability and integrity of scientific findings.
Enhancing these formal definitions will further strengthen the quality and credibility of research.

4.4.3. Ethical Considerations
Reproducibility is fundamentally intertwined with ethical practices in research, as it bolsters the scientific
process by enforcing transparency among researchers. The commitment to making research reproducible
serves the scientific community and fosters public trust in scientific outcomes, demonstrating a respect
for the integrity of science and its impact on society.
Ethically, researchers are obliged to report their findings and also provide comprehensive details of their
methodologies. This level of accountability allows their research to be rigorously scrutinised, validated,
or refuted by peers, thus enhancing the quality and credibility of the scientific knowledge produced.
It is essential for maintaining public trust in scientific research. When results are not reproducible, it
undermines the reliability of scientific discourse and can lead to scepticism towards scientific claims. This
is particularly critical when scientific research informs policy decisions in crucial areas such as public
health and environmental conservation, where non-reproducible research could lead to misguided policies
with far-reaching consequences. As we’ve seen through this document, the open sharing of data and
methods is a cornerstone of reproducible research. It democratises access to scientific knowledge, enabling
a diverse range of researchers to participate in and contribute to scientific discovery, regardless of their
geographical, political or institutional affiliations. Reproducibility acts as a bulwark against fraud and
bias. It ensures that research content, findings, discoveries are genuine and not the result of manipulated
data, thus promoting fair distribution of resources and recognition within the scientific community.

4.4.4. Philosophical Considerations
According to K. R. Popper [18], a cornerstone of scientific inquiry is that a theory must be falsifiable;
that is, it can be disproven through empirical evidence. While evidence alone cannot conclusively verify
a hypothesis, it can refute one. Reproducibility is essential in this context as it allows hypotheses to be
rigorously tested and either validated or refuted, thus contributing to the evolution of scientific truth.
Scientific knowledge is not static but accumulates iteratively. Reproducibility fortifies this process
by ensuring that each new discovery builds upon a foundation of previously verified results. This
methodological consistency is crucial for the progressive nature of scientific understanding.
Reproducibility also underpins the pursuit of objective knowledge. It helps distinguish robust scientific
results from those that are anomalies or artefacts of experimental error, refining our collective
understanding of natural phenomena. The establishment of scientific consensus relies heavily on

Reproducibility in Software Engineering 75

Philosophical Considerations IV - Conclusion

reproducible results. This reproducibility facilitates agreement among scientists on what constitutes
established facts, thus propelling scientific progress and fostering collaboration across various disciplines.
Moreover, reproducibility enhances the scientific enterprise by encouraging the open sharing of data
and methods. This openness not only fosters collaboration but also transforms research into a collective
endeavour rather than a series of isolated efforts. It cultivates a scientific culture where data transparency
and methodological openness are normative, promoting an inclusive environment that respects and builds
upon the work of fellow researchers. By facilitating the verification of results, reproducibility pays homage
to the foundational work of previous researchers and ensures that their contributions to knowledge are
respected and built upon. It reinforces the integrity of scientific practice and propels the pursuit of
further inquiry.

4.4.5. Economical Considerations
Reproducibility intersects with economic efficiency. Efficient reproducibility can accelerate scientific
progress by enabling quicker validation of results and facilitating broader dissemination of knowledge.
Economies of scale can be applied where repetitive reproductions are feasible, thus reducing the unit cost
of research and making large-scale studies more financially sustainable.
The economic impact of reproducibility also extends to its utility in policymaking and industrial
applications. Reproducible research ensures that policies and commercial ventures based on scientific
findings are underpinned by robust and reliable evidence, thus minimising risks and maximising efficacy.
This not only bolsters public and investor confidence but also enhances the economic utility of scientific
research.
To some extent, reproducibility is closely linked to the economy of scarcity, where the rarity of an object
or finding directly impacts its reproducibility and associated costs. Rare phenomena or data require
more specialised resources for reproduction, which are often costly and less accessible. This scarcity
increases the economic investment required to replicate a study, from securing rare materials to accessing
specialised equipment.
Conversely, phenomena that are not rare can be reproduced with greater ease and at a lower cost. The
abundance of necessary resources and established methodologies makes such reproduction economically
viable and less resource-intensive. This disparity highlights a fundamental economic principle within
scientific research: the cost and feasibility of reproducibility often depend on the availability and
accessibility of resources.
To illustrate this, consider the manual replication of a painting, where the scarcity of the original artist’s
brushstrokes and techniques makes it challenging to reproduce the artwork with the same precision
and quality. It would take a significant investment of time, effort, and resources to manually replicate
the painting accurately. Choosing the proper materials, mastering the techniques, and recreating the
environment and artist’s vision are all essential factors that contribute to the cost and feasibility of
reproducing the painting. In contrast, a mass-produced item, such as a digital photograph, can be
replicated with relative ease and at a lower cost.
In summary, the economic implications of reproducibility encompass a range of considerations from the
broader economic impacts on efficiency, credibility, and practical application to the costs of rare resources.

4.4.6. Educational Considerations
Educating students in best practices is crucial for fostering a culture of reproducibility. We can
draw a compelling parallel with mathematics, where reproducibility is inherently embedded. Just as
mathematical proofs and solutions can be independently verified by anyone following the same steps
and logic, reproducibility in SE aims for the same level of transparency and verifiability. This bridge
underscores that reproducibility is a desirable trait and a foundational principle that should be rigorously
applied in computational research. For example, a professor might provide students with the necessary
data, software, and materials for a specific course through fully reproducible methods and tools. This
could involve using open-source software, version control systems, and detailed documentation to ensure
that students can reproduce the outcome in any space and any time.
Incorporating ethics education into research training programmes helps instil the importance of
reproducibility and integrity in scientific research, emphasising the ethical responsibility researchers

76 Reproducibility in Software Engineering

IV - Conclusion Educational Considerations

have towards producing verifiable and reliable results. Organising workshops and seminars focused on
reproducibility can help disseminate best practices and foster a community dedicated to high standards
in research. These events serve as platforms for discussion, collaboration, and the sharing of new tools
and techniques.
Furthermore, experienced researchers mentoring early-career scientists can pass on valuable knowledge
and emphasise the importance of reproducibility in their work. Mentorship provides hands-on guidance
and support, helping to build a strong foundation for the next generation of scientists. By addressing
these educational and training considerations, we can cultivate a research environment that values and
prioritises reproducibility.
Reproducibility is closely linked to fact-checking, as both processes involve verifying the accuracy and
reliability of research findings. Emphasising reproducibility can significantly enhance the quality of fact-
checking by providing clear, transparent methodologies and robust data that others can independently
verify. This rigorous approach ensures the credibility of scientific research and fosters critical thinking
skills. By engaging in reproducible research practices, individuals develop a keen critical thinking, which
is essential for evaluating information, identifying biases, and making informed decisions. Teaching the
principles of reproducibility and fact-checking from an early age is crucial. Incorporating these concepts
into school curricula helps students develop critical thinking skills early on, empowering them to question
assumptions, evaluate evidence, understand the scientific process and verify by themselves. Educating
students about the importance of transparency, data integrity, and methodological rigour lays the
foundation for a more scientifically literate and critically minded society. By fostering these skills from
the beginning of their education, we can equip future generations with the tools they need to navigate
the complex and information-rich world.

Reproducibility in Software Engineering 77

Educational Considerations IV - Conclusion

This page is intentionally left blank.

78 Reproducibility in Software Engineering

List of definitions

Definition 1: Experiment .. 24
Definition 2: Repeatability (Same team, same experimental setup) .. 24
Definition 3: Reproducibility (Different team, different experimental setup) 25
Definition 4: Replicability (Different team, same experimental setup) .. 25
Definition 5: Reproducibility .. 25
Definition 6: Reproducibility at build time .. 26
Definition 7: Reproducibility at run time .. 26
Definition 8: Computation ... 30
Definition 9: inputs and outputs .. 31
Definition 10: Evaluation ... 33
Definition 11: Pure function ... 34
Definition 12: Impure function ... 34
Definition 13: Reproducibility .. 36
Definition 14: Deterministic build .. 41
Definition 15: Functional package management ... 50

Reproducibility in Software Engineering 79

This page is intentionally left blank.

80 Reproducibility in Software Engineering

List of figures

Figure 1: Scientific method .. 23
Figure 2: Scientific method with reproducibility .. 23
Figure 3: Reproducibility states ... 27
Figure 4: Inputs, computation, outputs ... 30
Figure 5: Functions in the context of Mathematics ... 30
Figure 6: Functions in the context of CS ... 30
Figure 7: Inputs, computation, outputs ... 31
Figure 8: The input is now composed of the program and its parameters ... 32
Figure 9: The input is now composed of the program and its parameters and the environment where it
is going to be evalued. ... 32
Figure 10: The evaluation of inputs into outputs where the input is composed of the program and its
parameters and the environment where it is going to be evaluated. .. 33
Figure 11: Inputs, checksum, string output ... 35
Figure 12: Dependency graph of my-app version 1.2.3, where a flaw has been detected in xz dependency
39
Figure 13: The reproducible builds approach to increasing trust in executables built by untrusted third
parties. ... 40
Figure 14: A diffoscope report using HTML format .. 46
Figure 15: On the left, new repositories containing a flake.nix file, and on the right, containing a
default.nix file (Determinate System) .. 59
Figure 16: Rendering of the Typst document .. 62
Figure 17: A visual comparison with diffoscope of two PDF files generated from the same Typst
document ... 64

Reproducibility in Software Engineering 81

https://x.com/DeterminateSys/status/1794394407266910626

This page is intentionally left blank.

82 Reproducibility in Software Engineering

List of tables

Table 1: The four levels of reproducibility and their requirements. ... 23
Table 2: Classes of reproducibility ... 32
Table 3: Nuances between functions and computations ... 37
Table 4: Software evaluation comparison ... 65
Table 5: Pros and cons of reproducibility .. 72

Reproducibility in Software Engineering 83

This page is intentionally left blank.

84 Reproducibility in Software Engineering

Bibliography
[1] A. Tsolomitis, “The New Computer Modern Font CTAN project.” [Online]. Available: https://ctan.

org/pkg/newcomputermodern

[2] P. Dellaiera, “Reproducibility in Software Engineering.” [Online]. Available: https://github.com/
drupol/master-thesis

[3] “GitHub Actions.” [Online]. Available: https://github.com/features/actions

[4] Zenodo, “Zenodo.” [Online]. Available: https://zenodo.org/

[5] P. Dellaiera, “Reproducibility in Software Engineering.” [Online]. Available: https://github.com/
drupol/r13y-build-scenarios/

[6] Creative Commons, “Creative Commons Attribution 4.0 International.” [Online]. Available:
https://creativecommons.org/licenses/by/4.0/

[7] European Commission and DG CNECT, Cyber Resilience Act. 2022. [Online]. Available: https://
ec.europa.eu/newsroom/dae/redirection/document/89543

[8] CycloneDX, “CycloneDX.” [Online]. Available: https://cyclonedx.org/

[9] C. Ada Ehmke, “The Hippocratic License 3.0.” [Online]. Available: https://firstdonoharm.dev/

[10] IEEE, “IEEE website.” [Online]. Available: https://www.ieee.org/

[11] Open Container Initiative, “Open Container Initiative.” [Online]. Available: https://
opencontainers.org/

[12] P. Ombredanne, “PURL Specification.” [Online]. Available: https://github.com/package-url/purl-
spec

[13] Software Package Data Exchange, “Software Package Data Exchange (SPDX).” [Online]. Available:
https://spdx.org/

[14] D. Akhawe, F. Braun, F. Marier, and J. Weinberger, “Subresource Integrity. W3C
Recommendation. W3C.” [Online]. Available: https://www.w3.org/TR/SRI/

[15] R. Di Cosmo, M. Gruenpeter, and S. Zacchiroli, “Identifiers for Digital Objects: the Case of
Software Source Code Preservation,” in iPRES 2018 - 15th International Conference on Digital
Preservation, Sep. 2018, pp. 1–9. doi: 10.17605/OSF.IO/KDE56.

[16] T. Preston-Werner, “Semantic Versioning 2.0. 0,” l\inea]. Available: http://semver. org, 2013.

[17] R. Bacon, Opus Majus, Volumes 1 and 2. Philadelphia: University of Pennsylvania Press, 1928.
doi: 10.9783/9781512814064.

[18] K. R. Popper, The Logic of Scientific Discovery. London: Hutchinson, 1934.

[19] K. Thompson, “Reflections on Trusting Trust,” Commun. ACM, vol. 27, no. 8, pp. 761–763, 1984,
doi: 10.1145/358198.358210.

[20] M. Fourné, D. Wermke, W. Enck, S. Fahl, and Y. Acar, “It’s like flossing your teeth: On
the Importance and Challenges of Reproducible Builds for Software Supply Chain Security,”
in 2023 IEEE Symposium on Security and Privacy (SP), 2023, pp. 1527–1544. doi: 10.1109/
SP46215.2023.10179320.

[21] J. F. Claerbout and M. Karrenbach, “Electronic documents give reproducible research a
new meaning,” in SEG Technical Program Expanded Abstracts 1992, 1992, pp. 601–604. doi:
10.1190/1.1822162.

Reproducibility in Software Engineering 85

https://ctan.org/pkg/newcomputermodern
https://ctan.org/pkg/newcomputermodern
https://github.com/drupol/master-thesis
https://github.com/drupol/master-thesis
https://github.com/features/actions
https://zenodo.org/
https://github.com/drupol/r13y-build-scenarios/
https://github.com/drupol/r13y-build-scenarios/
https://creativecommons.org/licenses/by/4.0/
https://ec.europa.eu/newsroom/dae/redirection/document/89543
https://ec.europa.eu/newsroom/dae/redirection/document/89543
https://cyclonedx.org/
https://firstdonoharm.dev/
https://www.ieee.org/
https://opencontainers.org/
https://opencontainers.org/
https://github.com/package-url/purl-spec
https://github.com/package-url/purl-spec
https://spdx.org/
https://www.w3.org/TR/SRI/
https://doi.org/10.17605/OSF.IO/KDE56
https://doi.org/10.9783/9781512814064
https://doi.org/10.1145/358198.358210
https://doi.org/10.1109/SP46215.2023.10179320
https://doi.org/10.1109/SP46215.2023.10179320
https://doi.org/10.1190/1.1822162

[22] C. Collberg and T. A. Proebsting, “Repeatability in Computer Systems Research,” Commun.
ACM, vol. 59, no. 3, pp. 62–69, Feb. 2016, doi: 10.1145/2812803.

[23] R. Alkhadra, J. Abuzaid, M. AlShammari, and N. Mohammad, “Solar Winds Hack: In-
Depth Analysis and Countermeasures,” in 2021 12th International Conference on Computing
Communication and Networking Technologies (ICCCNT), 2021, pp. 1–7. doi: 10.1109/
ICCCNT51525.2021.9579611.

[24] Joinup - Open Source Observatory, “European Commission to use open source messaging service
Signal.” [Online]. Available: https://joinup.ec.europa.eu/collection/open-source-observatory-osor/
news/signal-messaging-service

[25] Signal Foundation, “Signal, A private messenger.” [Online]. Available: https://https//signal.org

[26] S. Altman, “OpenAI DevDay: Opening Keynote.” [Online]. Available: https://youtu.be/U9
mJuUkhUzk?t=421

[27] “Reproducible Signal builds for Android.” [Online]. Available: https://signal.org/blog/
reproducible-android/

[28] “Reproducible Builds for iOS and Android.” [Online]. Available: https://telegram.org/blog/
verifiable-apps-and-more

[29] E. Dolstra, “NixOS.” [Online]. Available: https://nixos.org/

[30] Github NixOS project, “Pol Dellaiera's pull requests in the Nix project.” [Online]. Available:
https://github.com/NixOS/nixpkgs/pulls?page=1&q=is%3Apr+is%3Aclosed+author%3Adrupol

[31] Github NixOS project, “Pol Dellaiera's reviews in the Nix project.” [Online]. Available: https://
github.com/NixOS/nixpkgs/pulls?q=is%3Apr+is%3Aclosed+reviewed-by%3Adrupol

[32] Github NixOS project, “Nix builder for PHP applications.” [Online]. Available: https://github.
com/NixOS/nixpkgs/pull/225401

[33] Github NixOS project, “Nix builder for PHP applications, version 2.” [Online]. Available: https://
github.com/NixOS/nixpkgs/pull/308059

[34] R. Lerdorf, “PHP.” [Online]. Available: https://php.net/

[35] N. Adermann and J. Boggiano, “Composer.” [Online]. Available: https://getcomposer.org/

[36] Github Composer project, “Composer reproducible pull request.” [Online]. Available: https://
github.com/composer/composer/pull/11663

[37] International PHP Conference, “Leverage Nix in the PHP ecosystem.” [Online]. Available: https://
phpconference.com/web-development/leveraging-nix-php-ecosystem/

[38] Github PHPunit project, “Add composer.lock.” [Online]. Available: https://github.com/sebastian
bergmann/phpunit/pull/5576

[39] Github Psysh project, “Consider adding a composer.lock file in the repository.” [Online]. Available:
https://github.com/bobthecow/psysh/issues/767

[40] Github GrumPHP project, “Consider adding a composer.lock file in the repository.” [Online].
Available: https://github.com/phpro/grumphp/issues/1095

[41] Github Psalm project, “Adding composer.lock in VCS ?.” [Online]. Available: https://github.com/
vimeo/psalm/issues/10446

[42] Github PHPMD project, “Adding composer.lock in VCS ?.” [Online]. Available: https://github.
com/phpmd/phpmd/issues/1056

86 Reproducibility in Software Engineering

https://doi.org/10.1145/2812803
https://doi.org/10.1109/ICCCNT51525.2021.9579611
https://doi.org/10.1109/ICCCNT51525.2021.9579611
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/signal-messaging-service
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/signal-messaging-service
https://https//signal.org
https://youtu.be/U9mJuUkhUzk?t=421
https://youtu.be/U9mJuUkhUzk?t=421
https://signal.org/blog/reproducible-android/
https://signal.org/blog/reproducible-android/
https://telegram.org/blog/verifiable-apps-and-more
https://telegram.org/blog/verifiable-apps-and-more
https://nixos.org/
https://github.com/NixOS/nixpkgs/pulls?page=1&q=is%3Apr+is%3Aclosed+author%3Adrupol
https://github.com/NixOS/nixpkgs/pulls?q=is%3Apr+is%3Aclosed+reviewed-by%3Adrupol
https://github.com/NixOS/nixpkgs/pulls?q=is%3Apr+is%3Aclosed+reviewed-by%3Adrupol
https://github.com/NixOS/nixpkgs/pull/225401
https://github.com/NixOS/nixpkgs/pull/225401
https://github.com/NixOS/nixpkgs/pull/308059
https://github.com/NixOS/nixpkgs/pull/308059
https://php.net/
https://getcomposer.org/
https://github.com/composer/composer/pull/11663
https://github.com/composer/composer/pull/11663
https://phpconference.com/web-development/leveraging-nix-php-ecosystem/
https://phpconference.com/web-development/leveraging-nix-php-ecosystem/
https://github.com/sebastianbergmann/phpunit/pull/5576
https://github.com/sebastianbergmann/phpunit/pull/5576
https://github.com/bobthecow/psysh/issues/767
https://github.com/phpro/grumphp/issues/1095
https://github.com/vimeo/psalm/issues/10446
https://github.com/vimeo/psalm/issues/10446
https://github.com/phpmd/phpmd/issues/1056
https://github.com/phpmd/phpmd/issues/1056

[43] Github PHP-CS-Fixer project, “Publish composer.lock for each release.” [Online]. Available:
https://github.com/PHP-CS-Fixer/PHP-CS-Fixer/issues/7590

[44] Github PHP Parallel Lint project, “Adding composer.lock under VCS ?.” [Online]. Available:
https://github.com/php-parallel-lint/PHP-Parallel-Lint/issues/153

[45] “Make PHAR reproducible.” [Online]. Available: https://github.com/theseer/Autoload/issues/114

[46] Reproducible Builds, “Reproducible Builds Website.” [Online]. Available: https://reproducible-
builds.org/

[47] Reproducible Builds project, “flake: add Nix flake files.” [Online]. Available: https://salsa.debian.
org/reproducible-builds/reproducible-website/-/merge_requests/102

[48] Reproducible Builds project, “Add bibliography.bib file to the repository and update Academic
Publications page accordingly.” [Online]. Available: https://salsa.debian.org/reproducible-builds/
reproducible-website/-/merge_requests/113

[49] Reproducible Builds project, “buy-in: add SBOM and ephemeral development
environments.” [Online]. Available: https://salsa.debian.org/reproducible-builds/reproducible-
website/-/merge_requests/114

[50] “Git repository of the reproducible-builds.org website.” [Online]. Available: https://salsa.debian.
org/reproducible-builds/reproducible-website/-/commits/master?author=Pol%20Dellaiera

[51] L. Mädje, M. Haug, and The Typst Project Developers, “Typst.” [Online]. Available: https://
github.com/typst/typst

[52] Github Typst project, “Enhancing reproducibility of Typst documents with
SOURCE_DATE_EPOCH.” [Online]. Available: https://github.com/typst/typst/issues/3806

[53] Github Typst project, “More control over typst compilation environment.” [Online]. Available:
https://github.com/typst/typst/issues/3892

[54] European Commission, “Devs profile.” [Online]. Available: https://code.europa.eu/ecphp/devs-
profile

[55] European Commission, “ECPHP Sessions.” [Online]. Available: https://code.europa.eu/ecphp/
sessions

[56] P. Dellaiera, “Summer Of Nix 2022 - State of Nix at European Commission.” [Online]. Available:
https://www.youtube.com/watch?v=I7wdcJ3YhoU

[57] T. C. Durand and V. Tapas, “La Tronche En Biais.” [Online]. Available: https://www.youtube.
com/user/TroncheEnBiais

[58] T. C. Durand and V. Tapas, “SCIENCES : Une crise de reproductibilité des études ?.” [Online].
Available: https://www.youtube.com/watch?v=OA8Eki7fvAw

[59] J. T. Cacioppo, R. M. Kaplan, J. A. Krosnick, J. L. Olds, and H. Dean, “Social, behavioral, and
economic sciences perspectives on robust and reliable science,” 2015.

[60] M. Castillo, “The Scientific Method: A Need for Something Better?,” American Journal of
Neuroradiology, vol. 34, no. 9, pp. 1669–1671, 2013, doi: 10.3174/ajnr.A3401.

[61] B. T. Essawy et al., “A taxonomy for reproducible and replicable research in environmental
modelling,” Environmental Modelling & Software, vol. 134, p. 104753–104754, 2020, doi: 10.1016/
j.envsoft.2020.104753.

Reproducibility in Software Engineering 87

https://github.com/PHP-CS-Fixer/PHP-CS-Fixer/issues/7590
https://github.com/php-parallel-lint/PHP-Parallel-Lint/issues/153
https://github.com/theseer/Autoload/issues/114
https://reproducible-builds.org/
https://reproducible-builds.org/
https://salsa.debian.org/reproducible-builds/reproducible-website/-/merge_requests/102
https://salsa.debian.org/reproducible-builds/reproducible-website/-/merge_requests/102
https://salsa.debian.org/reproducible-builds/reproducible-website/-/merge_requests/113
https://salsa.debian.org/reproducible-builds/reproducible-website/-/merge_requests/113
https://salsa.debian.org/reproducible-builds/reproducible-website/-/merge_requests/114
https://salsa.debian.org/reproducible-builds/reproducible-website/-/merge_requests/114
https://salsa.debian.org/reproducible-builds/reproducible-website/-/commits/master?author=Pol%20Dellaiera
https://salsa.debian.org/reproducible-builds/reproducible-website/-/commits/master?author=Pol%20Dellaiera
https://github.com/typst/typst
https://github.com/typst/typst
https://github.com/typst/typst/issues/3806
https://github.com/typst/typst/issues/3892
https://code.europa.eu/ecphp/devs-profile
https://code.europa.eu/ecphp/devs-profile
https://code.europa.eu/ecphp/sessions
https://code.europa.eu/ecphp/sessions
https://www.youtube.com/watch?v=I7wdcJ3YhoU
https://www.youtube.com/user/TroncheEnBiais
https://www.youtube.com/user/TroncheEnBiais
https://www.youtube.com/watch?v=OA8Eki7fvAw
https://doi.org/10.3174/ajnr.A3401
https://doi.org/10.1016/j.envsoft.2020.104753
https://doi.org/10.1016/j.envsoft.2020.104753

[62] National Academies of Sciences Engineering and Medicine, Reproducibility and Replicability in
Science. Washington, DC: The National Academies Press, 2019. doi: 10.17226/25303.

[63] L. A. Barba, “Terminologies for Reproducible Research,” arXiv, Feb. 2018, doi: 10.48550/
arXiv.1802.03311.

[64] M. Schwab, N. Karrenbach, and J. Claerbout, “Making scientific computations reproducible,”
Computing in Science & Engineering, vol. 2, no. 6, pp. 61–67, 2000, doi: 10.1109/5992.881708.

[65] D. L. Donoho, A. Maleki, I. U. Rahman, M. Shahram, and V. Stodden, “Reproducible Research
in Computational Harmonic Analysis,” Computing in Science & Engineering, vol. 11, no. 1, pp.
8–18, 2009, doi: 10.1109/MCSE.2009.15.

[66] S. N. Goodman, D. Fanelli, and J. P. A. Ioannidis, “What does research reproducibility
mean?,” Science Translational Medicine, vol. 8, no. 341, p. 341–342, 2016, doi: 10.1126/
scitranslmed.aaf5027.

[67] R. D. Peng, “Reproducible research and Biostatistics,” Biostatistics, vol. 10, no. 3, pp. 405–408,
2009, doi: 10.1093/biostatistics/kxp014.

[68] Association for Computing Machinery, “Artifact Review and Badging.” [Online]. Available: https://
www.acm.org/publications/policies/artifact-review-and-badging-current

[69] J. Malka, S. Zacchiroli, and T. Zimmermann, “Reproducibility of Build Environments through
Space and Time,” in 46th International Conference on Software Engineering (ICSE 2024) - New
Ideas and Emerging Results (NIER) Track, Apr. 2024. doi: 10.48550/arXiv.2402.00424.

[70] Docker, Inc., “Docker Hub.” [Online]. Available: https://hub.docker.com/

[71] L. A. Barba, “Defining the role of open source software in research reproducibility.” [Online].
Available: https://arxiv.org/abs/2204.12564

[72] N. Larigaldie, A. Dreneva, and J. L. Orquin, “eyeScrollR: A software method for reproducible
mapping of eye-tracking data from scrollable web pages,” Behavior Research Methods, Feb. 2024,
doi: 10.3758/s13428-024-02343-1.

[73] K. Hinsen, “Reproducible computations with Guix,” 2020, [Online]. Available: https://guix.gnu.
org/en/blog/2020/reproducible-computations-with-guix/

[74] P. Ivie and D. Thain, “Reproducibility in Scientific Computing,” ACM Comput. Surv., vol. 51, no.
3, Jul. 2018, doi: 10.1145/3186266.

[75] L. Courtès, “Building a Secure Software Supply Chain with GNU Guix,” The Art, Science,
and Engineering of Programming, vol. 7, no. 1, Jun. 2022, doi: 10.22152/programming-
journal.org/2023/7/1.

[76] Joe Biden, “Executive Order 14028: Improving the Nation's Cybersecurity.” [Online]. Available:
https://www.federalregister.gov/d/2021-10460

[77] J. Malka, “Increasing Trust in the Open Source Supply Chain with Reproducible Builds and
Functional Package Management,” in 46th International Conference on Software Engineering
(ICSE 2024) - Doctoral Symposium (DS) Track, Apr. 2024. doi: 10.1145/3639478.3639806.

[78] A. Decan and T. Mens, “What Do Package Dependencies Tell Us About Semantic Versioning?,”
IEEE Transactions on Software Engineering, vol. 47, no. 6, pp. 1226–1240, 2021, doi: 10.1109/
TSE.2019.2918315.

88 Reproducibility in Software Engineering

https://doi.org/10.17226/25303
https://doi.org/10.48550/arXiv.1802.03311
https://doi.org/10.48550/arXiv.1802.03311
https://doi.org/10.1109/5992.881708
https://doi.org/10.1109/MCSE.2009.15
https://doi.org/10.1126/scitranslmed.aaf5027
https://doi.org/10.1126/scitranslmed.aaf5027
https://doi.org/10.1093/biostatistics/kxp014
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.48550/arXiv.2402.00424
https://hub.docker.com/
https://arxiv.org/abs/2204.12564
https://doi.org/10.3758/s13428-024-02343-1
https://guix.gnu.org/en/blog/2020/reproducible-computations-with-guix/
https://guix.gnu.org/en/blog/2020/reproducible-computations-with-guix/
https://doi.org/10.1145/3186266
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://www.federalregister.gov/d/2021-10460
https://doi.org/10.1145/3639478.3639806
https://doi.org/10.1109/TSE.2019.2918315
https://doi.org/10.1109/TSE.2019.2918315

[79] National Institute of Standards and Technology, “CVE-2024-3094.” [Online]. Available: https://
nvd.nist.gov/vuln/detail/CVE-2024-3094

[80] L. Collin, “XZ Utils.” [Online]. Available: https://tukaani.org/xz/

[81] P. Mueller and B. Yadegari, “The stuxnet worm,” Département des sciences de l'informatique,
Université de lArizona, 2012, [Online]. Available: https://www2.cs.arizona.edu/~collberg/
Teaching/466-566/2012/Resources/presentations/topic9-final/report.pdf

[82] M. Carvalho, J. DeMott, R. Ford, and D. A. Wheeler, “Heartbleed 101,” IEEE Security & Privacy,
vol. 12, no. 4, pp. 63–67, 2014, doi: 10.1109/MSP.2014.66.

[83] C. Lamb and S. Zacchiroli, “Reproducible Builds: Increasing the Integrity of Software Supply
Chains,” CoRR, 2021, doi: 10.48550/arXiv.2104.06020.

[84] D. A. Patterson and J. L. Hennessy, Computer Organization and Design, Fifth Edition: The
Hardware/Software Interface, 5th ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2013.

[85] S. Loosemore, R. Stallman, R. McGrath, A. Oram, and U. Drepper, The GNU C library reference
manual. 2023. [Online]. Available: https://sourceware.org/glibc/manual/2.39/pdf/libc.pdf

[86] M. Kerrisk, The Linux Programming Interface: A Linux and UNIX System Programming Handbook,
1st ed. USA: No Starch Press, 2010.

[87] Github NixOS project, “stdenv: option to determine SOURCE_DATE_EPOCH in
fetchers.” [Online]. Available: https://github.com/NixOS/nixpkgs/pull/256270

[88] Strip Nondeterminism, “Strip Nondeterminism.” [Online]. Available: https://salsa.debian.org/
reproducible-builds/strip-nondeterminism

[89] Reproducible Builds, “diffoscope.” [Online]. Available: https://diffoscope.org/

[90] A. C. Clarke, Profiles of the Future; an Inquiry into the Limits of the Possible. Harper & Row, 1973.

[91] L. Courtès and R. Wurmus, “Reproducible and User-Controlled Software Environments in HPC
with Guix,” in Euro-Par 2015: Parallel Processing Workshops, Cham: Springer International
Publishing, 2015, pp. 579–591. doi: 10.1007/978-3-319-27308-2_47.

[92] A. Decan, T. Mens, P. R. Mazrae, and M. Golzadeh, “On the in Software Development
Repositories,” in 2022 IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2022, pp. 235–245. doi: 10.1109/ICSME55016.2022.00029.

[93] The Free Software Foundation, “GNU Make.” [Online]. Available: https://www.gnu.org/software/
make/

[94] Docker, Inc., “Docker.” [Online]. Available: https://www.docker.com/

[95] Podman, “Podman.” [Online]. Available: https://podman.io/

[96] Kubernetes, “Kubernetes.” [Online]. Available: https://kubernetes.io/

[97] Guix, “Guix Website.” [Online]. Available: https://guix.gnu.org/

[98] GNU Guile, “GNU Guile.” [Online]. Available: https://www.gnu.org/software/guile/

[99] L. Courtès, “Functional Package Management with Guix.” 2013. doi: 10.48550/arXiv.1305.4584.

[100] R. K. Dybvig, The SCHEME programming language. Mit Press, 2009.

[101] Free Software Foundation, “The Free Software Foundation.” [Online]. Available: https://www.fsf.
org/

Reproducibility in Software Engineering 89

https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://tukaani.org/xz/
https://www2.cs.arizona.edu/~collberg/Teaching/466-566/2012/Resources/presentations/topic9-final/report.pdf
https://www2.cs.arizona.edu/~collberg/Teaching/466-566/2012/Resources/presentations/topic9-final/report.pdf
https://doi.org/10.1109/MSP.2014.66
https://doi.org/10.48550/arXiv.2104.06020
https://sourceware.org/glibc/manual/2.39/pdf/libc.pdf
https://github.com/NixOS/nixpkgs/pull/256270
https://salsa.debian.org/reproducible-builds/strip-nondeterminism
https://salsa.debian.org/reproducible-builds/strip-nondeterminism
https://diffoscope.org/
https://doi.org/10.1007/978-3-319-27308-2_47
https://doi.org/10.1109/ICSME55016.2022.00029
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://www.docker.com/
https://podman.io/
https://kubernetes.io/
https://guix.gnu.org/
https://www.gnu.org/software/guile/
https://doi.org/10.48550/arXiv.1305.4584
https://www.fsf.org/
https://www.fsf.org/

[102] E. Dolstra, “The Purely Functional Software Deployment Model,” 2006. [Online]. Available:
https://dspace.library.uu.nl/handle/1874/7540

[103] Nix, “Nix.” [Online]. Available: https://nixos.org/

[104] Typst Documentation, “Typst documentation website.” [Online]. Available: https://typst.app/
docs/

[105] Lix, “Lix.” [Online]. Available: https://lix.systems/

[106] R. D. Peng, “Reproducible Research in Computational Science,” Science, vol. 334, no. 6060, pp.
1226–1227, 2011, doi: 10.1126/science.1213847.

[107] T. Hunter and S. Porter, Google Cloud Platform for Developers. Birmingham, England: Packt
Publishing, 2018.

[108] HashiCorp, “Terraform.” [Online]. Available: https://www.terraform.io/

[109] S. Traugott, “Why Order Matters: Turing Equivalence in Automated Systems Administration.,”
2002, pp. 99–120.

[110] Ansible, “Ansible.” [Online]. Available: https://www.ansible.com/

[111] Chef, “Chef.” [Online]. Available: https://www.chef.io/

[112] Puppet, “Puppet.” [Online]. Available: https://puppet.com/

[113] Visual Studio Code, “Developing inside a Container.” [Online]. Available: https://containers.dev/

[114] Microsoft, “Visual Studio Code.” [Online]. Available: https://code.visualstudio.com/

[115] L. Torvalds, “Git.” [Online]. Available: https://git-scm.com/

[116] GitHub, “The State of the Octoverse 2022.” [Online]. Available: https://octoverse.github.com/
2022/state-of-open-source

[117] E. Dolstra, “Nix 2.4 release announcement.” [Online]. Available: https://discourse.nixos.org/t/nix-
2-4-released/15822

[118] Nixpkgs, “Nixpkgs committers.” [Online]. Available: https://github.com/orgs/NixOS/teams/
nixpkgs-committers

[119] P. Dellaiera, “Nixpkgs committer grant.” [Online]. Available: https://github.com/NixOS/nixpkgs/
issues/50105#issuecomment-1571885173

[120] Aux, “Aux.” [Online]. Available: https://aux.computer/

[121] R. D. Cosmo and S. Zacchiroli, “The Software Heritage Open Science Ecosystem,” in Software
Ecosystems, Springer International Publishing, 2023, pp. 33–61. doi: 10.1007/978-3-031-36060-2_2.

[122] Software Heritage Archive, “Software Heritage Archive Website.” [Online]. Available: https://
archive.softwareheritage.org/

[123] GitHub, “Generated SBOM files will now include a package URL when a manifest file includes
a range.” [Online]. Available: https://github.blog/changelog/2024-06-11-generated-sbom-files-will-
now-include-a-package-url-when-a-manifest-file-includes-a-range/

[124] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “A Survey of Flaky Tests,” ACM Trans.
Softw. Eng. Methodol., vol. 31, no. 1, Oct. 2021, doi: 10.1145/3476105.

[125] “Nixpkgs committer.” [Online]. Available: https://github.com/orgs/NixOS/teams/nixpkgs-
committers?query=drupol

90 Reproducibility in Software Engineering

https://dspace.library.uu.nl/handle/1874/7540
https://nixos.org/
https://typst.app/docs/
https://typst.app/docs/
https://lix.systems/
https://doi.org/10.1126/science.1213847
https://www.terraform.io/
https://www.ansible.com/
https://www.chef.io/
https://puppet.com/
https://containers.dev/
https://code.visualstudio.com/
https://git-scm.com/
https://octoverse.github.com/2022/state-of-open-source
https://octoverse.github.com/2022/state-of-open-source
https://discourse.nixos.org/t/nix-2-4-released/15822
https://discourse.nixos.org/t/nix-2-4-released/15822
https://github.com/orgs/NixOS/teams/nixpkgs-committers
https://github.com/orgs/NixOS/teams/nixpkgs-committers
https://github.com/NixOS/nixpkgs/issues/50105#issuecomment-1571885173
https://github.com/NixOS/nixpkgs/issues/50105#issuecomment-1571885173
https://aux.computer/
https://doi.org/10.1007/978-3-031-36060-2_2
https://archive.softwareheritage.org/
https://archive.softwareheritage.org/
https://github.blog/changelog/2024-06-11-generated-sbom-files-will-now-include-a-package-url-when-a-manifest-file-includes-a-range/
https://github.blog/changelog/2024-06-11-generated-sbom-files-will-now-include-a-package-url-when-a-manifest-file-includes-a-range/
https://doi.org/10.1145/3476105
https://github.com/orgs/NixOS/teams/nixpkgs-committers?query=drupol
https://github.com/orgs/NixOS/teams/nixpkgs-committers?query=drupol

	Introduction
	History
	Background
	Motivation
	Goals
	Structure

	Reproducibility
	Reproducibility in Science
	Reproducibility Levels
	Formalisation

	Reproducibility in Computer Science
	Scope
	Quantifying Reproducibility
	Open Source
	Terminology
	Computation
	Inputs and Outputs
	Evaluation of a Computation
	Pure Function
	Impure Function
	Checksum
	Reproducibility

	Software Security
	Software Bill Of Materials
	Supply Chain
	Reproducibility And Security

	Reproducibility Utopia

	Deterministic Builds And Environments
	Sources Of Non-Determinism
	Randomness
	Build Paths
	Volatile Inputs
	Package Managers
	Version Information
	File Order
	Timestamps
	Locale Environment Variables

	Comparing Builds
	Fixing Builds

	Conclusion

	Software evaluation
	Methodology
	Evaluation Criteria
	Tools And Technologies
	Scenarios
	Compilation And Execution
	Environment Setup
	Output Comparison
	Expected Outcomes

	Evaluation 1 - Bare compilation
	Evaluation 2 - Docker
	Evaluation 3 - Guix
	Evaluation 4 - Nix
	Nix legacy method
	Nix Flake
	Dealing With Variability

	Conclusion

	Conclusion
	Summary
	Evaluation Of Tools
	Research Findings
	At A Glance
	Limitations
	Cross Architecture Reproducibility
	Unavailability Of Upstream Packages
	Standardisation

	Future Work
	Flaky tests
	Formal Concepts
	Ethical Considerations
	Philosophical Considerations
	Economical Considerations
	Educational Considerations

	List of definitions
	List of figures
	List of tables
	Bibliography

		2024-07-05T17:49:24+0200

