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Disclaimer 

This document is issued within the frame and for the purpose of the FAIRICUBE project. This project 
has received funding from the European Union’s Horizon research and innovation programme under 

grant agreement No. 101059238. The opinions expressed and arguments employed herein do not 
necessarily reflect the official views of the European Commission. 

 

This document and its content are the property of the FAIRICUBE Consortium. All rights relevant to this 
document are determined by the applicable laws. Access to this document does not grant any right or 

license on the document or its contents. This document or its contents are not to be used or treated in 
any manner inconsistent with the rights or interests of the FAIRICUBE Consortium or the Partners' 

detriment and are not to be disclosed externally without prior written consent from the FAIRICUBE 
Partners. Each FAIRICUBE Partner may use this document in conformity with the FAIRICUBE Consortium 

Grant Agreement provisions. 
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1 Introduction 

WP3 aims to provide guidance, recommendations, technical expertise, and implementation support expertise 
to all use case efforts in terms of data analysis and processing. While the use case developers will execute 

the tasks, support will be given to assist in all data handling steps after ingestion and provision on both the 
Rasdaman- and EOxHub services as part of FAIRiCUBE’s overall data and model services. Special emphasis 

is given to the data driven machine learning (ML) model generation. 

 

This deliverable needs to be seen as one item of a classical and logical execution of a machine learning 

(ML) application. Given availability/ingestion of data, we first perform an exploratory data analysis to 
get familiar with the data, analyse statistical parameters and distribution, check for completeness, 

outliers and other characteristics which could be relevant for the choice of the machine learning. This 
in-depth data analysis is covered by this deliverable D3.1 UC exploratory data analysis. 
 
Subsequently, the raw data might require conversion into features through a data engineering step. This 

could imply a combination of several input data sources or applying simple mathematical operations to 

enhance the meaningfulness of the raw data given the relationships that are to be revealed. The more domain 
knowledge, and a-priori information is available, the better the feature engineering process can be performed. 

Based on the findings from the exploratory data analysis, the formulation of the research question and the 
relationship between raw data sources / features, machine learning algorithms can be recommended to 

establish a baseline model if this is not provided by use case owners. Starting from the most efficient machine 
learning algorithm, more advanced ML methods can be identified to form a machine learning strategy. Several 

methods might also be tested to recommend a method based on computational demands and accuracy of 
the ML output. Typically, the testing of ML algorithms is performed on a subset of the original input data or 

on selected cases. The feature engineering process, testing of ML algorithms and the recommendation of a 

cascade to ML algorithms, as well as analysing the output of ML methods, is covered by this deliverable D3.2 
Machine learning strategy specific for each use case. 

 
As the FAIRiCUBE Hub ultimately aims to also provide resource estimations and guidance for ML 

applications, we aim to collect and share computational parameters, timings, requirements and give an 
outlook on the expected scalability of the ML problems defined by the use cases. For each ML algorithm 

identified and executed as described in D3.2 we collect information on e.g., disk storage, CPU runtime, 

main memory consumption, describe the hardware and environment where the ML algorithm is executed 
on and list essential libraries that are needed to exactly replicate the ML application. This technical 

documentation of the ML execution is covered in the deliverable D3.3 Processing and ML applications. 
 

In summary, the exploratory data analysis (D3.1) can be seen as essential input to the development of 

a UC specific machine learning strategy (D3.2) whereas the technical description in D3.3 acts as a 
reference to follow up on the execution and serves as valuable input to estimate the demands for other 

ML applications. In the following, the exploratory data analysis is described for each use case. 
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2 Exploratory data analysis  

UC1 Urban adaptation to climate change 

The decision-making process regarding urban adaptation, to mitigate climate changes, requires some 
data to give a clear picture about the current situation. The aim of this use case is to provide such data. 

Some of the data need to be processed and analysed to make sense for decision makers (e.g., extract 
useful patterns instead of presenting the whole data).  

i. Land use map for Functional Urban Areas 

One  data is the land use/land cover map for Functional Urban Areas (FUAs) in Europe, defined by the 

Copernicus Urban Atlas dataset1 which presents the classes of each area regarding a level of detail. The 
data is under EPSG:3035 (ETRS89, LAEA) CRS2 and with a resolution of 10m. It covers Europe, including 

Turkey (see Figure 1). Here, we consider the five level-1 classes (1. Artificial surfaces; 2. Agricultural 
areas; 3. Natural and semi-natural areas; 4. Water; 5. Wetlands). The classes (typologies) can be further 

detailed by considering level-2 classes (e.g., class 112 represents Artificial surfaces that in addition are 
Discontinuous Urban Fabric) and level-3 classes (class 11210 represents Discontinuous Urban Fabric 
that are Dense). However, in this study, we will only focus on the five classes of level 1. Finally, as 

mentioned before, the Urban Atlas data is presented at FUAs level. To get the coverage ratio of each 
class at cities’ level, we also need cities’ outlines. These are defined in the Urban Audit dataset.3   

 
For example, for the city of Luxembourg in Figure 2 classes 1, 2, 3, 4 and 5 are covering 52%, 18%, 

29%, 0.4% and 0% of the city, respectively.  Using the data-cube constructed by 1- areas coverage 

(from the Urban Atlas dataset); and 2- cities outlines (from the Urban Audit dataset), the use case 
owners have generated a csv file for 1,042 cities, each line containing a city with its coverage ratios for 

the five classes. In addition, we have a 6th class representing the non-data areas. Finally, before 
conducting any data analysis, we filtered out cities with large non-class areas, i.e., the cities that have 

a high degree of incomplete data. We have considered cities with over 50% of non-class coverage as 
outliers and therefore removed a total of 56 cities which reduced the total of considered cities to 986 

cities. 

 

 
1 https://land.copernicus.eu/local/urban-atlas/urban-atlas-2018?tab=metadata 
2 Coordinate Reference System. 
3 https://ec.europa.eu/eurostat/web/cities/data/database 

https://ec.europa.eu/eurostat/web/cities/data/database
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Figure 1: Urban Atlas data 

 
 
 

 

The  class-ratios with respect to the 986 cities are presented in Figure 3. For each class (e.g., Artificial 
surfaces) we represent how many cities for which at least r of the city is covered by the class. For 

example, we have a total of 952 cities for class Artificial surfaces and r=0.1 i.e., 952 cities are covered 

by over 10% with Artificial surfaces. The red line represents the total number of cities (986). Finally, 
the blue bars in the right bottom plot represents the average ratio of each class where 1, 2, 3, 4 and 5 

represent the classes Artificial surfaces, Agricultural areas, Natural and semi-natural areas, Water and 
Wetlands, respectively. We can clearly see that Water and Wetlands cover very few areas of the cities 

in average (only 2% and 0.3%, respectively). One reason is that the data available through Urban Atlas 

does not consider the sea to be part of the city and hence, coastal cities have less water coverage than 
they should have. 

 
The data, as it is, does not give a complete picture of the cities w.r.t their coverage, or further, we 

cannot, manually, identify the cities that are similar in coverage. To achieve this, the data need further 
processing (e.g., using Machine Learning). Ratios of coverages classes with respect to the total area of 

a city can be input for an unsupervised classification which groups the selected cities according to 

dominant coverage types or a combination of coverage types. 
 

Figure 2: The level-1 coverage in Luxembourg 
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Figure 3: Number of cities w.r.t classes' ratios 

 

ii. Socioeconomic data 

Another valuable data source to be considered for clustering cities is socioeconomic data. Socioeconomic 

data reflect both the social and economic trend of a given population. In Europe, Eurostat and its Urban 
Audit database represents one of the most important and complete socioeconomic data sources for 

European cities.4  
 

The data covers 82 variables and indicators, including, for example, ‘Severely materially deprived 
persons’ (under code EC3066V) and ‘Total Resident Population’ (under code DE1001V). As for now, 

Eurostat attempts to cover 910 administrative units between from countries to cities in Europe and a 

time range of 31 years, from 1991 to 2022. Given the above information, someone expects to have 
around 910 cities * 82 indicators * 31 years = 2,313,220 data points (indicator value for each year/city). 

Unfortunately, only 358,101 data points are available (that is 15.48% of the data). This leaves us with 
more than 84.52% of missing data. In what follows we give more insight into the data availability and 

its distribution. 

 
Available data w.r.t cities (expected = 82 indicators * 31 years = 2,542 data points): The 

city with the most missing data is ‘Mechelen’ in Belgium (under code BE012C), with only 27 data points. 
Figure 4 represents the number of available years w.r.t indicator/attribute index. On the other hand, 

‘Helsinki’ in Finland (under code FI001C) has the most available data with 1,117 data points. Figure 5 
represents data availability for Helsinki w.r.t indicators and years.  

 
4 https://ec.europa.eu/eurostat/web/cities/database 
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Available data w.r.t years (expected = 910 cities * 82 indicators = 74,620 data points): The 

year with the most missing data is 1993 with 897 data points, the year 2011 has the most available 
data with 28,985 data points. 

Available data w.r.t indicators (expected = 910 cities * 31 years= 28,210 data points): The 
indicator with most missing data is ‘Severely materially deprived persons’ (under code EC3066V) with 

only 302 data points. On the other hand, the indicator ‘Total Resident Population’ (under code DE1001V) 

has the most available data with around 14,559 data points. 
Total Resident Population as example: In Figure 6 we present an example of the data distribution. 

Here, we represent the number of cities with available ‘Total Resident Population’ values w.r.t each year 
index (1 representing the year 1991). We can clearly see that most years have less than 100 available 

cities. On the other hand, the year 2013 has more than 120 available cities. In Figure 7 and Figure 8 
we present two cities with available ‘Total Resident Population’ for all years (Helsinki and Bari). We can 

clearly see that the time series are very different and are city dependent. In Helsinki (i.e., FI001C), the 

total population change follows an increasing linear trend, while the city Bari (i.e., IT008C) follows a 
more irregular trend. 

 

Figure 4: Data Availability for Mechelen Figure 5: Data availability for Helsinki 

Figure 6: Total Population distribution 
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The data, as is, is limited and is not very useful to draw conclusions and cluster cities. Luckily, some 

Machine Learning approaches can be helpful in gap filling and recovering missing data. 

UC2 Agriculture and Biodiversity Nexus 

Use case 2 aims to study the effects of agriculture and farming activities on biodiversity, specifically in 

agricultural areas. While it is known that various activities can have different impacts on biodiversity, as 

illustrated by Figure 9, these associations are typically poorly understood, likely complex, and difficult 
to clarify. Related scientific studies are usually local in scope and lack sufficient standardization to allow 

comparison of results at different scales. 
 

 
Figure 9: The agriculture - biodiversity nexus 

Data collection and analysis for this use case is commencing but has proven to be challenging due to 
the nature of the data involved. On one hand biodiversity data (such as shown in Figure 10) is not easy 

to obtain, often requiring tracking down individual researchers involved in the studies and attempting 

to get consent for using the data for the project. Furthermore, this data usually is collected in-situ 

Figure 7: Population over the years in Helsinki Figure 8: Population over the years in Bari 
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following different protocols, e.g., species presence only, or both presence and absence, and the 

observations have various levels of inaccuracies (e.g., positional or in species abundance). Additionally, 

there has not been recognized one universal measure of biodiversity, it can be interpreted in many ways 
based on the available species observation data and the particular goal of a study. Fortunately, despite 

these challenges, there are also already established methods to handle biodiversity data and ongoing 
studies towards improvements such as the work on species distribution modelling (SDM) and the 

establishment of Essential Biodiversity Variables. Analysis of these topics and their relation to data cubes 
and machine learning (ML) is in progress. 

 
 

Figure 10: An example of species observation data 

 

The farming data, on the other hand, is somewhat easier to collect, but highly privacy sensitive due to 

the detailed scale and business character of the data. At a later stage this will have consequences in 
how much of the data can actually be obtained at various levels of detail, what can be made publicly 

available, or lead to an evolving need for data (cube) anonymization and/or restricted access 
capabilities. 

 

Finally, environmental data will play a central role in the use case, as it not only contains information 
essential for SDM (or similar work), but expectedly also many confounding factors between agriculture 

and biodiversity. This type of data is most ‘native’ to the data cube technology as many of it originates 
from the Earth Observation (EO) domain. 

 
For the initial data exploration, a small study area has been selected in the Netherlands. Figure 11 shows 

the location in the country, while Figure 12 shows the land use map (of 2018) of the area. The area has 

been selected because it contains a good mix of strongly agricultural region (to the left), some lakes (in 
the middle), and on the right side there is plenty of vegetation and urban areas.  

 

 
Figure 11: Study area in NL 
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Figure 12: Landuse map (2018) of study area 

i. Biodiversity Data Exploration 

For the study area an initial three species distribution datasets have been acquired from the Dutch 
“Nationale Databank Flora en Fauna” (NDFF, www.ndff.nl). This is a large data warehouse that contains 

the distribution data of plants and animals in the Netherlands, providing data entry portals, a central 
archive, validation services and data export portals. In the Netherlands vast amounts of data on the 

whereabouts of species over the last century have been gathered and stored. However, it is scattered 

among different organizations, in different formats and not always digitally available. The NDFF has 
been built to make distribution data of (flora and fauna) species available through one National Data 

Warehouse. NDFF data can be requested for research purposes, and then might be provided without 
costs. In other cases, a subscription or per-request payment is required. In any case, license terms 

apply to the use of the data. 
 

The three initial datasets chosen for purpose of data exploration and proof of concept for data 

interpretation (see Table 1) are a selection for the year 2016 of breeding birds (which do not have a 
large range of movement), ‘other’ species of interest for the use case (such as insects), and plants. 

These cover the whole country and have been provided as comma-separated values (CSV) files. 
 

Table 1: Initial NDFF species distribution dataset properties 

Filename Content File size Record count 

broedvogels_2016.csv Nesting birds 2016 154 MB 454.453 

overigesoorten_2016.csv Other (selected) species 2016 133 MB 370.718 

planten_2016.csv Plants 2016 47 MB 128.968 
 

It is good to note that, as a data warehouse, NDFF stores data from multiple sources (the various 

organizations involved) including crowdsourcing and that different collection protocols are being used. 

Confusingly, it appears that this can mean that attributes of data records with the same name don’t 
necessarily have the same meaning. And, depending on the species and the collection protocol, available 

attributes might differ. Thorough understanding of the data and most likely expert advice is needed for 
a correct interpretation and meaningful processing. Also, since the received files already contain a 

selection of the data which has been validated and reaching certain confidence level, it is not precisely 
clarified what selection criteria (and possibly attribute renaming) have been applied. 

 

The common structure in the provided csv files consists of the following attributes: (1) sci_name, the 
scientific name of the species observed; (2) year, the year of observation; (3) countsubject, the type of 

subject that has been counted (e.g. a nest, a living specimen, a territory, etc.); (4) orig_abundance, 
the amount observed (this can be a number, a ‘*’, or a letter code); (5) radius, the range in which the 

amount has been observed (although this needs to be further clarified); and (6) wkt, a geometry 

(typically an octagon) in WKT representation 5 that indicates the location of the observer, with the size 
of the octagon representing the (GPS) accuracy of the positional information. The geometry is 

represented in the Dutch RD coordinate reference system (EPSG:28992). Some statistics are captured 
in Table 2. 

 

 
5 https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry 

https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
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Table 2: Overview of some properties of the datasets 

Attribute Nesting Birds Other Species Plants 

Total observations 454.452 370.717 128.967 

Mean radius 221.8 161.6 94.1 

Std radius 106.9 121.5 94.1 

Subject: Territory 326.818 NA NA 

Subject: Specimen 115.299 321.733 103.536 

Subject: Unknown NA 39.663 9.450 

Subject: Cover Herb Layer NA NA 9.396 

Subject: Cover Vegetation NA NA 6.457 
 

For all three datasets the living specimen is a well available countsubject category, for which the 
orig_abundance is most frequently 1 (one), and the radius often 283 meters (which seems odd and 

needs further investigation). A histogram of radius values for the living specimen records in the nesting 
birds’ dataset is shown in Figure 13. 

 

 
Figure 13: Distribution of nesting birds living specimen radius values 

In the second phase of the data exploration, we got available extended dataset covering the same 
spatial extent of study area but including all available species records for the period of years 2014 – 

2022. Dataset also include extended number of attributes (17 in total). For the further data exploration, 

we selected breeding birds for the year 2018. 
 

Data engineering is needed to aggregate the species observation data recording with point/polygon 
geometries to show the location into grid cells that are suitable for ingesting into a data cube (i.e., to 

create an occurrences cube). This is further described in the UC2 section of deliverable D3.2. For an 

example result see Figure 14, which shows for a small area the calculated proportional (for each grid 
cell) abundance of nesting birds. Darker colours show higher abundance. The background, in grey, 

shows agricultural fields (arable and grasslands). Note that this is only based on positive abundance 
records, so the not coloured grid cells should not be interpreted as species absence, rather as unknowns. 
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Figure 14: Example of proportional abundance calculated for nesting birds at 100m x 100m grid cells 

Another example of data exploration is focused on assignment of abundance values from observation 
polygons to grid cells based on different criteria. Initially were the abundance values assigned to the 

cell at the centre and at random position of observation polygon. Further, considering possible 

movement of animal species beyond observation polygon boundary was potential area of abundance 
extended for buffer of 100 and 500 meters. In these extended polygons were abundance values 

assigned to grid cells at random position. Such an extension of area allows map species abundance 
which are initially recorded out of agricultural areas but in proximity to boundaries within buffer polygons 

(Figure 15). Selection of buffer size is species specific and has to be further investigated. 
 

 
Figure 15: Example of assignment of abundance value in random position (yellow dots) within 

observation buffer area (white circle with yellow hatching) within the boundaries of agricultural land 

(red lines). Original abundance locations are shown as blue dots 
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Allocation of abundance records was made to different grid size data layers. On the Figure 16 are values 

aggregated to 1 km grid using above mention allocation methods. 
 
 

 
Figure 16: Example of nesting bird data in agricultural areas aggregated to 1000m grid cells using 

different criteria, darker colours indicate higher abundance values at given grid cell location 

ii. Agricultural Data Exploration 

Base Register Crop Fields (BRP) consists of the location of agricultural parcels with information on 

cultivated crops. The boundaries of the agricultural plots are based on the Agricultural Area of the 
Netherlands (AAN) dataset. The data are acquired from farmers when each owner of the plot must 

annually register his crop plots extent and indicate which crop is grown on the relevant plot. A dataset 
is generated for each year with a reference date of 15 May. 

 
The Agricultural Nature and Landscape Management (ANLb) is a dataset indicating subsidy for 

agricultural collectives from provinces, water boards and the Common Agricultural Policy (CAP). With 

this grant: farmers protect and improve the environment of animals, working on water quality and 
contribute to climate goals. 

 
Farmers do this by implementing practices such as reducing the fertilizer use on grasslands and delaying 

mowing to facilitate bird breeding. The collective ensures that the management of participants in 

different areas is consistent. Additionally, habitat areas of species can be located on the grounds of 
several companies. 

iii. Environmental Data Exploration 

Environment data are important to develop measures of biodiversity and to evaluate impact of 

agriculture activities. To translate individual observations to standardized biodiversity measures, we 
consider Essential Biodiversity Variables (EBVs) (Pereira et al. 2013). The concept of EBVs was 

established to advance the collection, sharing, and use of biodiversity information. To detect change, 
systematic biodiversity observations are collected using standard formats and methods, together with 

environmental monitoring. Ensuring that data are interoperable across databases will make efficient use 
of biodiversity information for guiding conservation and sustainable development strategies. EBVs 

providing a way to aggregate the many biodiversity observations collected through different methods 

such as in situ monitoring or remote sensing. EBVs can be visualised as biodiversity observations at one 
location over time, or in many locations, aggregated in a time series of maps. 
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UC3 Biodiversity occurrence cubes – Drosophila landscape genomics 

UC3 aims to exploit the massive collection of DNA sequenced data of natural populations of the fruit 

fly Drosophila melanogaster. Apart from the challenge to adapt the data for storage as data cubes, 

the WP3 supports the processing and potential application of machine learning algorithm to enrich the 
data set and reveal further insights while making advantage of the scalability and accessibility of data 

storage and processing capabilities of the FAIRiCUBE Hub. 
 

As a first demonstrator task, gap-filling of missing data in the genetic information of pools of individuals 

that were sequenced jointly (Pool-Seq) was identified and performed on a sample data set. The provided 
data set6 comprises of 754 population-based samples of Drosophila melanogaster distributed over the 

globe (see Figure 17). In a first step, we focus on populations in North America, which are predominantly 
collected along the East Coast. Many of these samples are densely collected across multiple seasons 

and years. 

 

 

 
Figure 17: Location of DNA sequenced population of species "Drosophila melanogaster" as contained in 

the DESTv2 dataset 

The available sequencing data was previously filtered for sequencing quality and afterwards aligned 

against a reference genome from Drosophila melanogaster to identify polymorphic genomic positions 
along chromosomes and their genes. Such positions are characterized by more than one allelic state, 

i.e., nucleotide variants (A, T, C or G). This means that individuals in a population carry different genetic 
variants which may be either neutral, i.e., they do not influence the phenotype of the fly, or they are 

 
6 https://dest.bio/ 

https://dest.bio/
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under selection because they have different influence the fitness of the carrier – potentially in the 

context of environmental variation. 

 
The frequency of an alternative allele, which is a nucleotide that differs from the state in the reference 

genome, is ranging from 0 to 1. This means that an alternative allele is either not present or at 100% 
in a given sample. During the processing, the data volume has been reduced from containing the 

information of all genomic positions (180 x 106 base pairs) to only those polymorphic genomic sites that 
contain more than one allelic state in at least one population sample. Thus, the final dataset contains 

row-wise allele frequencies for every polymorphic position for every population (in columns). A sample 

dataset is shown in Figure 18.  
 

 

Figure 18: Sample dataset of Allele positions and frequencies for available North America 

Errors during the DNA sequencing process, quality variation of the extracted DNA and the sequencing 

depth can result in gaps in the genomic data, where the allelic state and frequency cannot be estimated 

in a population sample at a given genomic position. In order to improve data completeness, which is 
pivotal and good statistical practice for unbiased analyses of genome-wide associations between allele 

frequencies and environmental data, we aim to apply a gap filling of data. That means we want to 
estimate allele frequencies based on the assumptions that the genetic information of populations shows 

similarities either through location or in the course of time. 
 

The original DEST dataset (https://droseu.net), comprised of populations from North America show a 

diverse range of gaps. The data from 71 out of the 230 population consists of more than 10% gaps, is 
treated as incomplete and will be disregarded (see Figure 19, data with more than 10% gaps is shown 

in green the left image). For the remaining data with less than 10% gaps, we plot the length of gaps 
by means of subsequent single nucleotide polymorphism (SNP) positions without data (see Figure 19, 

right image). We can observe a logarithmic distribution of gap occurrence as function of the gap size, 

i.e. most of the gaps affect only a single SNP position. The larger the gaps, i.e. the more subsequent 
SNP positions without data, the lower the occurrence. On average 1% of the total amount of data 

consists of gaps of a length of 1 SNP position, while on average gaps larger than 10 subsequent SNP 
positions represent only 0.01 % of the total data. 
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Figure 19: Gap size analysis of the North America populations of the DEST dataset. 

 

For the purpose of developing a gap-filling method., we now focus on a subset of the DEST dataset, 
comprised of populations from North America, and randomly drew 50,024 polymorphic genomic 

positions without missing data in any population. After filtering by location, the test data set contains 

allele frequencies for 121 populations. Each sequenced population is referenced in time and space. 
During the exploratory data analysis, the data has been thoroughly analysed with a focus on the 

distribution of allele frequencies across all populations and within each population to gain insights about 
the uniqueness and meaningfulness of allele frequencies. This is the basis for further decisions on the 

machine learning algorithm that can be used to fill existing or artificially inserted data gaps. 

 
Initially, we first get familiar with the distribution and variance of the allele frequencies across all 

populations. The minimum, maximum and mean value of allele frequencies of all the populations as a 
function of the single nucleotide polymorphism (SNP) position is shown in Figure 20, Figure 21 and 

Figure 22. As these statistics are derived across the population, the aspect of collection time and location 
of the sequenced individuals is removed and now gives information on the general variance of the allele 

frequencies. It is apparent, that a clear majority of SNP positions have a minimum of exactly 0 and the 

maximum is generally below 0.3 which indicates a low change towards the reference population. Only 
a fraction of SNP positions shows a significant difference to the reference. From Figure 21 we see that 

either the maximum frequency is below 0.3 or peaks at 1. The mean value of allele frequencies is close 
to 0, the corresponding distribution is very unbalanced (see Figure 22). 
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Figure 20: Minimum of allele frequencies across all populations and histogram of minimum allele 
frequencies in the North America data 

 
Figure 21: Maximum of allele frequencies across all populations and histogram of maximum allele 

frequencies in the North America data 

 
Figure 22: Mean of allele frequencies across all populations and histogram of mean allele frequencies 
in the North America populations 
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When performing the same analysis across the single nucleotide polymorphism (SNP) positions, we 

obtain some insights on how much individual populations differ from the reference population. As there 

is always an SNP position per population which is either 0 or 1, plotting the minimum or maximum 
across allele positions does not give any relevant information, only plotting the average shows variability 

of the populations (see Figure 23). According to the balanced distribution most of the populations have 
an average allele frequency around 0.108 but there are significant number of populations that have 

either significantly higher or lower average allele frequency which means a generally larger genetic 
difference to the reference allele, i.e. the allelic state in the originally sequenced genome. Further 

correlation of these “outliers” with higher or lower differences in allele frequencies and additional 

information on e.g., sampling location can reveal potential explanations. 
  

 

 
For the purposes of preparing the data for a potential gap filling ML application, we further analyse the 
standard deviation of allele frequencies across all populations to identify allele frequencies with the 

highest deviation from the average of all populations. As can be seen from Figure 24 the vast majority 

of allele positions shows low standard deviations, i.e., the allele frequencies do not change much across 
the populations at these positions. This data would therefore not exhibit any characteristic information 

and can be treated as redundant. By defining a threshold of selecting only 0.5 % of the highest standard 
deviations, we can identify the SNPs with the highest variance from the average. Figure 25 shows the 

filtered SNPs and the histogram which is basically a zoom of the descending flank of the local peak 

around standard deviation of 0.13 from Figure 24. After filtering, we select around 250 of the initial 
50,024 SNPs which exhibits the most characteristic deviation from the average allele frequencies across 

all populations. These 250 positions can be seen as dimensions to span out a feature space which can 
be input for clustering. Reducing the dimensions of the clustering application has both 

numerical/computational as well as accuracy implications as we do not cluster on redundant but the 
most characteristic features (SNPs). 

 

Figure 23: Mean of allele frequencies across all allele positions and histogram of the North America data 
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Figure 24: Standard deviation of Allele frequencies across all populations and histogram standard 

deviations of allele frequencies in the North America data 

 
Figure 25: 0.5 % of the most significant standard deviation of allele frequencies across all populations 

and histogram of the North America data  

UC4 Spatial and temporal assessment of neighbourhood building stock 

UC4 has as aim to create a semantic model to later estimate the stock of materials and energy 

performance of primarily housing buildings and we take the join outcome of the IEE Project Episcope 
and Tabula7 as a starting point (see also the final EPISCOPE report8). Country wise, a building 

classification is presented and a straightforward energy performance and building composition 

estimation is published there. Given the availability of the input parameters (construction year, building 
type and total floor area) we can thereby directly link public city data to our desired output parameters.  

 
An essential part in the building's description stock is the building volume, which leads us to the need 

of setting a Level of Detail (LoD), a specification used with building data to describe the amount and 
degree of information used to abstract real world objects with. Other essential building parameters are 

for example construction year and a classification of residential housing types. 

 
7 https://episcope.eu 
8 https://episcope.eu/fileadmin/episcope/public/docs/reports/EPISCOPE_FinalReport.pdf 

https://episcope.eu/
https://episcope.eu/
https://episcope.eu/fileadmin/episcope/public/docs/reports/EPISCOPE_FinalReport.pdf
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LoD are divided into 4 types (see Figure 26): 

• LoD0 is a building footprint with no height attached just flat polygons aimed for two-dimensional 
analysis, 

• LoD1 adds height information to LoD0.  
• LoD2 include LoD1 and roof shapes, and last 

• LoD3 covers detailed roof and façade shapes, as well as information on materials and textures 
Figure 26 

 

 
Figure 26: Illustration of level of datils (LoD) to describe building models, taken from 3DBuildings9 
 

In the current context, we define building volume as building base area times building height. The base 

area is widely available (for example in Open Street Map and Google Maps) whereas the building height 
information is only partially available. Our efforts were therefore oriented firstly to get an overview of 

availability of building height data and secondly to evaluate different methods for gap filling when data 

is not available. Later, additional information such as construction year, building material composition 
or building classifications can be assigned to the building volume. 

 
The exploratory data analysis was carried out for the city of Halle, Germany, mostly for reasons of data 

availability and applicability of the building height estimation methods that are described in deliverable 

3.2. Once we conclude from the city of Halle test case, we will extend the building height estimation 
task to cover the original selected European test cities (e.g., Vienna, Austria; Oslo, Norway; 

Luxembourg; Barcelona, Spain) to allow for synergies with other FAIRiCUBE use case, e.g. UC 1. Table 
3 summarises the data sources uses as input or reference to estimate building heights. 

 
 

  

 
9 https://3dbuildings.medium.com/how-building-data-works-level-of-detail-e9bad0b61baa 
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Table 3: Datasets used in the estimation of building heights. 

Name Reference / Link Description 

Building height 

ground truth 

https://www.lvermgeo.sachsen-

anhalt.de/de/download-lod1.html 

Building height ground truth as 

calculated/derived from real estate, 
laser scan, aerial photo and terrain 

model data 

Open Street Map 
(OSM) 

http://overpass-api.de/ OpenStreetMap Overpass API. It 
provides building heights and other 

attributes using the tag “buildings” for 
a given bounding box. Using osmnx, a 

python package, the retrieved data is 

loaded into memory as a geopandas 
GeoDataFrame. 

Copernicus building 

height dataset 

https://land.copernicus.eu/local/urba

n-atlas/building-height-
2012?tab=mapview 

Copernicus land monitoring service, 

Provides heights and/or number of 
levels, the Copernicus building height 

data for the year 2012 (Urban Atlas 
2012) 

Digital Surface 

Model (DSM) 

https://www.lvermgeo.sachsen-

anhalt.de/de/dom2.html 

Digital surface model with a grid 

spacing of 2 m (DOM2). Data 
download as a set of .xyz files. 

Digital Terrain 

Model (DTM) 

https://www.lvermgeo.sachsen-

anhalt.de/de/dgm2.html 

Digital terrain model with a grid 

spacing of 2m (DGM2). Data 
download as a set of .xyz files. 

Urban Atlas land 
use/land cover 

classification 

https://land.copernicus.eu/local/urba
n-atlas/urban-atlas-2018 

Copernicus land monitoring service, 
high-resolution land use and land 

cover data for 788 Functional Urban 

Areas (FUA) 

 

An administrative boundary of Halle in GeoJson format was created using the procedure described in 
https://peteris.rocks and used to crop all the building datasets.  

 

The official building heights data for the city of Halle, Germany, was available as a set of gml files 
downloadable through the public Landesportal Sachsen-Anhalt. The dataset contained information for 

11328 buildings. The distribution of building heights in the dataset is shown in Figure 27. Please note 
that data basis combines the input from: 

• - Floor plan data of the buildings (house outlines) from the official digital real estate map, 

• - building heights from laser scan data, 

• - current aerial photo data, 

• - terrain heights from the digital terrain model - ATKIS®-DGM, 

which implies that this data must not be 100% accurate as it involves unknown processing of the input 
layers. We treat the data nevertheless as ground truth in absence of absolute correct alternative.  

 

https://peteris.rocks/blog/openstreetmap-administrative-boundaries-in-geojson/
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Figure 27: Distribution of heights in Ground truth data. 

 

 
Figure 28: Distribution of number of stories in OSM data 

 

The OSM building data contained a total of 40.608 buildings of which only 0.2% of them had building 

height (=81 buildings), 20.78% with number of stories/floors (=8438 buildings distributed as shown in 
Figure 28) and 20.85% number of stories or building height (=8467 buildings), as shown in Figure 29. 

This data source needs to be declared as significantly fragmented and incomplete. 
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Figure 29: Percentage of missing height data (left). Area covered by missing height data(right)  

The elevation model datasets (DSM and DTM) were retrieved in point cloud format (.xyz). Each dataset 

contained around 25x10e6 data points. The OSM layer with is vector definition of building outline was 
used to select DSM and DTM data points falling inside each building polygon. The mean of DSM and 

DTM on each polygon was used to estimate the building canopy height as the difference DSM – DTM, 
covering a total of 27805 buildings (table 4). The distribution is presented in Figure 30. 

 

 
Figure 30: Distribution of canopy heights in the Digital Surface Model - Digital Surface Model. 

As a validation step, we have used the Copernicus Urban Atlas land used/land cover (UA18)10 to assess 

the OSM data and make sure if covers a sufficient number of buildings in Halle. First, we have filtered 
the UA18 data to keep only artificial areas (class 1). The UA18 after filtering, as well as the OSM are 

presented in Figure 31. As it can be observed, UA18 has significantly less polygons (2,524) than the 

OSM data (40,916). This is explained by the fact that polygons in OSM represent building, however in 
the UA18 data polygons represent huge parts of artificial areas (i.e., multiple building by a single 

polygon). To have a general overview of polygons present in UA18 and not in OSM, we have used the 
“Select within a distance” function of QGis (see Figure 32). Given two vector data layers A and B, the 

function “Select within a distance” filters polygons from layer A for which the closest polygon from layer 

 
10 https://land.copernicus.eu/local/urban-atlas/urban-atlas-2018?tab=metadata 
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B is distant with at-most d meters. The outcome with different distance values, d, is presented in Figure 

33. We can clearly see that only 0.9% of polygons are absent from OSM with 100 m distance. Even with 

a very small distance (d = 1m), only 8.5% of polygons are absent from OSM. This confirms that OSM 
data covers a sufficient number of buildings in Halle.  

 

 
Figure 31: Polygons of both the UA and OSM plotted using QGis 

 
Figure 32: Overview of the QGis function select within a distance. 

If not already available in 10 m spatial resolution, the output building height data was down sampled 
to 10 m resolution to make them comparable to the ground truth and rasterized as GeoTiff. Binary 

overlap layers between the GeoTiff layer of the ground truth and the results in all the three estimation 
methods were generated. The different overlap layers were used as a binary mask to extract data from 

the different estimation results and the ground truth.  A description of the ground truth and the different 

estimation methods (D3.2) just before down sampling and rasterization is presented in Table 4.  
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Figure 33: Outcome of “Select within a distance” between UA18 and OSM layers. 

Table 4: Descriptive statistics of the different datasets (in GeoJson) just before down sampling and 

rasterization for comparison with the ground truth. 

Parameter Ground truth DSM - DTM 

building height 

estimation  

Copernicus Urban 

Atlas building 

heights 

Max [m] 99.8 60.9 77.0 

Mean [m] 5.05 8.2 8.5 

Min [m] 0.005 3.0 3.0 

Number of 
buildings 

43960 27085 - 

 

In preparation for the estimation of stock of materials and energy performance of primarily housing 
buildings, we have been reviewing and discovering data that can be used to provide the number of 

building floors / stories. The Copernicus urban atlas building heights data layer is available only for the 

year 2012 and is founded on the principle of subtracting the digital surface from the terrain data. This 
data is also available for our city of Halle test case. We have therefore also evaluated the data 

separately. Open street map (OSM) provides the number of stories and partially the heights of buildings 
but exhibits a reduced data completeness, for only a fraction of buildings, this data is available. In a 

further task, mainly described in deliverable D3.2, we will focus on improvement of coverage OSM 
number of building floors using a published ML gap filling technique. The Copernicus Urban Atlas building 

heights data and the subtracted data layer DSM – DTM, respectively, have better coverage and will be 

the input to the comparison of several building hight estimation methods. We aim to identify an optimal 
method or a strategy of applying methods based on data availability and completeness.  

 
The outcomes of the carried-out investigation, presented in Table 4, shows the advantage of ground 

truth data compare to the other methods. However, the availability/accessibility of ground truth is very 

limited, making it hard to be generalized for cities across Europe. Since the aim of UC4 is to identify a 
flexible mode that can be easily applied to the four cities of choice (Oslo, Vienna, Luxemburg, and 

Barcelona), it is necessary to find a generalized approach that fits well with a range a variation. Hence, 
it is decided to choose the second-best method to estimate building height. However, it is worth noting 

that UC4 leaves the possibility of using ground true, as it contains. 
 

The first city to estimate its residential energy demand and later calculate potential environmental 

affects and in-use stocks of building materials was the municipality of Oslo. In doing so, a list of primary 
data is extracted to carry out the estimations. Since the ground true data are not available (at least for 

free), the first two primary data to estimate canopy height of buildings are digital terrain model and 
digital surface model. Figure 34 shows these two data sources side-by-side. At the first glance, these 
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two data sources lookalike, but at pixel level their differences are clear. The calculated canopy height 

from these two data sources is presented in D3.2. 

 

  

Figure 34: Digital terrain model (picture on the left) and digital surface model (picture on the right) of 

Oslo. 

Besides DTM and DSM, local data are also used. Collection of local data was necessary as it was rather 
difficult to attain information about the construction year (i.e., the year of construction completion of a 

building where it is located) and building type by its functionality (i.e., for the time being only residential 
building are considered with annotations specifying whether a residential building is a single-family 

house, terraced house, multi-family house, or apartment). We requested these two additional data 

sources by contacting the municipality of Oslo and we received the data via email.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: Construction year cluster (picture on the left) and building types (picture on the right) in 

Oslo. 
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Based on the presented data here for the city of Oslo, UC4 uses them to estimate building geometry 

(i.e., building height and shaded wall) to estimate energy demand for residential buildings. D3.2 explains 

the carried approach. 

UC5 Validation of Phytosociological Methods through Occurrence Cubes 

UC5 aims to validate the traditional methods applied in phytosociology to characterize and classify plant 

communities and to develop a new phytosociological approach to characterize and predict the presence 
of plant communities for yet unknown localities. This will be approached by linking distribution data of 
plant taxa and vegetation communities based on habitat types with EO environmental data.  

2.5.1 Data sources 

First and foremost, a list of habitats will be chosen from the EUNIS classification (European Nature 

Information System) of Habitat types. Occurrence data of the diagnostic taxa of the habitats will be 
gained based on records from human observations and collection samples from the Global Biodiversity 

Information Facility (GBIF, www.gbif.org) and an online collaboration platform for botanical collections 

(JACQ). The rest of the taxa comprised in the vegetation units of the Habitats chosen will be got from 
vegetation units present in Mucina et al. (1993) 11 and their occurrences gained from GBIF and JACQ. 

When getting occurrence data of the taxa, which comprise coordinates and date of collection or 

observation, we will also check the taxonomy of the entities as they can be considered as taxonomic 

synonyms and/or additionally at infraspecific level. If this is the case, we will also request occurrence 
data for those listed as accepted taxa and all the infraspecific taxa. 

Lastly, the vegetation communities will be based on Austrian communities from Mucina et al. (1993),12 

but the distribution of the taxa involved will be extended to all Europe when obtaining occurrence data 
from GBIF. 

2.5.2 Data Cubes 

A set of Data Cubes, based on occurrences of taxa, will be produced by combining biotic and abiotic 

data from Rasdaman services together with taxon occurrence data using the tool Wormpicker developed 
by UC3. The tool will retrieve EO point estimates from the Rasdaman interface based on point 

coordinates derived from taxa occurrences. Furthermore, a set of Community Cubes will be obtained 
from raster data of the vegetation communities chosen. 

2.5.3 Sample data set 

As a first sample data set, we started to collect the vegetation data for the EUNIS Habitat N1J4 

(Mediterranean and Black Sea dune-slack grassland and heaths). The two diagnostic taxa for this habitat 
were Salix rosmarinifolia and Salix arenaria. When consulting GBIF database, S. arenaria was indicated 
to be the synonym of S. arenaria subsp. argentea and was therefore included in our dataset. 

Once obtained the coordinates and corresponding dates of these three taxa from the GBIF database, 

we retrieved estimates for the environmental factor ́ Air Temperature near surface´ from the Rasdaman 
interface using the Wormpicker software.  

2.5.4 Data analysis and ML 

 
11 Mucina, L., Grabherr, G., & Ellmauer, T. (1993). Die Pflanzengesellschaften Österreichs-Teil 1: 

Anthropogene Vegetation, Teil 2: Natürliche waldfreie Vegetation, Teil 3: Wälder und Gebüsche. 
Fischer, Stuttgart. 
12 Mucina, L., Grabherr, G., & Ellmauer, T. (1993). Die Pflanzengesellschaften Österreichs-Teil 1: 
Anthropogene Vegetation, Teil 2: Natürliche waldfreie Vegetation, Teil 3: Wälder und Gebüsche. 

Fischer, Stuttgart. 

http://www.gbif.org/
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In the UC5, data analysis will be carried out to investigate the distribution patterns of the taxa where 

plant communities have been identified. Furthermore, ML approaches will identify relations between 

identified communities and EO data, determine locations with favourable environmental conditions and 
predict possible presences at these locations of plant communities corresponding to the ones 

investigated. However, to date, analysis of the distribution patterns of taxa and vegetation communities 
and Machine Learning strategies still need to be addressed. 
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3 Summary and conclusion 

Given the current status of the data ingestion and the UC owners progress to identify and describe 
scientific research questions in terms of data relationships that are to be discovered and exploited, a 

data exploratory analysis has been performed for each use case.  
 

UC1 successfully tested the collaboration on the EOX Hub across partners and with a focus on how to 

upload and register own data. The clustering exercise was a demonstrator and a first step towards 
finding similarities of European cities according to the Urban Atlas land classification. 

 
UC2 constructed a comprehensive architecture how to relate environmental and agricultural data to 

describe biodiversity and will discover available data sources while making a start on biodiversity 
observations. The main focus will be to harmonize, increase data completeness and regularize the input 

data to create data cubes ready for ML applications. 

 
In UC3, the genetic allele frequency data was studied and analysed to prepare for a gap filling exercise. 

Due to the sparsity of sequenced populations, the goal is to increase data completeness. First interesting 
patterns were identified that can already be a starting point for correlating high genetic variance with 

other external [environmental] data.  

 
UC4 discovered and described several data sources that are input to the estimation of building height 

which is a first crucial parameter for the estimation of stock of materials and energy performance of 
buildings.  

 
Finally, UC5 started late, and the data exploration phase is not complete yet. 

 


