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4.1 Introduction
In traditional healthcare systems, sharing and analyzing patient data for research,

diagnosis, and treatment is hampered by privacy concerns and regulatory restric-

tions. Federated healthcare platforms enable the deployment of federated learning

(FL), a novel framework to overcome these barriers by allowing healthcare orga-

nizations to collaborate without sharing sensitive patient information (Li, Wang,

et al., 2020; McMahan, Ramage, et al., 2017; Yang et al., 2019). Instead, each

organization retains control of its data, and only aggregated statistics or model

updates are shared between organizations. This distributed approach ensures that

patient privacy is protected, while still allowing for collaborative sharing, analy-

sis, and model training.

The concept of federated healthcare platforms addresses the growing recogni-

tion of the value of healthcare data and the need for data-driven insights to

improve patient care and outcomes. As shown in Fig. 4.1, by bringing together

diverse datasets from multiple organizations, federated healthcare platforms

enable the development of more accurate diagnostic models, personalized treat-

ment recommendations, and real-time predictive analytics (Rieke et al., 2020).

These platforms facilitate knowledge sharing and collaboration, ultimately

improving the effectiveness and efficiency of healthcare delivery.

Thus this opens many research challenges and possibilities that our society

can and must address to prepare for current and future innovation in healthcare.

Through the implementation of FL and the adoption of secure, distributed health-

care data management practices, can unlock the full potential of digital healthcare

systems, leading to improved patient outcomes and a more efficient healthcare

ecosystem.
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4.1.1 Key contributions of the chapter

The following are the significant contributions of this chapter:

1. Identification of key FL application areas.

2. Highlighting crucial considerations essential for the development of FL

systems, with a specific focus on ensuring scalable and reliable privacy

preservation.

3. Addressing significant challenges and exploring the prospects of FL in

healthcare, examining the anticipated evolution of these systems in the

coming times.

4.1.2 Chapter organization

Section 4.1.2 presents the related works on federated learning and how it is

evolving. Section 4.2 presents the perceptions of federated digital healthcare

platforms in medical decision systems. Section 4.3 elaborates on the need and

importance of privacy preservation, security, and ethics in healthcare data.

Section 4.4 discusses the challenges, future research directions, trending
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FIGURE 4.1

The concept of federated healthcare platforms.
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technologies, and recent advances. Section 4.5 presents the view on FL and

its integration with future 6G mobile communications networks. Finally,

Section 4.6 concludes the chapter.

4.2 Related works
FL enables healthcare records that are located across different institutions to be con-

nected without revealing personal information. Thus researchers, doctors, and data

scientists can harness these extensive datasets from multiple hospitals without central-

izing the data in one place. This approach effectively resolves crucial challenges

related to the access rights of heterogeneous data (Dasaradharami Reddy &

Gadekallu, 2023). This is advantageous as it reduces data security and privacy con-

cerns by maintaining local data stores, in comparison to centralized machine learning

(ML) techniques that require datasets to reside on one server (Song et al., 2022).

Rieke et al. (2020) discuss the current FL efforts for digital health and their

impact on stakeholders, clinicians, patients, hospitals and practices, researchers

and artificial intelligence (AI) developers, healthcare providers, and manufac-

turers. FL enables healthcare and related professionals to tackle the challenges of

building unbiased models from datasets with optimized utilization of time, effort,

and cost. By training algorithms within a hospital’s secure firewall and sharing

only the models, FL effectively addresses data governance concerns and ensures

the maintenance of data security (Rieke et al., 2020). FL is equipped to capture a

wide range of data variables, facilitating the analysis of patients based on their

age, sex, and demographic characteristics. For instance, by accessing electronic

medical records, patients with similar characteristics (cardiac arrest, mortality,

ICU stay, etc.) could be known, and the need for their hospitalization could be

predicted (Huang et al., 2019).

FL provides AI developers with access to larger and more diverse datasets

that better represent current patients. As a result, AI-based healthcare solu-

tions will have the capability to scale globally on an unprecedented level

(Dasaradharami Reddy & Gadekallu, 2023). FL can have a significant impact

on a wide range of stakeholders, including clinicians, patients, hospitals,

medical researchers, and healthcare providers (Dasaradharami Reddy &

Gadekallu, 2023).

4.3 Perceptions of federated digital platforms and their
use in healthcare

Perceptions of federated systems are influenced by privacy concerns, interopera-

bility, and governance. While benefits such as increased privacy and community

participation attract users, challenges such as fragmentation, scalability, and
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trustworthiness may favor centralized systems. Addressing these perceptions can

support the development and adoption of federated systems, creating a more

decentralized and user-centric landscape.

4.3.1 Use of federated learning in medical image processing

FL has gained significant attention in medical image processing due to its ability to

leverage decentralized data while preserving patient privacy, as shown in Fig. 4.2. In

the real world, numerous sources of medical data, including magnetic resonance imag-

ing (MRI), X-ray, positron emission tomography (PET), and computerized tomography

(CT), provide doctors with vast volumes of information in many different medical

applications (Rehman et al., 2020; Shen et al., 2017). ML, especially deep learning, has

revolutionized the automatic analysis of these medical images with different applica-

tions, from exam or object classification (e.g., normal versus abnormal mammogram,

benign or malignant tumor) to image registration (alignment of multiple images) or

image segmentation (e.g., brain tumor delineation). However, as the models are typi-

cally trained on data from a single center, they face challenges in generalization, lead-

ing to a decline in performance when applied to data from another center.

FIGURE 4.2

Applications of FL in medical image processing. FL, Federated learning.
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FL holds immense potential in medical image analysis by facilitating collabo-

rative training of ML models across healthcare institutions, ensuring adherence to

privacy compliance. Li et al. (2020) demonstrated its feasibility in pneumonia

detection using chest X-ray images from different hospitals. Zhang et al. (2021)

demonstrated federated deep learning’s ability to achieve COVID-19 detection

accuracy while preserving patient data privacy. Different studies have demon-

strated the effectiveness of FL in analyzing brain images. Abadi et al. (2016), and

Silva et al. (2019) introduced this technique to aggregate encrypted updates with-

out revealing sensitive information.

FL holds significant potential for medical image processing by enabling col-

laboration among healthcare institutions while ensuring data privacy. The refer-

enced studies highlight the feasibility and effectiveness of FL in these domains,

paving the way for future research and applications in healthcare.

4.3.2 Use of federated learning in Internet of Things-based smart
healthcare applications

Recently, FL has emerged as a distributed collaborative AI approach, facilitating a

range of intelligent Internet of Things (IoT) applications by enabling AI training on

distributed IoT devices without the need for data exchange (Nguyen et al., 2021).

Fig. 4.3 illustrates a typical smart healthcare application based on FL. In this

scenario, clinical data is collected from patients using onboard sensors. Multiple

edge devices collaboratively execute the FL algorithm, and the resulting ML

models assess the physical health of the patients. In urgent situations, the system

FIGURE 4.3

A typical FL-based smart healthcare application (Chang et al., 2021). FL, Federated

learning.
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can even request cloud-based emergency services. However, a limitation of tradi-

tional FL is its reliance on a reliable central server to aggregate model parameters

uploaded by devices and distribute the global model to all participating devices

(Chang et al., 2021).

In the domain of disease diagnosis and medical image processing, FL can

leverage advancements in edge computing for enhanced benefits. Edge devices,

such as smartphones and wearable devices, can participate in the FL process

while preserving data privacy. Li et al. (2020) proposed a FL framework that

leverages edge devices for the classification of electrocardiogram (ECG) signals.

Their study demonstrated the feasibility of real-time disease diagnosis using FL at

the edge.

4.4 Privacy preservation, security, and ethical needs
Federated healthcare systems must prioritize interoperability, adherence to

standards, and implementing robust security measures to ensure seamless

collaboration.

4.5 Privacy and security Needs
FL reduces data security and privacy concerns by maintaining local data stores,

as opposed to centralized ML techniques, which require datasets to reside on

one server (Song et al., 2022). FL is a potential concept for safe, reliable, and

impartial models of data. It makes it possible for several parties to work together

without exchanging or centralizing datasets (Dasaradharami Reddy & Gadekallu,

2023).

In healthcare, FL involves training ML models on multiple data sources,

emphasizing the importance of safeguarding sensitive patient data during proces-

sing. It presents several security and privacy challenges; therefore a careful

implementation, combined with other privacy-enhancing techniques, is necessary

to effectively mitigate the associated risks. Concerns regarding this are discussed

below.

4.5.1 Data privacy

FL aims to keep the data localized, restricting its transfer. In FL, instead of trans-

ferring data to the central servers, the ML model itself is deployed to each device

to be trained on the data (Dasaradharami Reddy & Gadekallu, 2023). However,

there is a risk of data leakage, while an adversary could attempt to reconstruct

sensitive information by analyzing the model updates during the learning process

(Bonawitz, Ivanov, et al., 2019).
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4.5.2 Model poisoning attacks

Model poisoning exploits the fact that FL gives malicious participants direct

influence over the joint model, enabling much more powerful attacks compared

with training-data poisoning. For example, in a healthcare setting, an attacker

might introduce biased medical records, leading to harmful decisions and incor-

rect predictions (Bagdasaryan et al., 2020).

4.5.3 Differential privacy

FL can employ differential privacy techniques to protect individual data privacy.

The addition of noise to safeguard privacy may impact the quality and accuracy

of predictions, especially in healthcare applications where precision is of utmost

importance (Abadi et al., 2016).

4.5.4 Secure model aggregation

In FL, models aggregate the updates from different participants. The aggregation

process should be resistant to attacks attempting to extract information from these

updates. Safeguarding against collusion attacks poses a significant challenge

(McMahan, Moore, et al., 2017).

4.5.5 Data minimization

Another way of minimizing risks is to transfer a minimal amount of data and

potentially limit privacy breaches (Yang et al., 2019).

4.5.6 Secure and encrypted communication

Secure communication protocols can be used to transmit data between partici-

pants and prevent unauthorized access. Encryption techniques further add in pro-

tecting sensitive healthcare data (Bonawitz, Eichner, et al., 2019).

4.6 Ethical needs
FL, with its promising opportunities, is garnering a lot of attention in healthcare.

Regulations, such as the Health Insurance Portability and Accountability Act

(HIPAA) in the United States or the General Data Protection Regulation (GDPR)

in the European Union, ensure the protection of patient rights and privacy.

Nevertheless, several requirements need to be considered to ensure responsible

and ethical implementation. This includes the need for unbiased and FAIR (find-

able, accessible, interoperable, and reusable) data, minimizing the risk of
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reidentification of the individuals within the data, and enforcing strict control of

what data is used and for what purpose (Voigt & von dem Bussche, 2017).

When complying with GDPR, the federated approach introduces the complex-

ity of identifying and sharing responsibilities with multiple data controllers, con-

ducting data protection impact assessments, and auditing the environments to

ensure that the ML models function as expected.

To ensure privacy, techniques such as encryption, anonymization, and pseudo-

nymization must be used, as they help to protect sensitive information during the

model training process. It is important to ensure that patients (data subjects) pro-

vide explicit consent, and that they are well-informed about the purpose, use, and

processing of their data, while retaining the right to opt out at any given time.

This brings transparency to data usage and sharing and ensures the incorporation

of privacy protection mechanisms (Alysa et al., 2022).

There should be clear guidelines and agreements on data ownership, control,

and access to ensure accountability. Robust security measures must be implemen-

ted to safeguard data transfer and storage. Policy-based access controls and other

cybersecurity protocols must be in place to protect against unauthorized access or

data breaches.

In the event of a data breach data processors and controllers must be prepared

to minimize the impact and establish planned steps for promptly informing

authorities and patients (data subjects).

Establishing ethical guidelines for FL initiatives is crucial. Addressing these

ethical needs can help foster trust, protect patient privacy, ensure fairness, and

maximize the benefits of FL in healthcare while minimizing the associated risks.

4.7 Role of federated learning in future digital
Healthcare 5.0

Healthcare 5.0 is a new era of healthcare that focuses on advanced technologies,

personalized care, and patient empowerment. It represents a shift toward a

patient-centric approach where individuals are actively involved in managing

their own health. The concept leverages cutting-edge technologies to create a

seamless healthcare ecosystem that empowers individuals, promotes preventa-

tive care, and provides personalized treatment options (patient-centric care)

(Rieke et al., 2020).

By training algorithms locally and sharing only model updates rather than

raw data, FL addresses data governance challenges while ensuring patient pri-

vacy. It enables healthcare organizations to comply with regulations, such as

HIPAA or GDPR. FL increases trust and encourages data sharing between health-

care organizations, fostering large-scale collaboration and knowledge sharing in

the healthcare ecosystem and enhancing the overall quality of experience/service

in healthcare.

88 CHAPTER 4 Recent advances in FL for digital healthcare systems



One of the key benefits of FL in Healthcare 5.0 is that it enables learning

from diverse datasets, enabling knowledge sharing among healthcare organiza-

tions with unique patient populations, demographics, and expertise. This allows

the creation of robust, generalizable models that adapt to various patient contexts.

However, FL is limited by the need for a trusted central server to aggregate model

parameters and distribute the global model. To overcome this limitation, research-

ers are exploring advancements such as secure multiparty computation, crypto-

graphic techniques, and blockchain-based solutions. These aim to improve the

security and decentralization of FL in healthcare (Chang et al., 2021).

4.8 Federated learning and blockchain for healthcare
FL and blockchain are two powerful promising technologies that could be com-

bined to revolutionize healthcare. FL enables collaborative model training while

maintaining privacy, while blockchain provides a decentralized and secure frame-

work for storing and sharing data. FL combined with blockchain technology

offers several benefits in healthcare:

1. FL ensures privacy and security by keeping sensitive patient data localized,

minimizing the risk of data breaches. The integration of FL with blockchain

further enhances security, providing a tamper-proof and transparent system for

data storage and access.

2. The combination enables data integrity and trust through immutable and

auditable records on the blockchain, fostering accountability among healthcare

stakeholders.

3. Blockchain facilitates interoperability and data sharing, enabling secure FL

across institutions and promoting collaboration in healthcare research

(Rehman et al., 2022).

Moreover, FL and blockchain empower patients by giving them control over

their health data, allowing secure management of permissions and consent.

Finally, this integration drives research advancements by aggregating data from

multiple sources, creating larger and more diverse datasets that can lead to break-

throughs in disease prediction, treatment development, and precision medicine.

4.9 Federated learning for collaborative robotics
in healthcare

FL offers significant potential for collaborative robotics in healthcare, enabling

intelligent and adaptive systems while protecting patient privacy. It enables real-

time model updates and decentralized patient data sharing, allowing robots to

make informed decisions while maintaining confidentiality. Research focuses on
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optimizing FL architectures, communication protocols, and privacy-enhancing

techniques for collaborative healthcare robotics.

Collaborative robot (cobot) technology has gained significant adoption in the

healthcare and medical device industries, serving as a valuable tool for increasing

workforce efficiency, streamlining safety procedures, and facilitating improved

workflows. Collaborative healthcare robots are automated systems deployed

across the medical sector, capable of performing a range of tasks, including

administrative tasks, laboratory testing, patient care, and surgical assistance. By

bridging the gap caused by labor shortages, these cobots are helping to ease the

burden on the medical industry. Demand for automation in healthcare has been

driven by the need to reduce the risk of infection to frontline workers and

advancements in inpatient care (Dasaradharami Reddy & Gadekallu, 2023).

In particular, cobots in the healthcare sector demonstrate exceptional effi-

ciency in laboratory testing tasks, offering high precision, fast turnaround times,

and reduced reliance on manual processes. In addition, cobots are playing a key

role in patient care, performing tasks such as medication dispensing, specimen

collection, temperature and blood pressure monitoring, and various tests. These

capabilities have freed healthcare workers from tedious tasks. They can prioritize

urgent matters and effectively optimize their time.

4.10 Federated learning for integration with 6G in
healthcare

By 2030, the sixth generation (6G) of mobile technology is expected to be ubiqui-

tous, as it can be integrated into most sectors of the industry, improving the per-

formance of communications standards and enhancing the current

communications network infrastructure. Additionally, 6G is expected to leverage

more spectrum, providing even lower latency and higher bandwidth transmission

capabilities compared with 5G. Also it is anticipated to extend its reach to rural

or remote areas currently lacking cellular signals.

Future wireless systems are expected to significantly improve existing wireless

capabilities in terms of network throughput, IoT connectivity, latency (from 1 to

10 ms), reliability, availability, energy efficiency, and security.

Moreover, 6G is expected to deliver a 1000-fold improvement in network

throughput when compared with 5G technology. This advancement will enable

seamless communication and intelligent connectivity for millions of smart

devices, as shown in Fig. 4.4. The increased processing power of 6G wireless net-

works and devices supporting AI will facilitate the proliferation of augmented

reality, more advanced imaging and telepresence technology, and more autono-

mous robots that can communicate with other devices to perform complex tasks.

The technology of 6G can enable high-quality and immersive telemedicine

experiences. By integrating FL with 6G, healthcare providers can use distributed
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learning to analyze patient data collected from different remote devices and

deliver personalized healthcare services. This combination can support remote

monitoring, diagnosis, and treatment, bringing healthcare services closer to

patients regardless of their location. It has great potential to revolutionize health-

care delivery, improve patient outcomes, and advance medical research. As 6G

technology continues to evolve, further research and innovation will be required

to explore the specific applications, challenges, and benefits of integrating FL

with 6G in healthcare settings.

4.11 Conclusion

Federated digital health platforms have emerged as an innovative approach to

addressing the challenges of privacy and collaboration in healthcare. These sys-

tems use the principles of FL, a decentralized ML technique, to enable collabora-

tive analysis and model training on distributed healthcare data.

By enabling collaborative model training, personalized care, and privacy, FL has

significant potential for Healthcare 5.0. Its ability to leverage distributed datasets

while maintaining security and privacy makes it an attractive approach for advanc-

ing healthcare systems toward patient-centric care in the era of Healthcare 5.0.

FIGURE 4.4

FL for integration with 6G in healthcare. FL, Federated learning.
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In summary, federated healthcare platforms utilize distributed data to improve

patient privacy and unlock new insights. By utilizing FL, these platforms enable

personalized treatments, improved diagnoses, and improved healthcare outcomes.

As privacy concerns remain paramount, federated healthcare platforms hold great

promise for revolutionizing the healthcare landscape and driving innovation.
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