
Timing Within Human-Agent Interaction and its
Effects on Team Performance and Human Behavior

Tyler Goodman, Michael E. Miller, and Christina F.
Rusnock

Systems Engineering and Management
Air Force Institute of Technology

Wright Patterson AFB, OH

Jason Bindewald
Department of Electrical and Computer Engineering

Air Force Institute of Technology
Wright Patterson AFB, OH

Abstract—Current systems incorporating human-agent
interaction typically place the human in a supervisory role and
the agent as a subordinate. However, a key aspect of teaming is
the dynamic shift in roles. Depending on the situation at hand,
teaming could lead to a peer relationship where the human and
agent are working together on the same task. This research
investigates how the timing of agent actions impacts team
performance, as well as human workload and behavior. A
human-in-the-loop experiment demonstrated that when the agent
performs tasks faster than the human, the human tends to
become reliant upon the automation and assumes a supervisory
role. A human performance model predicts that extending agent
execution time will decrease human reliance on the automation.
However, in the environment under investigation, a tradeoff
exists between team performance and human involvement.

Keywords—Human-Machine Teaming; Agent; Trigger;
Performance Modeling

I. INTRODUCTION

A. Human-Machine Teaming
The growing development and use of semi-autonomous

systems has been beneficial in accomplishing tasks that would
otherwise be error prone, dangerous, unmanageable, or simply
impossible for humans [1]. Research efforts in this field have
also increased in response to the rapid rise in technological
capabilities. Significant and foundational pieces of literature
have described autonomous systems as having several levels
of automation when performing tasks typically allocated to a
human operator [2,3]. This description of automation
coincides with the design of several team-based descriptions
of humans and autonomous coordination systems, including
function allocation, supervisory control, adaptive automation,
and dynamic task allocation [4].

One determining factor that separates a team from an
ordinary group is a shared goal by all members [5] where
cooperation is needed to limit interference between members
during goal completion [6]. The purpose of teaming is to
“increase the level of task performance by leveraging the
unique capabilities of each performer, taking advantage of
each member’s strengths and available resources” [5]. Each
team member’s unique capabilities can help build
interdependency when tasks cannot be performed by any

individual alone [7]. To use each team member’s strengths
appropriately, teamwork is needed to facilitate interactions.

Current human-machine teams typically allocate
responsibility such that the machine is subordinate to the
human, thereby limiting the potential to which the team can
leverage each member’s unique strengths. Comparatively,
effective human teams implement dynamic allocation of roles,
responsibility, and authority dependent upon members’
capabilities, availability, and task load. It is suggested that
human-machine teams should model this schema to maximize
performance in a dynamic environment. In classic systems, the
machine usually fulfills the role of tool or subordinate, never
reaching the status of a peer or leader. By allowing the
machine to attain higher status, an emphasis on
interdependence and communication emerges as each becomes
more reliant upon the other [5].

Significant differences exist between humans and
machines as team members. These differences not only
include machine deficiencies, such as the limited ability to
reason within the current context and respond to surprises in a
robust manner [8], machine difficulty in communicating
priorities [9], and lack of machine accountability [10]; but also
seemingly pedestrian issues, such as ill-defined temporal
requirements for operations.

The human information processing loop extending from
perception through completion of an action often requires at
least one third of a second and, depending upon the size of the
muscle movements involved, can require multiple seconds.
However, an agent, embedded in a computing system can
perform a similar sequence of events in a much shorter period
of time. Therefore, a designer may automate a process to
improve system performance and decrease human workload.
However, the incorporation of an automated tool can lead to
the human adopting a supervisory role, which can be harmful
to production. It has been documented that humans are poor
monitors, a role they often assume when acting in a
supervisory capacity, because they lose vigilance and are
prone to fatigue [11]. Loss in vigilance can result in the human
being “out of the loop”, ultimately losing situation awareness.
Consequently, it can be difficult for a person to understand the
full context of a situation, possible actions, and consequences

The authors gratefully acknowledge the support of the Air Force Office of
Scientific Research, Computational Cognition and Machine Intelligence
Program, which partially funded this research.

2016 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA)

U.S. Government work not protected by U.S. copyright

if they have lost situation awareness when an unusual situation
arises to which the automation cannot respond appropriately.

The idea of the human and machine working together as
peers suggests that the human does not assume a supervisory
role, but rather, the two are working alongside one another.
There is a desire for the two to cooperate in such a manner
where they are attaining adequate performance, yet the human
is “in-the-loop” and maintaining situation awareness.

Triggers permit the automation to respond to events in the
environment and actions by its team members. Triggers are
developed to afford the automated system the ability to sense,
observe, or model the environment to create a relative
understanding of the events taking place around it and alter its
behavior based upon this information. The goal of the
automated agent is to receive relevant information from the
environment and act accordingly [12]. Therefore, the trigger
affects the automation’s timing, i.e., time at which a task is
initiated [10]. Logically, the timing of task execution in
highly dynamic, event-driven domains must influence the
performance and behavior of the team. Considering that
automated systems have the potential to respond much faster
than their human counterparts, their response time can affect
task responsibility. If the automation’s response time is too
short, the human operator may assume the supervisory role as
the automation will always respond to an event faster than its
human counterpart. However, if its response is excessively
delayed, the human is likely to assume responsibility for the
event and attempt to respond before the automation.
However, the proper timing and changes in the behavior of
human team members as a function of automation response
time is not apparent in the literature.

Therefore, this research aims to understand the effect of an
automation’s task timing on the performance of the human-
machine team. This effect is examined using a combination of
human-in-the-loop experimentation and human performance
modeling within an environment employing an autonomous
agent. A previous experiment is described which incorporated
an autonomous agent that was triggered by the co-occurrence
of an environmental event (i.e., appearance of a new task) and
human inactivity in addressing this task [13]. The time frame
at which the agent considered human inactivity to be excessive
was static throughout the experiment. However, based upon
the results of this experiment, it is assumed that variation in
task timing of the automation will have a significant impact on
user behavior. Thus, this research was conducted to explore
the type of effects task timing has on team performance, as
well as, human behavior and workload.

II. METHOD FOR PREVIOUS EXPERIMENT

A. Participants
The experiment involved 36 volunteers with an average

age of 32.5 years and a range of 22 to 39 years. A total of 30
males and 6 females participated.

The experiment involved the use of a computer based
tablet game environment. Thus, each participant was asked
how often they use laptops, tablets, desktops, phones, and
gaming consoles. On average, they used tablets roughly 1-3

times a week and gaming consoles 1-3 times a month. Other
computer based platforms, including smart phones, were
reported being used 3-7 times a week.

B. Apparatus and Environment
Space Navigator is a tablet-based computer trajectory-

generation game which was constructed to provide a
controlled representation of a highly-dynamic, event-driven
environment. In these environments, the operator has little, if
any, control of the event rate and there is no guarantee that the
human will be capable of responding should unexpectedly
high event rates occur. Similar environments might include
air defense systems and certain command and control
environments. The game, while not providing a high fidelity
simulation of these environments, permits the control of the
event rate and other potentially confounding variables, logging
of human response, and the creation of automations that can
be enabled to assist the operator during high event rate
conditions. The use of the Space Navigator game for this
study simplifies participant recruitment and training.

Figure 1 displays a screen capture from the game and
identifies several key objects within the game. Spaceships
appear at set intervals from the screen edges. The player
directs each spaceship to its destination planet, designated
through color, by drawing a line on the game screen using his
or her finger. The spaceship then follows the entire drawn
trajectory unless the player draws a different route for the ship.
Points accumulate when a ship encounters its destination
planet or one of a number of small bonuses that randomly
appear throughout the play area. Points decrement when
spaceships collide, and each spaceship involved in the
collision is lost. Points are also lost when a spaceship traverses
one of several “no-fly zones” that move to random locations
within the play area at a set time interval. For every second a
spaceship traverses a no-fly zone, the player loses points. The
game ends after five minutes.

Fig. 1. Screen capture from Space Navigator, highlighting spaceships, planets,
trajectories, bonuses, and no-fly zones.

In addition to drawing the routes manually, the subjects

also work in human-agent teams in which both the subjects
and the agents draw routes. There were three types of

automated agents: straight line, similar to the user, and
dissimilar to the user. The straight line automation draws
straight-line routes from the ship to the corresponding planet.
The similar to the user automation uses a player model
developed based on manual game play to draw routes
predicted to be similar to those that the user would draw under
similar circumstances. The dissimilar agent, selects random
trajectories from the past game-play database. To provide the
human with an opportunity to draw routes, the agent does not
draw routes instantaneously, rather the automation triggers
after a specified amount of on-screen time for a ship has
elapsed without the subject interacting with that ship.

C. Experimental Design and Procedure
The experimental procedure consisted of a within subjects

design in which each participant completed 16 five-minute
instances of Space Navigator. The initial five instances
contained no interaction from an automated agent and were
used as participant training sessions. Following the training,
participants completed three experimental sessions.
Experimental sessions included four five-minute instances and
each instance attributed one trajectory type to the agent
throughout the entirety of a five-minute game. The four types
of trajectories were either similar to the user, dissimilar to the
user, straight line, and none (participant performed the task
without an automated agent as a partner). Ships appeared on
screen at a fixed rate of one ship appearing every two seconds.
Bonuses and no-fly zones repopulated every thirty seconds.

D. Data Analysis
Game play and NASA-TLX [14] data were collected to

assess user performance and workload per agent type. The
Space Navigator environment actively stored information
every time a ship-related action occurred. These actions
included trajectory draws, collisions, bonus pickups,
destinations reached, no-fly zone traversal, and off-screen
movements. Subjective workload values were input by
participants after completing each five-minute instance. Users
were asked questions related to workload, frustration, and
agent trust at the conclusion of the experiment. Although data
was collected for three different agents, which performed
differently from one another, the data analysis for the current
paper was constrained to include only the manual condition in
which there was no agent and the straight line agent, which
drew a straight line from the ship to the appropriate planet
anytime a ship resided on the screen for 2 s during which the
participant did not draw a trajectory.

III. EXPERIMENT RESULTS AND DISCUSSION
The expected result from this experiment was that the

participants would continue drawing routes, relying on the
automation to draw routes only when they were overloaded to
the point that they could not draw routes quickly enough to be
successful. The rationale behind this assumption was that this
agent would be able to work alongside the user, but work less
effectively and therefore not be trusted to draw routes unless
the individual was task saturated to the point that they could
not draw routes quickly enough. Therefore, it was expected

that the majority of trajectories would be drawn by the
participant. However, participants’ behavior unanimously
differed from this reasoning.

As shown in Table 1, when interacting with the game in a
manual mode, without the agent, the human participants drew
an average of 126.26 routes for the 150 ships that were
generated during the 5 minutes of game play. Further, they
redrew 21.83 routes for ships that they had already designated
routes. However, when the straight line agent was employed,
the humans drew less than 1/5th as many trajectories on
average (i.e., 23.19) than they did when playing the game
manually. Additionally, when the agent was present, the
participants redrew just over twice as many routes (mean of
43.97) as they did when operating in manual mode.

TABLE I. MANUAL AND STRAIGHT LINE AGENT DATA

Initially, it appeared counter-intuitive that the human
participants would relinquish most of their initial path
planning to an agent when the agent is incapable of making
decisions based upon obvious obstructions or bonuses in the
environment. However, this behavior becomes more
understandable when one computes the average human ship-
selection cycle-time. A full ship-selection cycle for the human
involves identifying a ship to select, physically selecting a ship
with their finger, and drawing a designated path. Analysis of
this data reveals that an average of 2.6 s is required for a
participant’s ship-selection cycle-time whereas a new ship is
spawned every 2 s. Therefore, it is implausible for the average
human to successfully generate paths fast enough to provide a
path for every ship. Conversely, the agent draws a route at the
same speed as the ship spawn rate, drawing a route for the
previously generated ship when the subsequent ship appears.

In this environment, with intuitive ship movement and a
predictable agent, the participants were able to predict the
behavior of the agent and then adjust undesirable paths.
Consequently, it would appear that users began to initiate
fewer trajectories, supervising the agent and redrawing paths
to improve performance. As seen in Table 1, the addition of
the agent increased the average score by roughly 2250 points
(a 39% improvement) by having the human draw 103 fewer
routes and doubling the number of redrawn routes.

Given this interaction, we therefore sought to better
understand the interaction of the autonomous agent’s timing
within this environment. The trigger time employed in this
experiment created an agent that assumed the human was
overloaded if the human was unable to address an incoming
ship within 2 s. It appeared that the automation’s task timing
exceeded the human operator’s ability, relegating the operator
to more of a supervisory role. Therefore, the participant game
play data from this human-in-the-loop experiment was
leveraged to construct a model of human-machine interaction.

Fully�Manual Agent�Assistance
Mean St�Dev Mean St�Dev

Score 5801.57 2327.62 8043.06 1573.72
Hum.�Draws 126.26 12.58 23.19 24.26
Redraws 21.83 11.94 43.97 15.55

The model was used to examine how variation in the
automation’s timing affects team performance, human
behavior, and workload, within the teaming environment.

IV. SPACE NAVIGATOR IMPRINT MODEL

A. IMPRINT Simulation Software
To examine timing in the context of a human-machine

team, this study uses the Improved Performance Research
Integrated Tool (IMPRINT), a discrete-event simulation
environment [15]. This environment models human workload
and performance as a function of time by tracking activities
performed by a human or a machine. These activities are
described in a task network, which includes task sequencing
and decision points. The frequency of the tasks, as well as the
time necessary to perform each task result from a stochastic
process, permitting the modeler to represent the variability
within the system. Different task networks can be derived for
different goals and a workload level is assigned to each task
performed by the human operator. Various system allocations
can then be modeled by allocating specific tasks to be
performed by the human operator or machine (hardware or
software). However, to employ this tool to accomplish this
goal, the modeler must begin with activities to be performed
by the team, allocate these activities to the human or machine
and then derive the tasks or actions necessary to perform these
activities. Once these activities are allocated to a component,
human or machine, other inherent tasks may become
necessary to facilitate communication of system state as
control is passed between the human and machine[13, 16].

B. IMPRINT Task Network
The IMPRINT model is depicted in the SysML Activity

Diagram [17] shown in Figure 2. This diagram divides the
activities among three primary sections, separated by vertical
lines known as “swim lanes”, which separate the activities of
the environment, the human operator, and the agent. The
environment nodes in Space Navigator are responsible for
starting the model, generating ships, altering no-fly zones and
bonus locations, operating the timer, and halting the model as
shown in the center “swim lane” of the activity diagram.

The player’s attention and actions during game play are
facilitated through a loop, continuously repeating two high
level functions; determining which ship to select and drawing
a trajectory for a ship. However, the loop is completed both
for ships that have no drawn trajectories and for those that
have a non-optimal trajectory. A view of ideal game play may
include the person working to their capacity as they try to earn
the highest score, leveraging the agent to draw paths they do
not have time to draw. This behavior is depicted through the
path in Figure 2 within the Human swim lane, which includes
identifying background items, identifying ships without routes
without waiting for the agent, selecting a ship and drawing a
route. However, as demonstrated in the experiment, the
human could permit the agent to draw some initial paths
permitting them to attend to other tasks within the game.
Thus, a task load node, indicated by the first decision node in
the human swim lane, is used to represent a human’s decision

to either initiate ship selection or monitor the environment,
allowing the human to observe the agent as it creates routes.
The decision to monitor is based on a reliance algorithm
derived from the experimental data, as seen in Figure 3.

The reliance algorithm produced a probability that the
human would permit the agent to draw a trajectory. Analysis
of the experimental data indicated that the probability of the
agent drawing an initial route as a function of the number of
ships on screen produced a parabolic curve. The participants
performed more route draws when the number of ships on
screen was low as they likely had ample time to interact with
the system. They also appear to have drawn more routes when
larger numbers of ships were on screen to help avoid
collisions, given the agents’ inability to react to neighboring
ships, no-fly zones, and bonuses. The regression curve in
Figure 3 accounted for the reliance of the operator on the
automated agent with respect to the number of ships on screen.

The other factor that was necessary to include in the
reliance algorithm was the trigger time of the agent. While no
data exists to construct this function, it was assumed that the
longer the agent takes before assigning a route, the more likely
the human will initiate tasks to avoid losing points. At the
lower limit, if the agent drew the line as soon as the ship
appeared, the person would never have time to initiate a route.
However, in the case that the agent requires an infinite amount
of time before drawing the route, the human cannot rely upon
the agent to draw any route. The operators’ average cycle-
time, time between initiating routes on separate ships, and
standard deviation were derived from the experiment’s fully
manual gameplay. Using three standard deviations above and
one standard deviation below the mean of 2.6 s, it was
assumed that a human would be unlikely to initiate a route for
a ship at 0.1 s and the agent would be unlikely to initiate a
route at 11.6 s. This assumption was used to determine points
on a linear equation relating delay time to probability of agent
draws. This linear model was used to shift the third order
regression line shown in Fig. 3 downwards as the agent’s time
delay increased and shift the regression line upwards as the
agent’s time delay decreased. For every second that the
agent’s delay changed, the baseline probability value was
incremented or decremented by 0.1058, within the bounds that
the probability must be between 0 and 1.

Returning to the task network, if the operator decides to
draw a route based upon the reliance algorithm, they will
continue to identify ships on screen. Afterwards, they can
draw a route for a ship that does not have a route, or they can
“redraw” a route for a ship that has an existing route.
Following the draw route node, the human attention loops
back to determine the background items, where the number of
items impose a taskload, which is modeled as the number of
ships on screen. As shown, when the human draws a route, the
environment is updated, permitting both the agent to be
informed by recording the route and displaying the route for
the human.

Simultaneously, the agent is selecting ships and drawing
trajectories for them as well, as indicated in the Agent swim
lane of Figure 2. Unlike the human, the agent does not have

the option to perform fewer tasks. The agent is constantly
monitoring all ships on screen and drawing a route once the
time trigger has occurred. However, unlike the human, the
agent can only draw trajectories for ships that have not
received a trajectory, and the agent does not redraw non-

optimal trajectories. As the agent draws a path, this
information is provided to the environment.

Fig. 2. Activity diagram representing the actors and actions in the IMPRINT model. Vertical swimlanes are used to designate actions
performed by the specified actor.

Fig. 3. Graph displaying the probability of the agent drawing a route with
respect to the number of ships on the screen. The third order regression line,
with equation, was used in calculating the reliance algorithm in the IMPRINT
model.

After the human or agent has designated a route for a ship,

a new entity is created in the model, representing the ship with
a route. The ship continues along its path for a length of time

drawn from a distribution representing game play time-on-
screen and is be removed from the simulation after the time
has elapsed (not depicted in Figure 2). There are three possible
end results for a ship: collision, destination reached, and off-
screen traversal. Ships arrive to these nodes according to
probabilities associated with the number of ships on screen
and the human or agent that drew the route. Once again these
distributions are developed from the human-in-the-loop data
discussed earlier.

C. Model Validation
To validate the model, the model was exercised for

conditions that matched the conditions of the previously
explained human-subjects experiment and the results were
compared. The IMPRINT model replicated the experimental
trials by having the agent create routes for ships that were on
screen, and without a route, for two seconds or longer. The
results applied for model validation were scores, number of
automation trajectories drawn, and number of “redrawn”
trajectories by the operator. These specific aspects of the
model were chosen to ensure that performance and behavior,

as predicted by the model, was similar to the data from the
human-in-the-loop experiment. To compare score values and
trajectories, two sample t-tests with 95% confidence intervals
were performed. For score, the average from the experiment
was 8043 (sd 1574) while the mean from the model was 8053
(sd 871). The t-test indicated that these values were not
statistically different (t(1,169 = -0.06, p=0.955). The average
number of agent-drawn trajectories from the experiment was
126.9 (sd 24.4) and the mean from the model was 122.4 (sd
3.24). The t-test indicated that these values were not
statistically different (t(1,109) = -1.91, p=0.06). The average
number of human redraws from the experiment was 44 (sd
15.5) and the mean from the model was 45.59 (sd 6.08). The
t-test indicated that these values were not statistically different
(t(1,141) = -1.00, p=0.318). Overall, there was no evidence of
statistical differences between the model and the experimental
data, and thus the model is considered validated.

The workload values collected in the human-subjects
experiment were NASA-TLX values, whereas the workload
inputs in IMPRINT are from the Visual, Auditory, Cognitive,
and Psychomotor (VACP) workload assessment tool.
Consequently, workload could not be directly validated. Thus,
validation was conducted with a subject matter expert.

As the slope of the linear equation relating agent delay
time and probability of an agent draw was assumed during
model construction, it is important to understand the
sensitivity of the model to this slope. Simulations were run
with a 10% increase and decrease to this slope. At the lower
bound, on average the human drew 2.5 fewer trajectories and
scored 24 fewer points. At the upper bound, the average score
increased by 18 points and the human drew 2.14 more
trajectories. The change in both values was greatest during the
8.6 s delay time where in the lower bound the human drew 10
fewer trajectories and in the upper bound the human drew 8.35
more trajectories. The difference in score for both fluctuated
and had no distinct pattern. The change in workload and
redraws was negligible. Therefore, it is believed that changes
in this slope will significantly affect the model results for
delay times near the intersection of the linear model with the
delay time axis. However, the characteristic shape of model
output as a function of timing delay is likely to be robust.

D. Simulation Procedure
A series of simulations were conducted in which the

trigger time of the automated agent was altered in each
simulation. Trigger times were selected based upon participant
performance. As noted earlier, the participant required an
average of 2.6 seconds between the time a ship is spawned,
appearing on screen, and the time the human selects the ship to
draw a trajectory. The associated standard deviation of this
time was 3.0 seconds. Six conditions are evaluated: the mean
time for a participant to select a ship (2.6 s), plus one-half,
one, two and three standard deviations (ie., 0.1, 5.6, 8.6 and
11.6 s), as well as the original 2 s delay employed in the
human-in-the-loop experiment. The six scenarios were each
simulated 100 times, having the same random seed value for
each condition. At the end of each scenario, the average
scores, workload, and trajectories drawn were calculated. A

one-way Analysis of Variance (ANOVA) was used to
determine whether agent delay-time had a significant effect on
any of the model outputs and Tukey Pairwise Comparisons
were used to test for differences between individual means.

V. SIMULATION RESULTS
The results from the IMPRINT simulations displayed an

inverse relationship between performance and workload, as
shown in Figure 4. As the trigger time increased beyond the
average time of 2.6 s, the operator’s workload increased and
overall team performance decreased. Although performance,
in terms of overall score, was recorded for each of 100 model
runs, workload is shown for a typical single model run.

Fig. 4. Graph displaying average score and workload per agent delay time

The ANOVA indicated that the effect of agent trigger time

on overall score is statistically significant (F(5,594) = 43.28; p
< 0.001). Tukey pair-wise comparisons indicated that there
were four groups of scores that were significantly different
from one another. These groups in terms of agent time delay
were (0.1, 2.0), (2.0, 2.6), (2.6, 5.6) and (8.6, 11.6). It was
shown in these pairings that as the time delay increased the
average score significantly decreased.

As shown in Figure 5, the human and agent draws were
also inversely related. The agent’s trigger time significantly
affected agent draws (F(5,594) = 35784; p < 0.001), human
draws (F(5,594) = 31975; p < 0.001), and redraws (F(5,594) =
174; p < 0.001). The ANOVA for agent and human draws
produced similar results. The number of human draws were
statistically different for all agent redraw conditions. The
effect of time on redraws generated three different groupings,
with 0.1 s producing the most redraws, followed by 2.0 and
2.6 s conditions and 5.6, 8.6, 11.6 s conditions.

These simulations indicate that human behavior will
change as a function of the agent’s trigger time. When the
agent created routes at the same speed or faster than the
human, the human initiated routes between 2% and 20% of the
time. When the trigger time is one to three standard deviations
slower, the number of human initiated routes increased from
50% to 95%. Furthermore, the model anticipated that the
largest shift in performance would occur when the trigger time
was adjusted from 5.6 to 8.6 s, decreasing the score by 10%.
The greatest increases in workload should occur when delay
times change from 2.6 to 5.6 s and 5.6 to 8.6 s, with a 7% and
5% increase, respectively.

Fig. 5. Graph displaying mean human draws, agent draws, and redraws per
agent delay time

VI. CONCLUSIONS AND FUTURE WORK
According to the simulations, timing of the interaction

between the human and automated agent significantly affects
system performance, human workload, and behavior. As a
result, the agent’s task time can be determined to support
system objectives. For example, if the only objective is to
obtain the highest score possible, it seems appropriate to place
the agent trigger at 0.1 s to obtain the best possible team score.
However, if there is an added objective, such as keeping the
user engaged in drawing a portion of the initial routes, the
approach should vary. For the operator to respond correctly to
any error that might occur, they need to detect and understand
the context of the error. By having the agent trigger too
quickly, the human is likely to learn to redraw paths without
drawing initial paths. Under conditions of low task load, as
might occur as the spawn rate of the ships is reduced, the user
may fall into performing a vigilance task and potentially lose
the ability to maintain situation awareness. Therefore, while it
may be optimal to have a quick trigger to earn higher points,
this same trigger could be detrimental if the human is unable
to maintain alertness and therefore be unable to detect agent
errors. The purpose of keeping an operator “in the loop” is to
ensure they are capable of making appropriate decisions when
tasked accordingly. Keeping the operator “in the loop” appears
to correlate with the timing of human-agent interaction.

Future studies could investigate how an individual’s
tendency to trust an automated agent affects performance,
workload, and behavior. This can be evaluated by adjusting
the reliance function to represent varying levels of trust.
Furthermore, the results from this model suggest that human-
subjects experiments should be performed to validate the
behavior predicted in this research. If those experiments affirm
this research, it could provide insight into the significance of
timing when human and agents work together on the same
task. Finally, one might expect that agent delay time is not
only dependent upon the human’s response time but also upon
the taskload modulated as a function of ship spawn rate.
Understanding interactions between these variables may
provide an understanding of human-machine teaming based
upon agent timing.

ACKNOWLEDGMENT
The authors would like to thank Jayson Boubin for his

contributions to model development and Dr. Gilbert Peterson
for assisting in direction of agent development.

The views in this article are those of the authors and do not
necessarily reflect the official policy or position of the
Department of the Air Force, Department of Defense, nor the
U.S. Government.

REFERENCES
[1] P. Millot, Designing Human-Machine Cooperation Systems. London,

UK: John Wiley & Sons, 2014.

[2] R. Parasuraman, T. B. Sheridan, and C. D. Wickens, “A model for types
and levels of human interaction with automation.,” IEEE Trans. Syst.
Man. Cybern. A Syst. Hum., 30(3), pp. 286–297, 2000.

[3] D. B. Endsley, M.R., and Kaber, “Level of Automation Effects on
Performance, Situation Awareness and Workload in a Dynamic Control
Task,” Ergonomics, 42, pp. 462–492, 1999.

[4] M. Johnson, J. M. Bradshaw, P. J. Feltovich, R. R. Hoffman, C. Jonker,
B. Van Riemsdijk, and M. Sierhuis, “Beyond cooperative robotics: The
central role of interdependence in coactive design,” IEEE Intell. Syst.,
26(3), pp. 81–88, 2011.

[5] D. J. Bruemmer, J. L. Marble, and D. D. Dudenhoeffer, “Mutual
initiative in human-machine teams,” in Proceedings of the IEEE 7th
Conference on Human Factors and Power Plants, 2002, pp. 22–30.

[6] J.-M. Hoc, “Towards a cognitive approach to human–machine
cooperation in dynamic situations,” Int. J. Hum. Comput. Stud., 54(4),
pp. 509–540, 2001.

[7] W. Arthur, B. D. Edwards, S. T. Bell, A. J. Villado, C. Station, and W.
Bennett, “Team Task Analysisௗ: Identifying Tasks and Jobs That Are
Team Based,” 47(3), pp. 654–669, 2005.

[8] T. Huntsberger, “Cognitive architecture for mixed human-machine team
interactions for space exploration,” IEEE Aerosp. Conf. Proc., 2011.

[9] G. Klein, D. D. Woods, J. M. Bradshaw, R. R. Hoffman, and P. J.
Feltovich, “Ten challenges for making automation a ‘team player’ in
joint human-agent activity,” IEEE Intell. Syst., 19(6), pp. 91–95, 2004.

[10] M. Anderson, S. L. Anderson, and C. Armen, “Towards Machine
Ethics,” in Proceedings of the AAAI 2005 Fall Symposium on Machine
Ethics, 2004, pp. 1–7.

[11] R. Parasuraman, “Supporting Battle Management Command and
Control: Designing Innovative Interfaces and Selecting Skilled
Operators,” Fairfax, VA, 2008.

[12] K. M. Feigh, M. C. Dorneich, and C. C. Hayes, “Toward a
Characterization of Adaptive Systems: A Framework for Researchers
and System Designers,” Hum. Factors, 2012.

[13] J. M. Bindewald, M. E. Miller, and G. L. Peterson, “A function-to-task
process model for adaptive automation system design,” Int. J. Hum.
Comput. Stud., vol. 72, no. 12, pp. 822–834, 2014.

[14] S. G. Hart and L. E. Staveland, “Development of NASA-TLX (Task
Load Index): Results of Empirical and Theoretical Research,” Adv.
Psychol., 52(C), pp. 139–183, 1988.

[15] “Improved Performance Research Integration (IMPRINT) Tool,” Army
Research Laboratory, 2010. [Online]. Available:
https://dap.dau.mil/aphome/das/Lists/Software
Tools/DispForm.aspx?ID=58.

[16] T. Goodman, M. Miller, and C. Rusnock, “Incorporating Automation:
Using Modeling and Simulation to Enable Task Re-Allocation,” in
Winter Simulation Conference, 2015.

[17] L. Delligatti, SysML Distilled: A Brief Guide to the Systems Modeling
Language. Addison-Wesley, 2013.

