

Describing and Reusing Warfighter
Processes and Products:

An Agile Training Framework

Jeff Waters, Joanne Pilcher, Bruce Plutchak, Eric Voncolln, Daniel Grady and Ritesh Patel
Space and Naval Warfare Systems Center Pacific (SSC Pacific) San Diego, CA

Abstract—This position paper describes a framework, i.e. a set of

design and architecture recommendations, for achieving agile

training. The approach for the design is to be process and data

driven, focused on reusability, and borrowing basic principles

derived from web-based architectures, semantic processing, user-

centered design, composability, complexity management,

machine-understandability, scalability, gaming and open linked

data. The fundamental features of the framework are open, easily

understood, easily implemented, and tool-agnostic. With such a

framework defined, the training community could collaborate to

build out the more extensive cloud content, extend the capability

and ensure that the benefits of agile training are achieved,

namely more focused and faster training on shared processes

anytime, anywhere at reduced cost and without a large support

staff.

Keywords—Agile, Training, Decision making, command and

control, applications, resource allocation and management, web

services, standards

I. INTRODUCTION: WHAT IS AGILE TRAINING?

This paper describes a prototype Agile Training
Framework (ATF). The ATF focus is on agility and strong
familiarity and expertise with processes. The goal for an ATF
user is to not only understand the process, but to actually walk
through it, producing the expected agile-version of the
products at each step, and collaborating in small groups or
large groups as needed to improve overall familiarity and
facility with the processes. The ATF does support linking to
products or resources produced by specific systems, but the
ATF does not require the setup of specific equipment or
systems. Instead, the ATF provides generic interfaces for the
basic capabilities (e.g. map, timeline, product viewer/creator).
The ATF runs in a browser, so it does not require installation
of any client software. See Figure 1. Let’s begin with some
definitions.

What is an “Agile Training Framework”? As opposed to
general education, which is focused more on the “what” of
knowledge, training is focused more on the “how”, i.e. the
process. [1] An ideal agile training framework would support
a full range of training needs, from beginner to expert, from
individual to small group to large group training, from walk-
through to simulation to operational environment, from our
starting day to our retirement.

Fig. 1: A Prototype ATF

Agility implies flexibility, speed, ease of use, lightness,
scalability, and quick adaptability to new and unforeseen
conditions. [2] We’ll see in the rest of this paper how “agile
training” is enabled in terms of a framework; however, in
terms of the end result, the agile training capability should
easily allow any individual needing or desiring training to
learn a process, walk-through it, simulate it, practice on it,
join a larger community, support operational use, measure
performance, revisit, and hone skills. The ATF should be
available anytime from any location and be usable without
travel, equipment or support staff setup. [3]

A framework, in this context, is a set of design principles
with a support structure, such as an extensible, expandable
reference implementation, which provides a foundation for
building more capability consistent with those principles. [4]
For example, one of the design principles of the ATF is that
process input/output products should be progressively
organized (i.e. hierarchically organized with a relatively fixed
set of top-level generic types, such as Observation, Report,
Request, Approval). So, the ATF provides a set of
progressively organized data type representations ready-to-use
for building an application consistent with that principle. A
framework, once defined, also implies a community of
contributors who will use the framework to build out the
larger system over a period of time. [5] Although the ATF
supports foundational principles and can guide community
development to ensure agility, the community itself - the

2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA)

U.S. Government work not protected by U.S. copyright 140

trainers, the trainees, the subject matter experts, the data
modelers, the process modelers, the simulation system
developers, the command and control system developers,
private industry, government agencies, academic institutions,
coalition partners – all will build the specific components of
capability that will be integrated and interoperate via this
framework.

A final introductory word: One of the purposes of this
paper is to suggest that, although the reader may be familiar
with many of these principles and techniques, and they may
seem simple, that the reader take a second look and consider
adopting them as embodied here for the purposes of agile
training. [6] We present here the principles and techniques,
how they achieve the desired goal, and how they facilitate the
adopters’ goals and business models. [7]

II. PROCESSES, PRODUCTS AND PRINCIPLES

Let’s start the ATF story by considering the underlying
principles and any significant implications derived from
teaching people “how” to do something. Since the “how” is
fundamental to training, we should consider a process-driven
approach. [8] In this sense, process-driven simply means that
we should consider what a process is and what foundational
principles we can extract from that definition to help guide
agile training.

What is a “process”? A process can be thought of as a
series of “steps” for accomplishing a goal. [9] A “step” in this
setting is a “task”, or an “action”, something someone or
something needs to do. [10] For a task to be completed,
something needs to have been accomplished, and that
accomplishment can be considered an output “product” of the
task. [11] Each task may have one or more input or output
products. We all execute processes in our daily lives and
work; however, the processes are not always obvious or well
defined. A well-defined task will have clearly defined tangible
input and output products. [12] For some tasks, e.g.
management, where the output product may seem at first
intangible, the output product can take tangible form as a
status report or other type of report.

Although processes can be defined and used for many
purposes, such as automation, our purpose is training. This
training purpose provides scope for the types of processes we
should consider. For example, if a process is so well defined
that it can be automated, and no human is going to perform it,
then we don’t need to train on it. [13] Similarly, if a “process”
is too poorly defined, then apprenticeship might be the only
way to effectively train someone. [14] Although the ATF can
support these processes, the focus is to encourage defining
and documenting processes with steps that have clearly
defined input and output products and to support processes
for training where the human component is still vital, such as
higher-level processes of management, assessment and
decision-making, sometimes referred to as command and
control. [15]

What other significant implications can we draw from a
process-driven approach to training? Previous work on net-
centric interoperability and composability has produced a list
of principles for us to consider. [16] These principles include:
(a) machine-understandability; [17] (b) human-
understandability; [18] (c) scalability; [19] (d) simplicity; [20]
(e) modularity; [21] (f) composability; [22] (g) linkability;
[23] (h) extensibility; [24] (i) visibility; [25] and (j)
accessibility [26]. Fortunately, a few design techniques help
greatly to enable and enforce these principles. One of the
primary umbrella principles from the web environment is
Representational State Transfer, known familiarly as REST.
[27] Let’s consider REST and how it helps enable a number of
these principles of data representation for interoperability and
composability.

What is REST? REST is an architectural style that is the
basis for the current world wide web and is best characterized
by these principles: (a) Every significant component, i.e.
resource, of your application has a unique id (URI); [28] (b)
Every component has a web-friendly representation (e.g.
HTML for humans, JSON for systems); [29] (c) A limited,
well-defined interface, such as HTTP, is used to Create,
Retrieve, Update and Delete (CRUD) components; [30] (d)
No application state is maintained on the server, i.e.
everything you need to proceed is provided in the URL or the
body of the response; [31] (e) executing a traditional
application “service” is accomplished by defining the
representation of the output product of the service so the client
can use the CRUD interface to create, retrieve, update or
delete that product [32]. By using REST, all your significant
resources become visible, accessible, composable, modular,
scalable, and support higher level knowledge management.

Machine Understandability: A few principles, if followed,
are simple to explain and go a long way to enable machine
understandability. One of these principles is to use URIs to
provide unique names for terms, whether those terms refer to
real things or concepts, so that we can be clear and begin to
define the meaning of the terms. [33] Words in languages can
often mean different things to different people and the
definitions that we find in dictionaries are not adequate for
machine-understandability. Semantic standards, such as the
Resource Description Framework (RDF) and the Web
Ontology Language (OWL), use URIs to identify terms and to
link terms via relationships. Although the use of URLs was
also advocated in the discussion of REST, we here note this
additional important reason for using URLs, to ensure terms
are more machine understandable.

Another simple principle to aid machine
understandability is to avoid defining elements as strings, or
any other form of free text. [34] Free text is difficult for a
machine to understand. Although string pattern matching and
natural language processing are powerful techniques, essential
elements can and should be better defined in simpler ways.
More standardized terms and definitions for most text fields
can be determined by visiting with the practitioners of the
given process. Those terms can then be referenced by unique

2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA)

141

identifiers, e.g. URLs, and then terms can be linked to their
definitions, relationships, or other useful information
supporting drill-down, inferencing, and querying.

Another principle for ensuring that processes are machine
understandable is to ensure that each step in the process has
well-defined input and output products. [35] Even if the
product is simply a status report, clearly-defined tangible
products can be used by a machine for many purposes,
including monitoring process status, linking processes
together via their input/output products, alerting others,
forwarding messages, inferencing, and supporting innovative
and dynamic changes to processes (e.g. a process or sub-
process can be reassigned or changed or skipped as long as the
needed product is produced).

Human Understandability: For processes to be learned in
the form of training, they should be as humanly
understandable as possible. Human understandability is aided
by products and processes that are organized in a progressive
fashion, i.e. organized hierarchically where parent nodes are
logical groupings of the child nodes, such that ideally no more
than 7 to 10 steps (or tasks) are under any give node. [36] This
logical grouping can be applied to both products and
processes. This type of organization makes processes much
more amenable to human understandability.

Simplicity: Modular components, performing simple
functions whose design includes a standardized linking
ability, can be used to manage the complexity of larger
systems. This principle is followed in the ATF. As noted, all
processes are defined in terms of progressively-organized
steps. Since each product is identified by a URL, it’s possible
to establish links between the steps using the input/output
products as the links. [37] URL filters can be used that
specify the type of input product desired with any desired
range limitations, such as a product from a specific author role
or a specific geographic area. [38] By this indirect method,
process steps may be dynamically linked to form new
processes or to reveal undocumented existing processes. By
using the products as the link between the steps, we have the
full-range of flexibility from hard-wired to broad scope filters.

Scalability: The ATF is designed to be scalable both in
terms of its structure and its content. Scalability means the
system is capable of expanding gracefully as the numbers of
users and the need for services increases. There is a technical
side to scalability which solutions like REST attempt to
address, but there is also a substantive content perspective
which addresses who is going to put in all of the content. So a
key design feature to enable substantive scalability is to make
the system accessible to the widest number of users and to
empower those users to provide the content easily. The
primary advantage to empowering users is that there are
potentially thousands of users, e.g. in the ATF case, all those
who want or need training, whereas the number of support
staff is limited.

Extensibility: The ATF supports extension of its content,
as well as expansion, through the extendable progressive

organization of the content. Any user can extend any of the
processes or datatypes (e.g. Observation, Report, Request,
Approval) and then save the new process or datatype back to
the cloud repository for reuse by others. Users can add new
standard “answers” to pull-down lists for data field
“questions”, such as why was the request denied or what is the
status level. In all of these ways, the user is empowered to not
only contribute content, but to tailor or extend the entire
system as needed to support their processes and terminology.
This extensibility is a key enabler of agility and is well used in
the ATF.

User Interface: For each step in a workflow, a user needs
an interface appropriate for that purpose. Since each
workflow step in this agile framework produces a product,
and since the products are progressively typed, share the same
basic core data and links, and are expanded in a standard way
as property/values, the user interface can be built from
reusable widgets, one per generic product type. [42] More
specialized widgets, one per specialized product type, can be
fleshed out by the community. The simple but structured
representation of the data products and processes enables a
structured user interface with reusable components. In this
way, even when a new process is implemented in the
framework, a user interface to drive the training on that
process can be created automatically.

III. THE ATF PROTOTYPE

Based on the principles noted above, a relatively simple,
generic set of data products have been proposed for use in the
prototype ATF for proof-of-concept. Each product
representation includes the set of core common elements listed
in Figure 2 and then each product adds on any additional
elements required for that particular data type.

The high-level types, relevant for decision-making, have a
number of elements and links in common which support the
basic principles. The types are simple, standardized, and
combined in sequential or hierarchical ways to construct more
complex structures such as progressively-organized processes
or data products. To the extent each type of data product
varies, individual unique elements are added as appropriate.
The selection of data products and the amount of detail
represented is intended to address the goals of the framework
effort, which is to serve as a proof-of-concept prototype that
can be expanded by the community as needed.

A. Agile Web-based Data Repository

The ATF prototype uses MongoDB, an open-source,
document-oriented, NoSQL database as a process and product
data repository. MongoDB stores JSON-style documents with
dynamic schemas allowing significant flexibility for front-end
developers. MongoDB’s features provide significant flexibility
and agility which can be leveraged effectively to provide a
real-time, run anywhere data access capability appropriate for
enabling a cloud solution for the agile training framework.
The current data format for information exchange from client
to data repository is JSON. JavaScript Object Notation

2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA)

142

(JSON), including GeoJSON, is a text-based, open standard,
language-independent, lightweight data interchange format,
easy to read and write, and well-used and supported by
modern web and cloud services.

Fig. 2: Generic Data Types and Their Common Elements

B. Future Development: Scenaro Worlds

Agile training is designed to support rapid transition from
individual to small group to large group training, and the
fastest transition to large groups, following the online gaming
example, is to maintain online scenario worlds. These virtual
worlds can be designed from two perspectives. First, planners
have expectations for the types of worlds in which they will
need to conduct their operations. For example, one might
envision a Disaster Relief World which supports modeling of
a large scale disaster, such as a hurricane or tsunami. Such a
world would pose many significant, but foreseeable, barriers
to effective operations, and pose significant, but foreseeable,
needs, e.g. evacuations, shelter, water, medical care. Second,
planners have knowledge of the major defined mission
processes upon which all participants should be trained.
Planners could map these mission processes to the core 7 or 8
scenario worlds, and tailor the worlds accordingly, to ensure
all core processes are represented in these worlds. Since the
planners and world builders know about the agile training core
products and processes, they can build specific aspects of the
scenario worlds to simulate those processes and support any
online user who wants to join and participate.

Advantages of scenario worlds include: (a) a great home for
advanced modelers and scenario builders to create reusable,
detailed models and scenarios for broad reuse; (b) available
online 7/24, 365, and accessible remotely from anywhere in
the world; (c) enable users to join or rejoin for any amount of
time; (d) competition against other live users; (e) enables

collection of metrics to document, assess and motivate; and (f)
turns the one-time expense of building scenarios into sound
investment through reuse.

IV. CONCLUSION

The purpose of the Agile Training Framework is to enable and
empower local control of training needs 7/24 365 in a flexible
cloud-based, browser-based, easy-to-use, process and data-
driven interface. The interface design and its reference
implementation will serve as a working proof-of-concept of
scalable, flexible, dynamic, cloud-based training on the
continuum of process and products from coalition, joint,
service, command and local units. The ATF is designed to be
extensible and evolvable by the training community. The
result of the work will be to improve mission information
clarity, sharing and interoperability to reduce mission errors,
improve speed of situational awareness, and assessment across
the enterprise, and to increase the number of missions that can
be managed by a single operator.

PRINCIPLES & REFERENCES
[1] Training is Learning and Practicing Process; Training is focused on the

“how” of doing something, i.e. the process. See Edwards, J. “A Process
View of Knowledge Management: It Aint What you do, it’s the way
That you do it.” Electronic Journal of Knowledge Management V. 9,
Issue 4 www.ejkm.com/issue/download.html?idArticle=301

[2] Agility is required in modern warfare; Agility implies flexibility, speed,
ease of use, scalability and quick adaptability to new circumstances and
unforeseen conditions. See Dekker, Anthony H. “Measuring the Agility
of Networked Military Forces [online].” Journal of Battlefield

Technology, Vol. 9, No. 1, Mar 2006: 19-24.
<http://search.informit.com.au/documentSummary;dn=11118392111170
0;res=IELENG> ISSN: 1440-5113.

[3] Agile Training is the goal – flexible, quick and easy; Agile Training
should enable an individual at any time from anywhere to learn a
process, walk-through it, simulate it, practice on it, join a larger
community to improve, measure performance, and revisit and hone
skills. See Gehler, C. “Agile Leaders, Agile Institutions.” Carlisle, PA:
Strategic Studies Institute, US Army War College, 2005.
http://www.strategicstudiesinstitute.army.mil/pdffiles/PUB618.pdf

[4] An Agile Training Framework enforces the principles of agile training
and makes building capability in alignment with these principles easy; A
Framework is a set of design principles coupled with a scaffold
infrastructure enabling and optimizing those principles. Users can build
capability more easily and more consistently compliant with those
principles by using the framework. See Wong, K.Y. and Aspinwall, E.,
“Knowledge Management Implementation Frameworks: A Review”,
Knowledge and Process Management Volume 11 Number 2 pp 93–104

(2004)

http://download.clib.psu.ac.th/datawebclib/e_resource/trial_database/Wil
eyInterScienceCD/pdf/KPM/KPM_5.pdf

[5] The Framework is for the Community; the community can extend or
expand the framework to enhance the usability of the framework over
time. See Rico, Mariano, David Camacho, and Óscar Corcho. "A
contribution-based framework for the creation of semantically-enabled
web applications." Information Sciences 180.10 (2010): 1850-1864.
http://oa.upm.es/5632/2/Corcho_02.pdf

[6] A Framework ensures principles are followed even if they are not well
understood; if developers are left unguided, they often ignore
recommended implementation solutions because the connection to the
underlying principles, and the underlying principles themselves, are not
well understood. See [4]

[7] The Agile Training Framework enforces agile training principles; The
recommended implementation solutions presented here support these
principles and can be easily used.

2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA)

143

[8] Agile Training is Process-Driven; An Agile Training Framework (ATF)
should take a process-driven approach.

[9] A Process is a series of Steps for accomplishing a goal. Lindsay, Ann,
Denise Downs, and Ken Lunn. "Business processes—attempts to find a
definition." Information and software technology 45.15 (2003): 1015-
1019.

[10] A Step in a process is a task, i.e. an action, something that someone or
something must do. See [9].

[11] Each completed step results in an output product.

[12] Each Step in a well-defined process must have one or more input and
output products.

[13] Processes so fully defined as to be automated don’t require human
training.

[14] Processes so ill defined as to require “artists” are not amenable to
training.

[15] Well-defined Processes, where the human component is vital, are the
focus of agile training.

[16] Net-centric literature defines many principles of interoperability and
composability. See Kaplan, Jeremy M. “A new conceptual framework
for net-centric, enterprise-wide, system-of-systems engineering.”
National Defense University Washington DC Center for Technology and

National Security Policy, 2006.
http://www.dtic.mil/dtic/tr/fulltext/u2/a453974.pdf

[17] Machine understandability of data and processes allows for machine
processing as opposed to using computers to be used as simply fancy
telephones, to chat, send email, and VTC. See
http://www.w3.org/DesignIssues/LinkedData.html

[18] Human understandability of data and processes ensures we can
effectively train a broad and diverse set of ordinary (non-expert) users.
See Ottensooser, Avner, et al. "Making sense of business process
descriptions: An experimental comparison of graphical and textual
notations." Journal of Systems and Software 85.3 (2012): 596-606.

[19] Scalability means that the framework empowers users and so can enable
and support a vastly growing number of users, data, processes and
overall training accomplished.

[20] Keep things simple. See “The Simplicity Principle in Human Concept
Learning” Current Directions in Psychological Science December 2003
vol. 12 no. 6 227-232.

[21] Modular components are simpler to build and understand, and they fit
together in a simple, standardized manner.

[22] Sophisticated systems can be built from composable modular
components. See Callebaut, W. “Understanding the Development and
Evolution of Natural Complex Systems.” (2005 MIT Press).

[23] Linking components is a form of distributed, decentralized, standardized
interconnection of modular components. See Wilde, Erik, Florian
Michahelles, and Stefan Lüder. "Leveraging the Web Platform for the
Web of Things: Position Paper for W3C Workshop on the Web of
Things." (2014). http://dret.net/netdret/docs/wilde-wot2014-w3c.pdf
See also Heath, T., Hepp, M., and Bizer, C. (eds.). “Linked Data – The
Story So Far.” http://tomheath.com/papers/bizer-heath-berners-lee-
ijswis-linked-data.pdf

[24] Extensibility means the entire system doesn’t have to be built on day
one, but can evolve over time.

[25] Visibility means I can see your capabilities, needs, products and status
so I have the chance to help you even if we don’t know each other.
Kaplan, Jeremy M. “A new conceptual framework for net-centric,
enterprise-wide, system-of-systems engineering.” National Defense

University Washington DC Center for Technology and National Security
Policy, 2006. http://www.dtic.mil/dtic/tr/fulltext/u2/a453974.pdf

[26] Be Accessible; Accessibility means you and I have the ability to interact
and help each other without requiring special stove-piped
communication channels. See Stenbit, John P. Department of Defense
Net-Centric Data Strategy. DEPARTMENT OF DEFENSE
WASHINGTON DC CHIEF INFORMATION OFFICER, 2003.

[27] Use REST; REST supports key design principles, including modularity,
visibility, accessibility, linkability, machine understandability,

scalability, simplicity, extensibility and composability. See Xu, Xiwei, et
al. "An architectural style for process-intensive web information
systems." Web Information Systems Engineering–WISE 2010. Springer
Berlin Heidelberg, 2010. 534-547. Also See Haupt, F. et al. “A model-
driven approach for REST compliant services.” Proceedings of the IEEE

International Conference on Web Services. ICWS 2014.
http://design.inf.usi.ch/sites/default/files/seminar-2014-florian-haupt.pdf.

[28] Every significant component (resource) of your application should be
addressable by a unique URL; The URL serves as a globally unique
identifier, but also enables accessibility, visibility, semantic referencing,
linkability, and CRUD services. See Verborgh, Ruben, et al. "The
Fallacy of the Multi-API Culture: Conceptual and Practical Benefits of
Representational State Transfer (REST)." Journal of Documentation
(2014).

[29] Every significant component (resource) of your application should have
web-friendly representations, including a human-understandable one
(e.g. HTML) and a machine-understandable one (e.g. JSON); The
representation supports CRUD services, accessibility, visibility and
linking. See Gomez-Perez, Asuncion, Mariano Fernández-López, and
Oscar Corcho-Garcia. "Ontological engineering." Computing Reviews
45.8 (2004): 478-479.

[30] Every significant component (resource) of your application should have
one simple standardized programmer interface (e.g. HTTP or HTTPS)
supporting only the basic CRUD (create, retrieve, update, delete)
functionality.

[31] Do not maintain application state; scale your applications by
representing application state in your data model through the use of URL
links pointing forward and backward to next and previous steps. See
http://spring.io/understanding/HATEOAS.

[32] A CRUD interface requires that all services be converted into data
creation and retrieval services which ensures that all significant
components of your application, not just data but also services, are
accessible, visible, scalable, simple to use, and machine-understandable.
See Leonard Richardson, Mike Amundsen, and Sam Ruby. 2013.
Restful Web Apis. O'Reilly Media, Inc..

[33] Use URLs as unique identifiers for your application terms and concepts;
The use of URLs (or more broadly URIs) supports semantic processing
standards such as the Web Ontology Language (OWL) and the Resource
Description Framework (RDF) and the Open Linked Data movment,
avoids language-unique issues, and enables accessibility and visibility to
the terms. See Bizer, Chris, Richard Cyganiak, and Tom Heath. "How to
publish linked data on the web." (2007). See also
http://cs.ulb.ac.be/public/_media/teaching/infoh509/8-owl.pdf.

[34] Avoid free text in your data representations; Free text is uncontrolled,
unclear, and unmanageable.

[35] Ensure each step in a process has well-defined input and output
products; Well-defined input and output products can be monitored,
machine-processed, linked to and from and serve as a dynamic, scalable
mechanism to link steps in processes.

[36] Organize both your data types and your processes progressively, i.e.
with a limited number of generic, manageable types or steps at each
level of a hierarchy; Progressive organization enables humans to have a
manageable amount of information to learn and understand at each level,
and enables more information to be added in a manageable way.

[37] Use URL references to the input/output products to link steps in a
process; scalability is enabled as well as composability, modularity, and
migration to operational realism to enable one step to link dynamically
to one or more processes.

[38] Use URL references to types of input/output products and to subsets of
the input/output products to tailor how processes are linked; process can
be linked by products produced in a given geographic area, by the unit
which produced it, or by other properties. See
http://www.cambridgesemantics.com/semantic-university/rdf-101.

[39] Ensure scalability by making your system widely accessible; the more
users who can access your system, the more users who can reuse the
content and share information.

2015 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA)

144

