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2.1 Introduction
The recent advancements in artificial intelligence (AI) and the integration of

machine learning (ML) models into day-to-day tasks and applications (Davenport

& Kalakota, 2019) have heightened aspirations for innovative healthcare solutions

(Habehh & Gohel, 2021). This potential, however, depends on the availability of

medical data that is both of good quality and sufficient quantity (Abraham, 2023;

Riskin, 2023). However, apart from these two requirements concerning data

sources, a horizontal requirement, arising from a legal standpoint related to pri-

vacy protection (Wieringa et al., 2021), poses a challenge regarding how data can

be involved and utilized in training and inference workflows.

With the emergence of dataspaces of controlled and fully interoperable infra-

structure for data sharing and exploitation and the continuously enriched legal

and governance framework concerning data and digital services (Shaping

Europe’s Digital Future, https), data availability and usability are becoming more

straightforward. Consequently, this development is creating better awareness

regarding both the value and sensitivity of digital assets (Adekoya & Ekpo,

2022). Although the federation of data in the context of dataspaces addresses to a

large extent the vertical business ecosystem, where data ownership and provision

are both subject to the governance decisions of a single stakeholder (Usländer &
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Teuscher, 2022), much more complexity is involved when it comes to medical

data. The reason is similar to all cases where the interests of individuals are

involved. The data subjects who play the primary role in governance decisions do

not have a direct connection with the health domains responsible for storing the

data on their behalf (Berlage et al., 2022). As the storage, exposure, and usage of

data are strictly related to the well-defined consent decisions made by the data

subjects, the parties involved need solutions that may require revisiting current

practices to allow them to effectively participate in the various dataspace pro-

cesses. Such solutions should be subject to trust establishment and continuous

attestation, expressed in the form of immutable proofs, ensuring adequate and

foreseen system and processing integrity (Koutsopoulos, 2022).

The motivation, challenges, and aspirations outlined above have significantly

influenced the objectives of the European project PAROMA-MED. The project

aims to develop, validate, and evaluate a hybrid-cloud (central and edge) delivery

framework that ensures privacy and security for services and applications in fed-

erative cross-border environments. This is achieved by providing technologies,

tools, and services to support various aspects, including automatic attestation of

federation partners; privacy and security by design; continuous risk assessment;

privacy-preservation; and trusted data storage and processing in federative envir-

onments; AI/ML by design, managed privacy and security operations for auto-

mated policy enforcement; and cyberthreat detection and mitigation. The concepts

of PAROMA-MED are discussed in this chapter.

2.1.1 Key contributions

The chapter focuses on the following:

i. Current dataspace landscape and evolution of new practices and patterns that

relate to the value of data.

ii. Potential of the availability of medical data for the development of

ground-breaking AI-based solutions, as well as the privacy concerns and

restrictions

iii. Concepts of candidate solution, currently evolving in PAROMA-MED,

embracing privacy protection at its core with utilization potential beyond the

healthcare domain.

2.1.2 Chapter organization

Section 2.1.2 presents the current landscape of dataspaces and particularly how it

may introduce new practices in the healthcare domain due to the potential of

medical data for the evolution of AI-based solutions. Section 1.3 presents the

details of a privacy-aware and privacy-preserving technical approach that is

aligned with the current needs for dataspace establishment in the healthcare

domain. This section considers FAIR (findable, accessible, interoperable,
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reusable) principles as key enabling features for data exploitation and also ana-

lyzes how data sovereignty can be assured, and most importantly, the concrete

trust establishment mechanisms that will raise user confidence.

2.2 Dataspaces and health domain

2.2.1 State-of-the-art and current practices

The evolution of dataspaces across Europe has been dictated, among others, by

the strategic objective of the European Union (EU Strategy, 2022) to become a

world leader in digital and data economy. With interoperability being a key aspect

(EU Data Act, 2022) that all initiatives in the field are trying to ensure and to

avoid fragmentation due to different interpretations and implementations, the

Horizon 2020 OpenDEI (OpenDEI, 2021) project brought together experts from

several initiatives and organizations to define a set of common design principles

and standards, including both technical and governance aspects. One of the key

takeaways of this effort has been the definition of a soft infrastructure that identi-

fies the main sector-agnostic building blocks that in turn identify how the partici-

pants have to interact either within sector-specific (the ones defined in Common

EU Dataspaces and future ones [EU Data Act, 2022]) dataspaces or in intersector

scenarios. This soft architecture organizes the building blocks according to the

four main categories, three of which relate to technology (interoperability, trust,

data value) and one to business and regulation (governance).

Each of the categories identifies a number of important building blocks facilitat-

ing the purpose of the category, whereas additional ones can be optionally deployed

to aid interoperability and connectivity with additional systems with the data connec-

tor architecture by IDSA and the Trust Framework semantics and procedures by

Gaia-X identified in this study as the most important (Siska et al., 2023).

Data connectors provide the basic mechanism for enabling a participant to

connect and operate within the context of a dataspace, ensuring the support of

exchange services and policy enforcement. This, in turn, facilitates technical

interoperability. According to the IDSA Reference Architecture Model (IDS

RAM, 2023), a connector is deployed, either on the cloud or on local resources,

as a set of containers under the command of an application container management

functionality. Among the containers, those identified as core containers take con-

trol of tasks related to data exchange, metadata management, remote attestation,

logging and monitoring, and policy and contract management.

Gaia-X Trust Framework (GAIA-X Trust, 2022) is based on the exchange of

verifiable credentials managed and utilized by functional components at any

phase of interaction among dataspace participants. The fundamental element of

the Gaia-X Trust Framework regards the verification of the validity of the claims

stated in the self-descriptions of the participants, including self descriptions and

claims of service and resource offerings. To achieve this purpose the utilization
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of trust anchors and compliance services is predicted. Presently the trust frame-

work deals with participants identified as legal persons and, on an experimental

basis, natural persons. It is expected that the roles of provider, consumer, and fed-

erator, as defined by the architecture document, will soon be supported by the

trust framework.

2.2.2 Impact on machine learning

Dataspaces have a positive impact on ML and AI as they facilitate data access

and allow better coordination and interoperability between the participants (EU,

2023). All AI technologies benefit from these new facilitating concepts and solu-

tions, leading to the development of important applications in the healthcare

domain, specifically in areas such as diagnosis, treatment planning, and therapy

guidance.

In addition to the advantages of ML/AI technologies, the introduction of datas-

paces not only transforms the paradigm of data storage and access but also has an

impact on ML models. It also brings forth new requirements for the privacy and

security of ML, impacting the field (Kerry, 2020).

In the subsequent sections of this chapter we will focus on AI algorithms that

aim to protect data and AI processes. These algorithms are designed to ensure

protection even in the event of attacks and/or leaks or to minimize their impact.

The privacy and security ML techniques outlined here are designed to prevent

unnecessary data sharing and exchanges, introduce noise to the data when

referencing is necessary, and incorporate traceability measures for all information

used and generated by AI models. A more detailed examination of these techni-

ques will be provided in a later paragraph that outlines the proposed approach.

2.2.3 European digital age and development of secure (health)
dataspaces

The European Commission is trying to make Europe fit for the digital age. It is

determined to promote in Europe the so-called digital decade whose goal is to

strengthen digital sovereignty by setting a new set of standards with a focus on

data, technology, and infrastructure (EU Digital Decade, 2019).

The Digital Decade policy program contains targets, objectives, and ambitions

for 2030 and will guide Europe’s digital transformation. The commission will

pursue its digital ambitions through concrete terms such as projected trajectories

at the EU and national level, an annual cooperation cycle to monitor and report

on progress, and through multicountry projects that combine investments from

EU member states and the private sector.

On January 26, 2022, the commission proposed an interinstitutional solemn

declaration on digital rights and principles in the digital decade. These new rights

include, e.g., prioritizing individuals and their rights in the digital transformation,
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supporting solidarity and inclusion, ensuring freedom of choice online, promoting

participation in the digital public space, enhancing safety and security, and conse-

quently empowering individuals (EU Digital Decade, 2019). These rights and

principles will complement the already existing rights reported in the Charter of

Fundamental Rights of the European Union, as well as data protection and pri-

vacy legislation (GDPR) (Charter of Fundamental Rights of the European Union,

2000; Radley-Gardner et al., 2016).

The European Commission made the proposals in December 2020, and on

March 25, 2022, a political agreement was reached on the Digital Markets Act

(Digital Markets Act, 2022), and on April 23, 2022, on the Digital Services Act.

Together they form a single set of new rules governing digital services in the EU

that will be applicable across the whole of the EU. The main goals of the DSA

and DMA are to create a safer digital space in which the fundamental rights of all

users of digital services will be guaranteed and protected and to establish a level

playing field to foster innovation, growth, and competitiveness, both in the

European Single Market and globally (Digital Services Act, 2020).

The health domain is composed of four essential contributors: data holders

and users, application and service providers, data space governance and operating

systems, and cloud service providers (Gaia-X Domain Health Position Paper

Version 1.0, 2021). Dataspace is the term that primarily refers to any ecosystem

of datasets and data models, including ontologies, data-sharing contracts, and data

management services, as well as associated soft competencies such as social inter-

actions, governance, business processes, etc. Such competencies follow a data

engineering approach whose goal is to optimize data storage and exchange

mechanisms, preserving, generating, and making possible knowledge sharing to

others. In contrast, data platforms refer to architectures and repositories of a group

of interoperable hardware/software components that follow a software engineering

approach (Scerri et al., 2022). The two concepts, data engineering and platforms,

are interconnected and need to be considered together, as commercial solutions

often do not differentiate between them. Therefore, and due to the special require-

ments for protecting the privacy of the individual, a distinction was made between

technology and infrastructure that stores and processes personal and other data.

The nine European data-sharing spaces outlined by the European Strategy for

Data are health, industry, agriculture, finance, mobility, green deals, energy, pub-

lic administration, and skills. They are essential for the implementation of the

European digital market and guide European activities toward the data economy

(Scerri et al., 2022).

The BDVA (Big Data Value Association) is a community of experts that has

been working on the development of dataspaces for many years. Their vision

comprises a data space composed of several individual connected spaces. The

dataspace should be able to cut across sectoral, organizational, and geographical

boundaries (European Big Data Value Association, 2015).

As previously described, the European strategy for data aims to create a single

market for data, which should ensure Europe’s global competitiveness and data
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sovereignty. The strategy essentially aims to ensure the flow of data within and

across EU sectors, making high-quality data available for innovation in the econ-

omy and society (while keeping data owners, companies, or individuals in con-

trol). The strategy is based on ensuring full compliance with European rules,

regulations, and values as well as setting rules for fair access and usage of data in

accordance with the existing data governance mechanisms (EU Digital Decade,

2019). Common European Dataspaces will be central in enabling new technolo-

gies such as AI and supporting the marketplace for cloud and edge-based

services.

2.2.4 Potential

In order to release the full potential of health data, the European Commission is

presenting a regulation to set up the European Health Dataspace (EHS). The EHS

is a specific ecosystem composed of rules, standards, infrastructure, and a legal

governance framework that aims to empower individuals through increased digital

access to and control of their electronic personal health data. It supports the use

and free movement of health data across the EU for better healthcare delivery,

better research, innovation, and policymaking. It enables the EU to use and reuse

the full potential of health data offered through a safe and secure exchange. The

EHS supports the fostering of a genuine single market for electronic health record

systems, medical devices, new technologies, and high-risk AI systems (EU Health

Data Space, 2022). Thus, it is a core component of the European Health Union

and builds further on the GDPR, the proposed data Governance Act, the draft

Data Act, as well as the Network and Information Systems Directives.

Dataspace initiatives aim to access and share highly sensitive personal data in

a secure and confidential manner governed and controlled by each EU member

state in a consistent way, complying with relevant European regulations. A EHS

could facilitate future pandemic management, including fast data transfer and

short reaction times. Pattern recognition of disease outbreaks across state borders

would be possible. Moreover, national healthcare systems could be relieved of the

burden of some bureaucratic processes. For example, doctor appointments neces-

sary to simply transfer data from one medical office to the other by the patient

would become obsolete. Doctors would also be able to treat patients at home,

which again reduces the pressure on hospital bed occupancy.

In the case of regulators and policy-makers, they will have easier access to

health data and be able to make decisions for the better functioning of healthcare

systems, leading to a more evidence-based policy-making. This will lead to better

access to healthcare, increase its efficiency, reduce costs, and enable new research

and innovation.

Also, the industry can benefit from the better availability of electronic health

data sourced in an EU-wide market. This will improve people’s health by facili-

tating the production of medical devices and gadgets, leading to improved person-

alized healthcare coverage.
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2.2.5 Challenges

Secure health dataspaces require a complex ecosystem involving many different

stakeholders connected by a plethora of regulated processes. The set-up and oper-

ation of such dataspaces are associated with many challenges. Various sources of

public funding involved in the design of health dataspaces need to be reconciled.

EU member states can apply different financing models in accordance with their

sovereign legislation. Moreover, highly fragmented and heterogeneous EU mar-

kets limit the quick rollout of dataspaces or any other kind of digital framework

on a large and transnational scale. Stakeholders may struggle to interpret and map

the GDPR rules with the local legislators of the member states. Navigating the

complex regulatory landscape and ensuring compliance with data protection laws

adds another layer of complexity to the development process.

Data interoperability will be a major challenge for the design of health datas-

paces. Medical data is often stored in various formats, collected by different orga-

nizations across miscellaneous systems. Data interoperability is a prerequisite for

unified dataspaces. Otherwise, practitioners will have difficulty accessing, modi-

fying, and exchanging data. Advances in standardization and the development of

data exchange protocols are needed to achieve sufficient data interoperability. A

single European or international health data standard such as Fast Healthcare

Interoperability Resources (FHIR) should be adopted on a European level, as pro-

posed by a study prepared for the European Parliament’s committee on industry,

research, and energy (Marcus et al., 2022). FHIR is a healthcare data standard

with an application programming interface used to represent and exchange elec-

tronic health records (FHIR & Cloud Healthcare API’, 2023). The standard

enables links between medical data across different systems.

Additionally, special attention needs to be paid to security threats and data breaches.

Sensitive health data should be protected from unauthorized access and cyberattacks

with security measures such as encryption, intrusion detection systems, and the applica-

tion of strong access control. Data quality conservation and integrity go hand in hand

with data security concerns. Medical data needs to be accurate, reliable, free from

errors, and protected from unauthorized tampering. Ensuring long-term data quality is a

challenge, especially if data stems from various practitioners across different systems.

This, in turn, leads to the establishment of data standards and exchange formats.

However, the establishment of data silos is discouraged, even though they might sim-

plify data protection measures. On the other hand, these silos could bring about data

stockpiling without any useful function or connectivity. Current solutions are mostly

too permissive (e.g., exposing data to the public domain or transferring data usage

rights to a single commercial company) or too restrictive (e.g., study-specific point

solutions or local-for-local solutions without opportunities for reuse). A balanced mid-

dle ground between these two extremes should be found in the development of the

modern health dataspaces.

From a global perspective, without a more open European market, innovative

companies are forced to focus their strategies on the United States and China.
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The European Union and its associated transnational legislation could offer a

great opportunity to attract international companies if they were not limited by

the national borders and limitations of the member states. It remains a complex

task to deploy a health data management system throughout the EU. But it is nev-

ertheless a vital step toward medical research and development in Europe.

2.3 Proposed approach
EHDS will create a common space where natural persons can easily control their

electronic health data as far as the fundamental rights of the data subject are con-

cerned. Thus the individual can control to which entities (including humans and

services) their data can be made available, as well as the constraints enforced. It

will also enable researchers, innovators, and policymakers to use electronic health

data on the condition that they fulfill the eligibility criteria for a number of

added-value cases and workflows, in a trusted and secure way. The added value

cases may range from medical inspection to AI training and evidence traceability.

In accordance with the goals of EHDS, PAROMA-MED aims to resolve the

challenges mentioned above and proposes an approach that establishes a data life

cycle, empowering individuals in the governance of their data. It allows the shar-

ing of nonidentifiable health data and facilitates the trusted execution of data for

researchers and other health professionals.

2.3.1 Data life cycle

The governance of data in PAROMA-MED involves four main phases: (1) secure

and trusted addition of health data to the local data lake during data generation;

(2) preparation of data for exposure in the federation, including encryption, anon-

ymization, and ensuring data interoperability; (3) allowing the search over noni-

dentifiable health data available in the data space; and (4) using the data in a

secure and trusted way, which may include additional consent from the user. The

introduced data life-cycle management complies with any stakeholder’s archiving

procedures and policies as it retains adequate structuring, indexing, and retrieval.

Beyond that, it allows data subject consent (including the right to be forgotten) to

be appropriately applied. Furthermore, legacy data is planned to be integrated

through the deployment of appropriate adapters with privacy and ownership pro-

tection and enforcement mechanisms supported by design. PAROMA-MED plans

to provide user support dashboards for managing legacy data inclusion tasks.

2.3.2 Data generation and interoperability

Ideally, data should be generated in direct association with the subject they

belong to. Assuming that data is generated following some medical procedures
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that are performed within the relevant medical infrastructure, the data subject has

to be identified in the context of the validation of their prescribed examinations

(Fig. 2.1). Upon presentation of the prescription, a trusted medical domain

(through components that are continuously attested for integrity and adherence to

the foreseen procedures—depicted in the figure in the green box) requires an

identity challenge to be sent to the data subject. This step involves verifying both

the subject’s identity (potentially supported by a digital wallet application) and

confirming that the medical domain is verified for its adherence to the proper pro-

cedures (Step 1). The resolution of the challenge establishes a time-limited associ-

ation between the subject and the process (Step 2), concluding with the secure

storage of the results under clear governance for future use (Step 3). Adhering to

FAIR practices, an FHIR server (as shown in the figure within the secured storage

FIGURE 2.1

Data collection steps.
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area at the bottom) is used from the moment data is generated. It is protected

under the supervision and encryption by trusted domain artifacts of edge nodes

for maintaining personal information. Additionally, an object storage solution,

also under the same protection measures, is used for storing various medical

results. Object references are included within FHIR documents. In the

figure below (Fig. 2.1), the data subject is represented through a wallet-based

interaction. This aspect has been taken into consideration for further research to

ensure compliance with EBSI and eIDAS solutions.

2.3.3 Data exposure

Before the data can be used in the context of specific actions, they have to be dis-

coverable, as far as federation interactions are concerned. For this purpose, a data

inventory layer is produced from the data types available inside the protected stor-

age. Inventory updates are performed in batch mode to avoid statistical variation

being linked to identities. The process of populating the content of the data inven-

tory layer takes into account constraints from policies specified by individual con-

sents. The outcome is intended to be published for discovery in a dataspace

ecosystem through the appropriate connector (illustrated at the border of the

trusted domain). The flow is presented in the figure below (Fig. 2.2).

2.3.4 Data discovery

Once the data sources are exposed in the federation they can be utilized in AI

model design and training workloads. Exposure does not mean direct population

of some external storage system but the availability and participation in dataspace

FIGURE 2.2

Dataspace exposure.
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interworking sessions for resolutions of queries. Data scientists are able to submit

queries to the Dataspace Metadata Brokering subsystem for discovering availabil-

ity of types and volumes of data according to certain protection levels. The out-

come is collected from all the participating domains. Each of the domains

contributes to the query resolution by applying internally user policies and resolv-

ing the portions of the stored data that can be made available according to the

query options.

This process aims at a streamlined and ergonomic approach that relieves the

data scientists from the burden of locating data that are highly distributed, but

most importantly from the burden of taking all measures to remain with the legal

restrictions that private data protection legislations require. This leads to a one

stop shop service and enabling mechanism. At this stage data availability is pre-

sented under three main categories (assuming local processing in all cases):

• Directly usable data

• Data of application relevance that need additional consent

• Data without known relevance and quantity

If the first category suffices, the ML flow can continue. In the opposite case

the consuming side (data scientists on behalf of any organization or by them-

selves) can suggest rewards for the other two categories in an effort to secure

data availability adequate enough to allow proper development of the intended

ML model. In such cases the subject is presented with an incoming request con-

taining usage context details to facilitate the creation of a clear decision in the

form of an enforceable policy. Subsequently the consent details are updated, and

additional usage possibilities are permitted.

2.3.5 Data usage

In the PAROMA-MED approach one of the core concepts is to avoid the transfer

of medical data. Instead, with appropriate consent and trust prerequisites, the abil-

ity to perform secure computation on health data stored in a node of PAROMA-

MED should be possible. As the usage of data is constrained by the intentions

and identity of the consumer, based on the options of the producer or the subject

whose privacy is to be protected, there is a need to securely enclose the entire

flow within the strict borders of an instantiated environment, both in terms of

deployed functionality and data with a limited lifespan. The approach is based on

the Gaia-X conceptual and composition model, which envisions that resources

can be:

• Virtual Resource: It represents static data in any form and necessary

information such as dataset, configuration file, license, keypair, an AI model,

neural network weights, . . .
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• Instantiated Virtual Resource: it represents an instance of a virtual resource. It

is equivalent to a service instance and is characterized by endpoints and

access rights.

According to the envisaged approach, data at rest (stored in local data lake

and FHIR server) serves as virtual resources that can be instantiated within a vol-

atile and isolated software enclosure. This enclosure facilitates the application of

the intended processing, forming the depicted data usage layer. This step requires

that the data is exposed in a uniform manner irrespective of its actual storage for-

mat. Additionally, if this step requires any filtering, encryption, anonymization, or

watermarking, it is performed during the provisioning phase for the preparation of

the data usage layer (Fig. 2.3).

Once adequate data is available for the model training purposes, data is pre-

pared and remains available for the foreseen processing (constrained in terms of

usage and time limits) (Fig. 2.4). The preparation phase, as explained earlier,

involves adaptation and encryption/crypto-watermarking according to data owner

policies and data user requirements.

The negotiation between the designed application and federation resources is

not limited to data discovery and usage. It also encompasses the availability of

processing resources, which is also subject to discovery and, in several cases,

closely related to the resolution of data availability in cases where data cannot be

FIGURE 2.3

Data usage layer: provisioning.
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transferred outside of the domain borders. Such processes lead to the provisioning

of data processing modules that actively participate in the training process.

Moreover, processing modules can be deployed on the central cloud for resource-

intensive tasks (Fig. 2.5).

The envisaged data usage approach resolves any issues related to the preven-

tion of the use of AI/ML at large that stem from data encryption and protection.

This is achieved by bringing training close to the data without necessitating dis-

closure and transfer among storage systems.

2.4 Dataspaces and participation in ecosystems

2.4.1 Identity governance

The PAROMA-MED approach for identity governance plays a crucial role in

ensuring secure and trustworthy data sharing and collaboration. Identity gover-

nance within the PAROMA-MED framework focuses on establishing a robust and

reliable mechanism for managing identities, access controls, and privacy consid-

erations in federated learning (FL) scenarios.

PAROMA-MED emphasizes the need for a centralized identity management

system that governs the identities of all participants involved in the FL ecosystem.

This includes healthcare providers, researchers, data custodians, and other stake-

holders. The identity management component ensures that each entity is uniquely

identified and authenticated prior to their involvement in any data sharing or anal-

ysis activities.

FIGURE 2.4

Model training preparation: data usage negotiation.
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By incorporating RBAC principles to define and enforce access controls

within FL systems, different entities can be assigned roles based on their responsi-

bilities and privileges. This approach ensures that only authorized individuals or

entities can access specific datasets, participate in collaborative analysis, or con-

tribute to the FL process.

In addition, PAROMA-MED leverages privacy-preserving technologies, such

as differential privacy, FL, and secure multiparty computation, to protect sensitive

patient data during the collaborative analysis process. These technologies help in

minimizing the risk of data breaches and maintaining patient privacy while

enabling effective knowledge sharing and model development.

Clear data governance policies that outline the permissible use, access, and

sharing of healthcare data and consent management mechanisms ensure that

patients have control over their data and can provide informed consent for its use

in FL research.

2.4.2 Consent management

The focus on maintaining privacy and control over patient data while enabling its

usage for research and learning purposes is one of the key aspects of the consent

management approach of PAROMA-MED. Consent management is designed for

the seamless integration of data into the architecture and design choices of the

system.

The consent management process begins with capturing and recording patient

consent for data usage. Various mechanisms, such as consent forms and digital

FIGURE 2.5

Model training preparation: deployment of compute modules.
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consent processes, are employed to ensure that individuals can make informed

decisions about how their data will be used. The aim is to provide transparency

and clarity regarding the purpose and scope of data usage.

Consent storage and access control mechanisms are implemented to securely

store the consent choices made by individuals and associate them with their data.

This ensures that only authorized entities can access the data based on the pro-

vided consent, safeguarding patient privacy and ensuring compliance with consent

preferences.

To respect the dynamic nature of consent, the PAROMA-MED approach

allows individuals to easily revoke or modify their consent preferences. They are

provided with interfaces and tools to manage their consent settings, empowering

them to have control over the usage of their data and exercise their right to with-

draw consent if desired. Moreover, maintaining an audit trail, ensures accountabil-

ity, transparency, and compliance with privacy regulations. These auditing

capabilities include recording the details of consent, such as when it was obtained,

the specific terms of consent, any modifications or revocations, and the actions

taken based on the provided consent.

In the context of FL, PAROMA-MED’s consent management approach is

seamlessly integrated into the process. Only data for which explicit consent has

been given is included in the FL models. Privacy-preserving techniques, such as

data anonymization or encryption, are applied during the learning process to fur-

ther protect patient privacy.

By incorporating consent management into the architecture and design

choices, the principles of responsible and ethical data usage are upheld. The pri-

vacy preferences of individuals are respected, and transparency and control over

data usage are provided, fostering trust between patients, healthcare providers,

and researchers.

2.4.3 Trust establishment

According to the European Data Strategy fact sheet, data processing moves gradu-

ally from centralized cloud computing facilities to smart, connected, and edge

resources. This pattern, in combination with dataspaces, leads to the formation of

data federations, where business domains attach to ecosystems to perform data-

related tasks according to specific roles. According to the Gaia-X conceptual

model, participants interact within the federation by providing (producers) and

consuming (consumers) resources. The basic assumption before engaging in a

transaction is that both interacting parties present verifiable credentials to each

other, issued by participants and signed by trust anchors. Aiming to enable the

automated attestation of federation participants, following the ideas of Gaia-X

and the Compliance Service deployment options (licensed, private decentralized,

secure private, and public decentralized models) closely, the consolidation of the

trust model, grounded in both the secure private and the public decentralized

models, can be expressed as follows:
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• Elimination of manual process in trust establishment and legal binding (e.g.,

contracts and/or SLAs)

• Trust is established on proofs related to the integrity of certified components

and their exclusive involvement in privacy-sensitive operations, based on

trusted execution enclaves and/or trusted platform modules

• Adherence to proper operation is a continuous process, and any verification

failure leads to immediate and immutable publication of the status change

This approach is visualized in the following figure (Fig. 2.6). The concept of

the Federation Communication Bus serves as a placeholder to be further elabo-

rated and clarified according to the dataspace connector protocols.

2.4.4 Protection and assurance

2.4.4.1 Privacy-preserving technologies
2.4.4.1.1. Agent-based approach

The agent-based approach, specifically using authentication and authorization

sidecar proxies along with policy enforcement agents, is an innovative concept in

the context of architecture and design choices for FL in modern digital healthcare

FIGURE 2.6

Trust establishment based on integrity of the participant.

52 CHAPTER 2 Learning in modern digital healthcare systems



systems. This approach leverages the benefits of microservice architecture to

enhance security, privacy, and consent management.

In this concept, microservices within the FL system are equipped with sidecar

proxies responsible for authentication and authorization. These proxies act as

intermediaries between the microservices and external systems, handling the

authentication process and enforcing access control policies. They authenticate

users or entities requesting access to the system and verify their credentials

against trusted identity providers. By offloading authentication tasks to dedicated

proxies, the microservices can focus on their core functionalities, ensuring a mod-

ular and scalable architecture.

Policy enforcement agents are introduced to enforce security, privacy, and

consent policies within the system. These agents are responsible for evaluating

and enforcing policies related to data access, data sharing, privacy protection, and

consent management. They operate in conjunction with the sidecar proxies to

enforce fine-grained policies based on user roles, permissions, and other contex-

tual attributes. This enables dynamic and context-aware policy enforcement,

ensuring that sensitive data is accessed and shared appropriately and that privacy

and consent requirements are adhered to.

By incorporating authentication and authorization sidecar proxies and policy

enforcement agents, the agent-based approach enhances the security, privacy, and

consent management capabilities of the FL system. It enables centralized policy

management and enforcement, ensuring the consistent application of security and

privacy controls across microservices. The use of dedicated agents allows for

flexibility and agility in adapting to changing policies and regulatory

requirements.

Furthermore, this approach promotes interoperability and compatibility with

existing authentication and authorization frameworks, enabling seamless integra-

tion with external identity providers and policy management systems. It provides

a unified and standardized approach to authentication, authorization, and policy

enforcement across the FL system, facilitating secure and privacy-preserving data

exchange and collaboration. The approach strengthens security, privacy, and con-

sent management capabilities, ensuring the protection of sensitive data and com-

pliance with regulatory requirements while maintaining the flexibility and

scalability offered by microservices.

2.4.4.1.2 Machine learning-based approach

FL is the most commonly used ML approach that allows multiple data owners to

collaboratively train an ML model without sharing their own training data. Some

other approaches are possible, such as model fusion. Here, all participants train a

local ML model. When the local trainings have converged, the model weights are

smartly aggregated to obtain a model that generalizes well on the data of all parti-

cipants. Teacher aggregation ensemble is another potential approach. Here, each

local data owner trains a local ML model, which is called the teacher model. The
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teacher models are employed to label a new dataset that is used to train a student

ML model that is deployed.

While FL is flexible and resolves data governance and ownership issues, it

does not itself guarantee security and privacy unless combined with other meth-

ods. Indeed, when using an ML model, information can leak on the learning data,

even if the ML objective is to generalize as much information as possible. Many

recent works have shown that ML models themselves can be used to derive per-

sonal information. In particular, two kinds of attacks have been described:

1. Membership inference attacks: The ability to identify whether a data record

was included in the training dataset of the target ML model

2. Attribute inference attacks: The ability to infer missing attributes of a partially

known record used in the training dataset by accessing the ML model.

These new needs in terms of security and privacy encourage the use of

approaches such as secure multiparty computation (SMPC) or differential privacy

(DP) to secure FL processes.

2.4.4.2 Secure multiparty computation
Working on encrypted data is one of the best ways to guarantee security.

However, enabling efficient processing of such encrypted data is one of the big-

gest challenges in the security field. Although fully homomorphic encryption

allows one to perform calculations over encrypted data without decrypting it first

(Gentry, 2009), it is often judged too slow, complex to use, and impractical.

SMPC (Lindell, 2020) is an alternative to homomorphic encryption. It allows

owners of private datasets to perform operations on their collective data without

disclosing anything except the outcome of the computation. As an example of the

SMPC method, private set intersection (PSI) has garnered much attention due to

its capability to facilitate efficient comparisons and certain analytics on encrypted

data sets. PSI could be used, for example, to determine shared patients between

two hospitals without disclosing the specific patient lists held by hospitals.

2.4.4.3 Differential privacy
Intuitively, differential privacy (Dwork, 2014) corresponds to ensuring that the

output distribution of a randomized algorithm will not be significantly different

considering the presence or absence of one particular individual. An adversary

with access to the algorithm will not be able to learn about individuals but will

only have access to the global knowledge of the algorithm among them, ensuring

the protection of privacy.

2.4.4.4 Data protection and traceability
Data traceability is another major concern for FL, as sensitive data has to be

shared between different users. In some cases, data samples may be remotely

requested to understand incorrect model behavior, or externalized for annotation

when the expertise for annotation is not on site. The risk of information leakage
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is not negligible. Over 50% of data breaches originate internally. There is a need

to be able to hold accountable the entity responsible for the leak and identify it as

quickly as possible. Today, this requires a complex and lengthy investigation,

generally lasting more than 2 months. Similar issues arise when it comes to mod-

els’ parameters. Building a model is costly, as it requires expertise in data science

and medicine as well as huge computing resources. Herein it is important to pro-

tect model ownership.

Data watermarking and model watermarking are technologies that can address

such threats in the FL environment. When applied to images, watermarking is

defined as the invisible embedding of a message into a host image by impercepti-

bly modifying its gray values. Watermarking leaves access to the data while keep-

ing it protected by the message (Boenisch, 2021). Depending on its content, the

embedded message can fulfill various security services, such as ensuring data

authenticity, maintaining data integrity, and enabling data traceability. This may

involve embedding proof of ownership or a message tracker to counteract infor-

mation leaks and identify malicious users. There has been a growing interest in

combining watermarking with encryption to achieve both a priori and a posteriori

protection simultaneously (Haddad et al., 2021). The integration, known as the

crypto-watermarking technique, is designed to provide watermarking-based secu-

rity services from encrypted data.

2.5 Lessons learned: conclusions and future scope
PAROMA-MED has worked so far on an extended set of functional and nonfunc-

tional requirements that are trying to cover several perspectives from different sta-

keholders’ (data subjects, data scientists, medical experts, medical centers and

organizations, application providers, etc.) point of view. The process revealed

several aspects regarding interoperability, feasibility, value protection, and ade-

quacy of the technology. More specifically, the role of FHIR has been identified

as the most prominent solution with respect to data structuring, management, and

storage. Furthermore, involvement in dataspace practices appears to present a

clear pathway toward maximizing the utilization of project outcomes, including

proposing/contributing to a concrete model that explores the feasibility of close-

to-data processing. Furthermore, a clear challenge for utilizing trusted computing

practices for the purpose of zero trust and attestation to deliver the trusted compo-

nents has been made evident. Finally, the interaction with external players, such

as medical experts, has significantly clarified the importance of data value protec-

tion not only for primary medical data but also for secondary data products that

demand domain knowledge.

After fulfilling the identified requirements, the project is currently advancing

in the development of key components, including medical imaging adaptation,

FHIR server, object storage, FL framework, dataspace connectors, watermarking
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solutions, and identity and privacy awareness. At the same time technical work-

shops are being conducted, with the gradual expansion of integration and experi-

mentation scenarios focusing on the overall flow of operations, including data

ingestion, data consent management, data advertisement, data discovery, usage

negotiation, and ML training.

The current study introduces the main concepts evolving within the context of

the European Project PAROMA-MED. With the challenges and potential of

dataspaces and federated ML well-identified, the project is soon to enter an exper-

imentation phase. This phase will lead to the realization of the identified concepts

to be evaluated in a concrete use case related to the qualitative assessment of car-

diac anatomy. Specifically, the project is based on addressing the characterization

of myocardial wall thinning using cardiac computed tomography images.
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