Pigs raised without antibiotics (RWA) in Denmark

Jens Peter Nielsen Professor of Pig Health Department of Veterinary and Animal Sciences

UNIVERSITY OF COPENHAGEN

Denmark

- ~2600 family-owned pig farms
- ~ 0,9 mil. sows
- ~ 33 mil. pigs/year
- ~ 16 mil. live pigs exported
- One large cooperative meat company (Danish Crown)
- Pork export to 127 countries (2016)
- Special production brands (organic, free-ranging, UK···)

Raised without antibiotics -Antibiotic free

Danish Crown PURE R PORK

Raised without antibiotics

Danish Pure Porc production (2015-2023)

- The concept is understandable and does not include <u>additional</u> welfare standards
- Export in 2023 was 70 % to EU and 30 % to US
- Consumers in US, Germany, Italy and Denmark
- Extra production cost around 10%
- In 2021 the number of RWA herds were 49
- Peak number of slaughtering's 350.000/y (3 % of DC)
- Low utilization rate (<30%)

Pure Pork production (DC) (2015-2023)

- No antibiotics used from birth to slaughter
- All RWA-pigs ear-tagged at birth
- Ear-tag removed if the pig needed antibiotic treatment
- **RWA-pigs** marked with a separate RWA slap-number
- **RWA and non-RWA pigs were housed together**
- Yearly independent third-party audit
- Plant based feed milk and milk products allowed

Health management

- No antibiotic treatment during the lifetime of a RWA pig
- Early prophylactic measures
- Sow treatment with antibiotics was permitted
- Pain killers were permitted
- Anti-parasitic treatment was permitted
- Vaccination was permitted
- Zink Oxide (3000 ppm) was permitted in weaner diets

RWA-research project, Denmark

Danish Crown, SEGES, Technical University, State Serum Institute, University of Copenhagen

- Practical guideline for RWA production
 - Productivity and AB-consumption
- Health monitoring
 - Multiple pathogen testing by PCR (fluidigm)
- Herd health management
 - Out phasing of ZnO
 - Monitoring of diarrhea prevalence
 - Vaccination against umbilical infection
- Feed interventions
 - Reduced protein
- Effect on microbiome and resistance development

RWA percentage, 100 pigs, 1 herd

Lynegaard et al. Porcine Health Management (2021) 7:18 https://doi.org/10.1186/s40813-021-00198-y

Porcine Health Management

RESEARCH

Performance and risk factors associated with first antibiotic treatment in two herds, raising pigs without antibiotics

Open Access

J. C. Lynegaard¹, I. Larsen¹, C. F. Hansen², J. P. Nielsen¹ and C. Amdi^{1*}

Lynegaard et al. Porcine Health Management (2021) 7:18 https://doi.org/10.1186/s40813-021-00198-y

Porcine Health Management

RESEARCH

J. C. Lynegaard¹, I. Larsen¹, C. F. Hansen², J. P. Nielsen¹ and C. Amdi^{1*}

 Table 2 The number of pigs as untreated, antibiotics (AB) treated, dead and missing from day 1 to 12 weeks of age in two Danish Raised without antibiotics (RWA) herds

	Herd A					Herd B				
Weeks of age	Untreated	AB treated	Dead (untreated/ treated)	Missing pigs	Never RWA ear-tagged	Untreate	d AB treated	Dead (untreated/ treated)	Missing pigs	Never RWA ear-tagged
0	518	_	-	_	-	436	-	-	_	-
1	-	Hero	AL						3	53
2	414	Acce	eptance rate	of live	e born:			64 %	3	51
3	-	Acce	eptance rate	of live	pigs at	12 we	eks [.]	78 %	7	49
4	371	Here		01110	pigs at	12 110	0100.		8	48
5	359		a b optanco rato	oflive	born			69 %	9	48
6	353	Acce				12			9	48
7	353	ACCE	eptance rate	OT IIVE	e pigs at	12 we	eks:	19 %	12	48
8	343	91	55 (17/38)	19	10	315	27	33 (6/25)	13	48
10	_	-	_	-	-	307	29	36 (8/26)	17	47
12	333	82	57 (18/39)	36	10	298	31	37 (9/26)	23	46
% at 12 week	(s 64	16	11	7	2	68	7	8	5	11

Open Access

Challenges in RWA herds

Questionnaire 2018 by Poul Bækbo, SEGES

- 38 RWA producers
- 29 responders (76 %)

RWA producers - profile

- 52 % Sows and finishers (full line)
- 36 % Finishers (buying from RWA sow herds)
- 12 % Sow herds (selling 30 kg's pigs)
- 56 % had RWA production > 2 years

Challenges in RWA herds

- Biggest challenge of becoming RWA producer?
 - 1. Increase in prevalence of umbilical hernia
 - 2. Diarrhoea in piglets or nursery pigs
 - 3. "When do we initiate AM treatment, and when can we wait?"
- What was the prevalence of umbilical hernia before and after joining the RWA program?
 - Before: 1.9 %
 - After: 5.1 %
- Biggest economical challenge?
 - Extra work time per piglet
 - Higher quality feed
 - Vaccines

Productivity in RWA herds compared with average herds

	Pure Porc	National average
Number of sow herds	10	862
Weaned per sow per year	33.4	34.0
Pre-weaning mortality	13.4	15.2
Number of weaner herds	9	582
ADG, weaners	451	464
Post-weaning mortality	5.1 %	3.9%
Number of finisher herds	20	985
ADG, finishers	1004	1028
Mortality in finishers	3.6	3.6

Usage of antibiotics and vaccines in RWA herds compared to conventional

Acknowledgement: Jan Dahl, Danish Agriculture and Food Council

UNIVERSITY OF COPENHAGEN

Data sources (January 2017 to October 2022)

- List of herds enrolled in the Danish Crown Pure Pork Programme
 - Start and end date in the programme
- Antibiotic use recorded in the Vetstat database
 - Antibiotic use per herd and age group
 - (Number of standard treatments per pig/sow per 100 days)
- Vaccine use
 - Active herds submitted data on vaccines
 - National figures from the Vetstat database
- Production data
 - Farm specific productivity records
 - National productivity average from SEGES

Types of herds

- Pure Pork herds (n=146)*
- Pure Pork candidates (before or after participation)
- Non Pure Pork (n=4446)

• * 93 still enrolled in October 2022

Percent treated sows per day

Percent treated weaners per day

Percent treated finishers per day

Mean percent treated animals per 100 days

	Sows	Weaners (7-30 kg)	Finishers (>30 kg)	
Standard body weight	200 kg	15 kg	50 kg	
Not PurePork	1.99	8.14	1.56	
Number of herd months	100.853	151.301	260.502	
PurePork-candidate	1.79	4.97	1.36	
Number of herd months	549	864	2.580	
PurePork	1.71	1.80	0.57	
Number of herd months	1.715	2.797	5.185	
P-value	0.10	<0.0001	< 0.0001	
based on LS-MEANS				

Vaccines against enteric infections (percent of herds)

		Pure Pork	Non-Pure Pork	
E. coli PWD	2 %		2 %	
Lawsonia intracellularis, PPE	2017	32 %	6 %	
E. coli PWD	2022	11 %	4 %	
Lawsonia intracellularis, PPE		72 %	16 %	

No significant differences for other vaccines

Conclusions on use of antibiotics, vaccines and productivity

- Antibiotic use for sows was not significantly lower in PP herds
- Antibiotic use for weaners was reduced 75 % in PP herds
- Antibiotic use for finishers was reduced 66 % in PP herds
- Vaccine use was increased for *E. coli* PWD and *Lawsonia intrcellularis* in PP herds
- Productivity was not significantly different
 - Indications of lower pre-weaning mortality and higher postweaning mortality

Microbiome and resistome results

- AB treatment markedly changed the fecal microbiome
- At slaughter this change was not detectable
- AB treatment increased the abundance of resistance genes
- At slaughter this increase was not detectable
- Removal and isolation of AB treated animals reduced the abundance of resistance genes in RWA animals

Animal Microbiome

Acknowledgements

UNIVERSITY OF COPENHAGEN

Inge Larsen Charlotte Amdi Williams Lars Erik Larsen Nicole Bakkegaard Goecke Julie Lynegaard Rasmus Syhler

Poul Bækbo Niels-Peder Nielsen Julie Krogsdahl-Bache Mogens Jakobsen Erik Bach Janne Jensen Anna Thordahl **Danish Crown** Marie Gry Bodenhoff Hansen Marianne Bisbjerg Christensen

STATENS SERUM INSTITUT

Øystein Angen Anders Rhod Larsen

Katrine Wegener Tams Michael Lenz Strube

Current status – Denmark - June 2024

- Danish Crown terminated the RWA production contracts in June 2023
- Organic pig production 2021 ≈ 240.000 slaughtered pigs from 60 herds
 - Official control program
- Other special brands for the home market
- Special brands for export
 - UK, QS

Why antibiotic-free production ?

Demand from markets

- Perceived "extra" free from residues
- Perceived increased animal health
- Perceived reduced AMR risk
- The pig production of tomorrow
 - Research "lab"
 - From batch treatment to single animal treatment

Questions from Luca:

Do you foresee the market share of antibiotic-free production to become higher in the future?

What is needed to incentivize this type of production and make it sustainable?

- Broader concepts including animal welfare, climate effect and biodiversity
- Regulation (EU/national) on reduction of AMU
 - Reduced batch medication