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Abstract—Current systems incorporating human-agent 
interaction typically place the human in a supervisory role and 
the agent as a subordinate. However, a key aspect of teaming is 
the dynamic shift in roles. Depending on the situation at hand, 
teaming could lead to a peer relationship where the human and 
agent are working together on the same task. This research 
investigates how the timing of agent actions impacts team 
performance, as well as human workload and behavior.  A 
human-in-the-loop experiment demonstrated that when the agent 
performs tasks faster than the human, the human tends to 
become reliant upon the automation and assumes a supervisory 
role.  A human performance model predicts that extending agent 
execution time will decrease human reliance on the automation.  
However, in the environment under investigation, a tradeoff 
exists between team performance and human involvement. 

Keywords—Human-Machine Teaming; Agent; Trigger; 
Performance Modeling 

I. INTRODUCTION 

A. Human-Machine Teaming 
The growing development and use of semi-autonomous 

systems has been beneficial in accomplishing tasks that would 
otherwise be error prone, dangerous, unmanageable, or simply 
impossible for humans [1]. Research efforts in this field have 
also increased in response to the rapid rise in technological 
capabilities. Significant and foundational pieces of literature 
have described autonomous systems as having several levels 
of automation when performing tasks typically allocated to a 
human operator [2,3]. This description of automation 
coincides with the design of several team-based descriptions 
of humans and autonomous coordination systems, including 
function allocation, supervisory control, adaptive automation, 
and dynamic task allocation [4].  

One determining factor that separates a team from an 
ordinary group is a shared goal by all members [5] where 
cooperation is needed to limit interference between members 
during goal completion [6]. The purpose of teaming is to 
“increase the level of task performance by leveraging the 
unique capabilities of each performer, taking advantage of 
each member’s strengths and available resources” [5]. Each 
team member’s unique capabilities can help build 
interdependency when tasks cannot be performed by any 

individual alone [7]. To use each team member’s strengths 
appropriately, teamwork is needed to facilitate interactions.  

Current human-machine teams typically allocate 
responsibility such that the machine is subordinate to the 
human, thereby limiting the potential to which the team can 
leverage each member’s unique strengths. Comparatively, 
effective human teams implement dynamic allocation of roles, 
responsibility, and authority dependent upon members’ 
capabilities, availability, and task load. It is suggested that 
human-machine teams should model this schema to maximize 
performance in a dynamic environment. In classic systems, the 
machine usually fulfills the role of tool or subordinate, never 
reaching the status of a peer or leader. By allowing the 
machine to attain higher status, an emphasis on 
interdependence and communication emerges as each becomes 
more reliant upon the other [5].  

Significant differences exist between humans and 
machines as team members.  These differences not only 
include machine deficiencies, such as the limited ability to 
reason within the current context and respond to surprises in a 
robust manner [8], machine difficulty in communicating 
priorities [9], and lack of machine accountability [10]; but also 
seemingly pedestrian issues, such as ill-defined temporal 
requirements for operations.     

The human information processing loop extending from 
perception through completion of an action often requires at 
least one third of a second and, depending upon the size of the 
muscle movements involved, can require multiple seconds.  
However, an agent, embedded in a computing system can 
perform a similar sequence of events in a much shorter period 
of time.  Therefore, a designer may automate a process to 
improve system performance and decrease human workload. 
However, the incorporation of an automated tool can lead to 
the human adopting a supervisory role, which can be harmful 
to production. It has been documented that humans are poor 
monitors, a role they often assume when acting in a 
supervisory capacity, because they lose vigilance and are 
prone to fatigue [11]. Loss in vigilance can result in the human 
being “out of the loop”, ultimately losing situation awareness. 
Consequently, it can be difficult for a person to understand the 
full context of a situation, possible actions, and consequences 
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if they have lost situation awareness when an unusual situation 
arises to which the automation cannot respond appropriately.  

The idea of the human and machine working together as 
peers suggests that the human does not assume a supervisory 
role, but rather, the two are working alongside one another. 
There is a desire for the two to cooperate in such a manner 
where they are attaining adequate performance, yet the human 
is “in-the-loop” and maintaining situation awareness.  

Triggers permit the automation to respond to events in the 
environment and actions by its team members. Triggers are 
developed to afford the automated system the ability to sense, 
observe, or model the environment to create a relative 
understanding of the events taking place around it and alter its 
behavior based upon this information. The goal of the 
automated agent is to receive relevant information from the 
environment and act accordingly [12]. Therefore, the trigger 
affects the automation’s timing, i.e., time at which a task is 
initiated [10].  Logically, the timing of task execution in 
highly dynamic, event-driven domains must influence the 
performance and behavior of the team. Considering that 
automated systems have the potential to respond much faster 
than their human counterparts, their response time can affect 
task responsibility.  If the automation’s response time is too 
short, the human operator may assume the supervisory role as 
the automation will always respond to an event faster than its 
human counterpart.  However, if its response is excessively 
delayed, the human is likely to assume responsibility for the 
event and attempt to respond before the automation.  
However, the proper timing and changes in the behavior of 
human team members as a function of automation response 
time is not apparent in the literature. 

Therefore, this research aims to understand the effect of an 
automation’s task timing on the performance of the human-
machine team. This effect is examined using a combination of 
human-in-the-loop experimentation and human performance 
modeling within an environment employing an autonomous 
agent. A previous experiment is described which incorporated 
an autonomous agent that was triggered by the co-occurrence 
of an environmental event (i.e., appearance of a new task) and 
human inactivity in addressing this task [13]. The time frame 
at which the agent considered human inactivity to be excessive 
was static throughout the experiment.  However, based upon 
the results of this experiment, it is assumed that variation in 
task timing of the automation will have a significant impact on 
user behavior.  Thus, this research was conducted to explore 
the type of effects task timing has on team performance, as 
well as, human behavior and workload. 

II. METHOD FOR PREVIOUS EXPERIMENT 

A. Participants 
The experiment involved 36 volunteers with an average 

age of 32.5 years and a range of 22 to 39 years. A total of 30 
males and 6 females participated.  

The experiment involved the use of a computer based 
tablet game environment. Thus, each participant was asked 
how often they use laptops, tablets, desktops, phones, and 
gaming consoles. On average, they used tablets roughly 1-3 

times a week and gaming consoles 1-3 times a month. Other 
computer based platforms, including smart phones, were 
reported being used 3-7 times a week.  

B. Apparatus and Environment 
Space Navigator is a tablet-based computer trajectory-

generation game which was constructed to provide a 
controlled representation of a highly-dynamic, event-driven 
environment.  In these environments, the operator has little, if 
any, control of the event rate and there is no guarantee that the 
human will be capable of responding should unexpectedly 
high event rates occur.  Similar environments might include 
air defense systems and certain command and control 
environments.  The game, while not providing a high fidelity 
simulation of these environments, permits the control of the 
event rate and other potentially confounding variables, logging 
of human response, and the creation of automations that can 
be enabled to assist the operator during high event rate 
conditions.  The use of the Space Navigator game for this 
study simplifies participant recruitment and training.  

Figure 1 displays a screen capture from the game and 
identifies several key objects within the game. Spaceships 
appear at set intervals from the screen edges. The player 
directs each spaceship to its destination planet, designated 
through color, by drawing a line on the game screen using his 
or her finger. The spaceship then follows the entire drawn 
trajectory unless the player draws a different route for the ship. 
Points accumulate when a ship encounters its destination 
planet or one of a number of small bonuses that randomly 
appear throughout the play area. Points decrement when 
spaceships collide, and each spaceship involved in the 
collision is lost. Points are also lost when a spaceship traverses 
one of several “no-fly zones” that move to random locations 
within the play area at a set time interval. For every second a 
spaceship traverses a no-fly zone, the player loses points. The 
game ends after five minutes.  

 
Fig. 1. Screen capture from Space Navigator, highlighting spaceships, planets, 
trajectories, bonuses, and no-fly zones. 
 

 
 
In addition to drawing the routes manually, the subjects 

also work in human-agent teams in which both the subjects 
and the agents draw routes.   There were three types of 



automated agents: straight line, similar to the user, and 
dissimilar to the user.  The straight line automation draws 
straight-line routes from the ship to the corresponding planet.  
The similar to the user automation uses a player model 
developed based on manual game play to draw routes 
predicted to be similar to those that the user would draw under 
similar circumstances.  The dissimilar agent, selects random 
trajectories from the past game-play database.  To provide the 
human with an opportunity to draw routes, the agent does not 
draw routes instantaneously, rather the automation triggers 
after a specified amount of on-screen time for a ship has 
elapsed without the subject interacting with that ship.  

C. Experimental Design and Procedure 
The experimental procedure consisted of a within subjects 

design in which each participant completed 16 five-minute 
instances of Space Navigator. The initial five instances 
contained no interaction from an automated agent and were 
used as participant training sessions. Following the training, 
participants completed three experimental sessions. 
Experimental sessions included four five-minute instances and 
each instance attributed one trajectory type to the agent 
throughout the entirety of a five-minute game. The four types 
of trajectories were either similar to the user, dissimilar to the 
user, straight line, and none (participant performed the task 
without an automated agent as a partner). Ships appeared on 
screen at a fixed rate of one ship appearing every two seconds. 
Bonuses and no-fly zones repopulated every thirty seconds.  

D. Data Analysis 
Game play and NASA-TLX [14] data were collected to 

assess user performance and workload per agent type. The 
Space Navigator environment actively stored information 
every time a ship-related action occurred. These actions 
included trajectory draws, collisions, bonus pickups, 
destinations reached, no-fly zone traversal, and off-screen 
movements. Subjective workload values were input by 
participants after completing each five-minute instance. Users 
were asked questions related to workload, frustration, and 
agent trust at the conclusion of the experiment.   Although data 
was collected for three different agents, which performed 
differently from one another, the data analysis for the current 
paper was constrained to include only the manual condition in 
which there was no agent and the straight line agent, which 
drew a straight line from the ship to the appropriate planet 
anytime a ship resided on the screen for 2 s during which the 
participant did not draw a trajectory. 

III. EXPERIMENT RESULTS AND DISCUSSION 
The expected result from this experiment was that the 

participants would continue drawing routes, relying on the 
automation to draw routes only when they were overloaded to 
the point that they could not draw routes quickly enough to be 
successful. The rationale behind this assumption was that this 
agent would be able to work alongside the user, but work less 
effectively and therefore not be trusted to draw routes unless 
the individual was task saturated to the point that they could 
not draw routes quickly enough.  Therefore, it was expected 

that the majority of trajectories would be drawn by the 
participant. However, participants’ behavior unanimously 
differed from this reasoning.  

As shown in Table 1, when interacting with the game in a 
manual mode, without the agent, the human participants drew 
an average of 126.26 routes for the 150 ships that were 
generated during the 5 minutes of game play.  Further, they 
redrew 21.83 routes for ships that they had already designated 
routes. However, when the straight line agent was employed, 
the humans drew less than 1/5th as many trajectories on 
average (i.e., 23.19) than they did when playing the game 
manually.  Additionally, when the agent was present, the 
participants redrew just over twice as many routes (mean of 
43.97) as they did when operating in manual mode.    

TABLE I. MANUAL AND  STRAIGHT LINE AGENT DATA 

 
     

Initially, it appeared counter-intuitive that the human 
participants would relinquish most of their initial path 
planning to an agent when the agent is incapable of making 
decisions based upon obvious obstructions or bonuses in the 
environment. However, this behavior becomes more 
understandable when one computes the average human ship-
selection cycle-time. A full ship-selection cycle for the human 
involves identifying a ship to select, physically selecting a ship 
with their finger, and drawing a designated path. Analysis of 
this data reveals that an average of 2.6 s is required for a 
participant’s ship-selection cycle-time whereas a new ship is 
spawned every 2 s.  Therefore, it is implausible for the average 
human to successfully generate paths fast enough to provide a 
path for every ship.  Conversely, the agent draws a route at the 
same speed as the ship spawn rate, drawing a route for the 
previously generated ship when the subsequent ship appears. 

In this environment, with intuitive ship movement and a 
predictable agent, the participants were able to predict the 
behavior of the agent and then adjust undesirable paths. 
Consequently, it would appear that users began to initiate 
fewer trajectories, supervising the agent and redrawing paths 
to improve performance. As seen in Table 1, the addition of 
the agent increased the average score by roughly 2250 points 
(a 39% improvement) by having the human draw 103 fewer 
routes and doubling the number of redrawn routes. 

Given this interaction, we therefore sought to better 
understand the interaction of the autonomous agent’s timing 
within this environment. The trigger time employed in this 
experiment created an agent that assumed the human was 
overloaded if the human was unable to address an incoming 
ship within 2 s. It appeared that the automation’s task timing 
exceeded the human operator’s ability, relegating the operator 
to more of a supervisory role.  Therefore, the participant game 
play data from this human-in-the-loop experiment was 
leveraged to construct a model of human-machine interaction. 

Fully�Manual Agent�Assistance
Mean St�Dev Mean St�Dev

Score 5801.57 2327.62 8043.06 1573.72
Hum.�Draws 126.26 12.58 23.19 24.26
Redraws 21.83 11.94 43.97 15.55



The model was used to examine how variation in the 
automation’s timing affects team performance, human 
behavior, and workload, within the teaming environment.  

IV. SPACE NAVIGATOR IMPRINT MODEL  

A. IMPRINT Simulation Software 
To examine timing in the context of a human-machine 

team, this study uses the Improved Performance Research 
Integrated Tool (IMPRINT), a discrete-event simulation 
environment [15].  This environment models human workload 
and performance as a function of time by tracking activities 
performed by a human or a machine. These activities are 
described in a task network, which includes task sequencing 
and decision points.  The frequency of the tasks, as well as the 
time necessary to perform each task result from a stochastic 
process, permitting the modeler to represent the variability 
within the system.  Different task networks can be derived for 
different goals and a workload level is assigned to each task 
performed by the human operator.  Various system allocations 
can then be modeled by allocating specific tasks to be 
performed by the human operator or machine (hardware or 
software).  However, to employ this tool to accomplish this 
goal, the modeler must begin with activities to be performed 
by the team, allocate these activities to the human or machine 
and then derive the tasks or actions necessary to perform these 
activities.  Once these activities are allocated to a component, 
human or machine, other inherent tasks may become 
necessary to facilitate communication of system state as 
control is passed between the human and machine[13, 16]. 

B. IMPRINT Task Network 
The IMPRINT model is depicted in the SysML Activity 

Diagram [17] shown in Figure 2.  This diagram divides the 
activities among three primary sections, separated by vertical 
lines known as “swim lanes”, which separate the activities of 
the environment, the human operator, and the agent. The 
environment nodes in Space Navigator are responsible for 
starting the model, generating ships, altering no-fly zones and 
bonus locations, operating the timer, and halting the model as 
shown in the center “swim lane” of the activity diagram.  

The player’s attention and actions during game play are 
facilitated through a loop, continuously repeating two high 
level functions; determining which ship to select and drawing 
a trajectory for a ship. However, the loop is completed both 
for ships that have no drawn trajectories and for those that 
have a non-optimal trajectory.  A view of ideal game play may 
include the person working to their capacity as they try to earn 
the highest score, leveraging the agent to draw paths they do 
not have time to draw.  This behavior is depicted through the 
path in Figure 2 within the Human swim lane, which includes 
identifying background items, identifying ships without routes 
without waiting for the agent, selecting a ship and drawing a 
route.  However, as demonstrated in the experiment, the 
human could permit the agent to draw some initial paths 
permitting them to attend to other tasks within the game.   
Thus, a task load node, indicated by the first decision node in 
the human swim lane, is used to represent a human’s decision 

to either initiate ship selection or monitor the environment, 
allowing the human to observe the agent as it creates routes. 
The decision to monitor is based on a reliance algorithm 
derived from the experimental data, as seen in Figure 3.  

The reliance algorithm produced a probability that the 
human would permit the agent to draw a trajectory.  Analysis 
of the experimental data indicated that the probability of the 
agent drawing an initial route as a function of the number of 
ships on screen produced a parabolic curve. The participants 
performed more route draws when the number of ships on 
screen was low as they likely had ample time to interact with 
the system.  They also appear to have drawn more routes when 
larger numbers of ships were on screen to help avoid 
collisions, given the agents’ inability to react to neighboring 
ships, no-fly zones, and bonuses. The regression curve in 
Figure 3 accounted for the reliance of the operator on the 
automated agent with respect to the number of ships on screen. 

The other factor that was necessary to include in the 
reliance algorithm was the trigger time of the agent. While no 
data exists to construct this function, it was assumed that the 
longer the agent takes before assigning a route, the more likely 
the human will initiate tasks to avoid losing points.  At the 
lower limit, if the agent drew the line as soon as the ship 
appeared, the person would never have time to initiate a route.  
However, in the case that the agent requires an infinite amount 
of time before drawing the route, the human cannot rely upon 
the agent to draw any route. The operators’ average cycle-
time, time between initiating routes on separate ships, and 
standard deviation were derived from the experiment’s fully 
manual gameplay. Using three standard deviations above and 
one standard deviation below the mean of 2.6 s, it was 
assumed that a human would be unlikely to initiate a route for 
a ship at 0.1 s and the agent would be unlikely to initiate a 
route at 11.6 s. This assumption was used to determine points 
on a linear equation relating delay time to probability of agent 
draws.  This linear model was used to shift the third order 
regression line shown in Fig. 3 downwards as the agent’s time 
delay increased and shift the regression line upwards as the 
agent’s time delay decreased. For every second that the 
agent’s delay changed, the baseline probability value was 
incremented or decremented by 0.1058, within the bounds that 
the probability must be between 0 and 1.  

Returning to the task network, if the operator decides to 
draw a route based upon the reliance algorithm, they will 
continue to identify ships on screen. Afterwards, they can 
draw a route for a ship that does not have a route, or they can 
“redraw” a route for a ship that has an existing route. 
Following the draw route node, the human attention loops 
back to determine the background items, where the number of 
items impose a taskload, which is modeled as the number of 
ships on screen. As shown, when the human draws a route, the 
environment is updated, permitting both the agent to be 
informed by recording the route and displaying the route for 
the human. 

Simultaneously, the agent is selecting ships and drawing 
trajectories for them as well, as indicated in the Agent swim 
lane of Figure 2. Unlike the human, the agent does not have 



the option to perform fewer tasks. The agent is constantly 
monitoring all ships on screen and drawing a route once the 
time trigger has occurred.   However, unlike the human, the 
agent can only draw trajectories for ships that have not 
received a trajectory, and the agent does not redraw non-

optimal trajectories.  As the agent draws a path, this 
information is provided to the environment. 
 
 

 
Fig. 2. Activity diagram representing the actors and actions in the IMPRINT model. Vertical swimlanes are used to designate actions  
performed by the specified actor. 
 

 
Fig. 3. Graph displaying the probability of the agent drawing a route with 
respect to the number of ships on the screen. The third order regression line, 
with equation, was used in calculating the reliance algorithm in the IMPRINT 
model. 
 

 
After the human or agent has designated a route for a ship, 

a new entity is created in the model, representing the ship with 
a route. The ship continues along its path for a length of time 

drawn from a distribution representing game play time-on-
screen and is be removed from the simulation after the time 
has elapsed (not depicted in Figure 2). There are three possible 
end results for a ship: collision, destination reached, and off-
screen traversal. Ships arrive to these nodes according to 
probabilities associated with the number of ships on screen 
and the human or agent that drew the route.  Once again these 
distributions are developed from the human-in-the-loop data 
discussed earlier. 

C. Model Validation 
To validate the model, the model was exercised for 

conditions that matched the conditions of the previously 
explained human-subjects experiment and the results were 
compared.  The IMPRINT model replicated the experimental 
trials by having the agent create routes for ships that were on 
screen, and without a route, for two seconds or longer. The 
results applied for model validation were scores, number of 
automation trajectories drawn, and number of “redrawn” 
trajectories by the operator. These specific aspects of the 
model were chosen to ensure that performance and behavior, 



as predicted by the model, was similar to the data from the 
human-in-the-loop experiment. To compare score values and 
trajectories, two sample t-tests with 95% confidence intervals 
were performed.  For score, the average from the experiment 
was 8043 (sd 1574) while the mean from the model was 8053 
(sd 871).  The t-test indicated that these values were not 
statistically different (t(1,169 = -0.06, p=0.955).  The average 
number of agent-drawn trajectories from the experiment was 
126.9 (sd 24.4) and the mean from the model was 122.4 (sd 
3.24).  The t-test indicated that these values were not 
statistically different (t(1,109) = -1.91, p=0.06).  The average 
number of human redraws from the experiment was 44 (sd 
15.5) and the mean from the model was 45.59 (sd 6.08).  The 
t-test indicated that these values were not statistically different 
(t(1,141) = -1.00, p=0.318). Overall, there was no evidence of 
statistical differences between the model and the experimental 
data, and thus the model is considered validated. 

The workload values collected in the human-subjects 
experiment were NASA-TLX values, whereas the workload 
inputs in IMPRINT are from the Visual, Auditory, Cognitive, 
and Psychomotor (VACP) workload assessment tool. 
Consequently, workload could not be directly validated. Thus, 
validation was conducted with a subject matter expert.  

As the slope of the linear equation relating agent delay 
time and probability of an agent draw was assumed during 
model construction, it is important to understand the 
sensitivity of the model to this slope.  Simulations were run 
with a 10% increase and decrease to this slope. At the lower 
bound, on average the human drew 2.5 fewer trajectories and 
scored 24 fewer points. At the upper bound, the average score 
increased by 18 points and the human drew 2.14 more 
trajectories. The change in both values was greatest during the 
8.6 s delay time where in the lower bound the human drew 10 
fewer trajectories and in the upper bound the human drew 8.35 
more trajectories. The difference in score for both fluctuated 
and had no distinct pattern. The change in workload and 
redraws was negligible.  Therefore, it is believed that changes 
in this slope will significantly affect the model results for 
delay times near the intersection of the linear model with the 
delay time axis.  However, the characteristic shape of model 
output as a function of timing delay is likely to be robust. 

D. Simulation Procedure 
A series of simulations were conducted in which the 

trigger time of the automated agent was altered in each 
simulation. Trigger times were selected based upon participant 
performance.  As noted earlier, the participant required an 
average of 2.6 seconds between the time a ship is spawned, 
appearing on screen, and the time the human selects the ship to 
draw a trajectory.  The associated standard deviation of this 
time was 3.0 seconds. Six conditions are evaluated: the mean 
time for a participant to select a ship (2.6 s), plus one-half, 
one, two and three standard deviations (ie., 0.1, 5.6, 8.6 and 
11.6 s), as well as the original 2 s delay employed in the 
human-in-the-loop experiment.  The six scenarios were each 
simulated 100 times, having the same random seed value for 
each condition. At the end of each scenario, the average 
scores, workload, and trajectories drawn were calculated.  A 

one-way Analysis of Variance (ANOVA) was used to 
determine whether agent delay-time had a significant effect on 
any of the model outputs and Tukey Pairwise Comparisons 
were used to test for differences between individual means. 

V. SIMULATION RESULTS  
The results from the IMPRINT simulations displayed an 

inverse relationship between performance and workload, as 
shown in Figure 4. As the trigger time increased beyond the 
average time of 2.6 s, the operator’s workload increased and 
overall team performance decreased.  Although performance, 
in terms of overall score, was recorded for each of 100 model 
runs, workload is shown for a typical single model run. 

 
Fig. 4. Graph displaying average score and workload per agent delay time 
 

 
The ANOVA indicated that the effect of agent trigger time 

on overall score is statistically significant (F(5,594) = 43.28; p 
< 0.001).  Tukey pair-wise comparisons indicated that there 
were four groups of scores that were significantly different 
from one another. These groups in terms of agent time delay 
were (0.1, 2.0), (2.0, 2.6), (2.6, 5.6) and (8.6, 11.6). It was 
shown in these pairings that as the time delay increased the 
average score significantly decreased. 

As shown in Figure 5, the human and agent draws were 
also inversely related.  The agent’s trigger time significantly 
affected agent draws (F(5,594) = 35784; p < 0.001), human 
draws (F(5,594) = 31975; p < 0.001), and redraws (F(5,594) = 
174; p < 0.001). The ANOVA for agent and human draws 
produced similar results.  The number of human draws were 
statistically different for all agent redraw conditions. The 
effect of time on redraws generated three different groupings, 
with 0.1 s producing the most redraws, followed by 2.0 and 
2.6 s conditions and 5.6, 8.6, 11.6 s conditions.  

These simulations indicate that human behavior will 
change as a function of the agent’s trigger time. When the 
agent created routes at the same speed or faster than the 
human, the human initiated routes between 2% and 20% of the 
time. When the trigger time is one to three standard deviations 
slower, the number of human initiated routes increased from 
50% to 95%. Furthermore, the model anticipated that the 
largest shift in performance would occur when the trigger time 
was adjusted from 5.6 to 8.6 s, decreasing the score by 10%. 
The greatest increases in workload should occur when delay 
times change from 2.6 to 5.6 s and 5.6 to 8.6 s, with a 7% and 
5% increase, respectively.  



Fig. 5. Graph displaying mean human draws, agent draws, and redraws per 
agent delay time 
 

 

VI. CONCLUSIONS AND FUTURE WORK 
According to the simulations, timing of the interaction 

between the human and automated agent significantly affects 
system performance, human workload, and behavior. As a 
result, the agent’s task time can be determined to support 
system objectives. For example, if the only objective is to 
obtain the highest score possible, it seems appropriate to place 
the agent trigger at 0.1 s to obtain the best possible team score. 
However, if there is an added objective, such as keeping the 
user engaged in drawing a portion of the initial routes, the 
approach should vary. For the operator to respond correctly to 
any error that might occur, they need to detect and understand 
the context of the error. By having the agent trigger too 
quickly, the human is likely to learn to redraw paths without 
drawing initial paths.  Under conditions of low task load, as 
might occur as the spawn rate of the ships is reduced, the user 
may fall into performing a vigilance task and potentially lose 
the ability to maintain situation awareness.  Therefore, while it 
may be optimal to have a quick trigger to earn higher points, 
this same trigger could be detrimental if the human is unable 
to maintain alertness and therefore be unable to detect agent 
errors. The purpose of keeping an operator “in the loop” is to 
ensure they are capable of making appropriate decisions when 
tasked accordingly. Keeping the operator “in the loop” appears 
to correlate with the timing of human-agent interaction. 

Future studies could investigate how an individual’s 
tendency to trust an automated agent affects performance, 
workload, and behavior. This can be evaluated by adjusting 
the reliance function to represent varying levels of trust. 
Furthermore, the results from this model suggest that human-
subjects experiments should be performed to validate the 
behavior predicted in this research. If those experiments affirm 
this research, it could provide insight into the significance of 
timing when human and agents work together on the same 
task. Finally, one might expect that agent delay time is not 
only dependent upon the human’s response time but also upon 
the taskload modulated as a function of ship spawn rate.  
Understanding interactions between these variables may 
provide an understanding of human-machine teaming based 
upon agent timing. 
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