
  

  

Abstract:  Ground Truth, a training game developed by San-
dia National Laboratories in partnership with the University of 
Southern California GamePipe Lab, puts a player in the role of 
an Incident Commander working with teammate agents to 
respond to urban threats.  These agents simulate certain emo-
tions that a responder may feel during this high-stress situa-
tion.  We construct psychology-plausible models compliant 
with the Sandia Human Embodiment and Representation Cog-
nitive Architecture (SHERCA) that are run on the Sandia 
Cognitive Runtime Engine with Active Memory (SCREAM) 
software.   SCREAM's computational representations for mod-
eling human decision-making combine aspects of ANNs and 
fuzzy logic networks.  This paper gives an overview of Ground 
Truth and discusses the adaptation of the SHERCA and 
SCREAM into the game.  We include a semiformal description 
of SCREAM. 

I. INTRODUCTION 
Emerging modes of attack using weapons of mass de-

struction (WMD), now defined within threat scenarios from 
the United States Department of Homeland Security (DHS) 
and the Department of Defense (DoD), require new ap-
proaches to examining detection, mitigation, and response 
options. In recent years, DHS and other government agen-
cies, charged with preparing for WMD attacks and other 
catastrophic events, have turned to large multi-person exer-
cises using computer-based simulation to address prepared-
ness training. While this approach is extremely valuable, it 
also suffers from drawbacks: a large number of trainees 
must use the system at the same time and each threat sce-
nario takes a day or more to complete. 

To mitigate those drawbacks, we investigated different 
methodologies that would lead us to a complimentary solu-
tion. Our selected option was to develop a software gaming 
platform specifically designed to prepare decision makers 
for WMD attacks. Two key features of this platform are: (a) 
allowing for single-player training and (b) shorter scenario 
run-times. We selected 20 minute run-times as our target 
time limit for the training scenarios to focus our design by 
abstracting out the details to keep the scenario focused on 
key learning objectives. This allows us to more effectively 
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deliver quality training to the target audience at a frequency 
that facilitates learning the material in a timely manner.   
Furthermore, the single player mode lets a responder train 
anytime, anywhere with software agents taking the place of 
the responder’s human counterparts. 

However, the nature of the scenarios we are targeting pre-
vents us from simply replacing the response team members 
with traditional drone-like Non-Player Characters (NPCs). 
This is because the training scenarios are based on events 
that trigger emotionally-biased actions from the many peo-
ple involved. For example, an Incident Commander (IC) in 
charge of responding to a toxic industrial chemical spill 
must protect the lives of the general population while keep-
ing their first responders out of harm’s way.  But what if a 
trainee orders a police unit to shelter-in-place a city block 
that is covered in the toxic fog? Traditional drone-like NPCs 
would blindly obey the command given by the IC trainee 
and conduct the action regardless of the effects on its safety. 
Instead, we wish to provide trainees with virtual teammates 
that might or might not obey the command due to their emo-
tions and the IC trainee’s reactions to the incident. In our 
case, the NPC would detect the hazardous fog and resist the 
action. Trainees who then force the units to perform the ac-
tion, regardless of the feedback, are then penalized in multi-
ple ways: the unit suffers from the physical damage, the 
trainee’s response effectiveness score is reduced, and emo-
tional distress is caused to the unit which reduces its ability 
or interest to perform other requested actions. As such, in-
cluding emotion into the virtual teammates provides a more 
accurate representation on the effect of a trainee’s decisions 
in these types of situations. 

This paper covers our work in developing emotion mod-
els into the virtual teammates for Ground Truth:  Toxic City, 
a game-based platform for training Incident Commanders on 
response strategies following a toxic chemical spill.  The 
paper will detail the Sandia Human Embodiment and Repre-
sentation Cognitive Architecture (SHERCA), the design 
used for constructing how fundamental emotions influence 
the human cognitive process, and how SHERCA is inte-
grated into the virtual teammates built for the training envi-
ronment. 

II. GROUND TRUTH: TOXIC CITY  

A. Gameplay Description 
Ground Truth: Toxic City is developed leveraging the 

open-source graphics rendering engine OGRE. We required 
full source access to include support for our research and 
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development objectives. Our game is modeled after the 
Real-Time Strategy class of gameplay. The trainee assumes 
the role of the IC and has an overhead view of the city s/he 
is chartered to protect. A common feature in these types of 
games is the “fog of war” that represents what the trainee 
can or cannot see. In our case, we allow the player to see 
through this fog based on his/her unit’s field of view as 
shown in Figure 1.  As units travel the space, the map shows 
the ground truth information while the information on dark-
ened space is considered unknown. 

 

 
Figure 1: Police unit Fog of War 

  
The trainee’s main objective is to save as many lives as 

possible within the game’s time limit by keeping them away 
from the toxic cloud.  Civilians can only survive for a few 
minutes inside the cloud area before they are considered 
significantly injured and treated as a “loss” for sake of scor-
ing.  For directing the civilians to safety, the trainee controls 
a selection of fire, police, and HazMat units.  The trainee 
can: 1) evacuate city blocks, which moves people from 
buildings onto the city streets, 2) shelter-in-place city 
blocks, which provides reduced exposure levels, 3) barri-
cade and direct traffic, which affects the throughput of the 
city streets, and 4) attempt to contain the leak.  The player 
can monitor street traffic on the display with shaded arrows 
indicating traffic direction and colored regions representing 
traffic density. Blue colored regions equal low, yellow 
equals moderate, and red equals severe traffic density.  Each 
unit also has different actions they can perform based on 
their type. For example, firefighters can don Personal Pro-
tective Equipment (PPE) to protect themselves when enter-
ing the toxic cloud area.  

B. Game AI Virtual Teammates 
 In Ground Truth, agents serve as the virtual teammates 
the player must direct in order to win the game. Initially, we 
implemented a reactive agent design for the virtual team-
mates.   The agents executed commands ordered by the 
player and report on events of interest to the player in game 
(e.g., location of the fog cloud).  These agents did not have 
any belief-desire-intent (BDI) modeling [1] that would result 

in them acting autonomously.  This decision on the agent 
design resulted from the original intent of the game, training 
first responder commanders on the best methods on where to 
direct resources to minimize civilian casualties.  However, 
the reactive agent behavior creates a game that over-
simplifies the scenario from a realistic training perspective 
and feedback from subject matter experts made us recon-
sider this approach.  
 

 
Figure 2: Ground Truth gameplay view 

 
 We developed an agent architecture for the game that 
would support not only this reactive agent design, but would 
also allow for the creation of more complex agents that pre-
sent the player with challenges more in line with the actual 
environment.    The architecture decomposes each of the 
game actions into states.  For Ground Truth, the states in-
clude MoveTo, Evacuate, Shelter-In-Place, Barricade, 
and PutOnPPE.  A state is entered by a command request for 
an action, with the state’s end condition defining when the 
action should terminate.  The state performs the interactions 
necessary with the game to initiate the action and receive 
notice that the action has been accomplished.   For the reac-
tive agent design, all command requests originate from the 
player.  However, as more sophisticated agents are devel-
oped for Ground Truth, agents can request these states to 
perform actions themselves, masking the communication 
between the agent and game world from the agent devel-
oper.   
 In creating our reactive agent, we constructed a hierarchi-
cal state machine (HSM) [2] by building meta-states that 
would chain together action states for more complex behav-
iors.  For example, a player may request an agent evacuate a 
building on the other side of the game world.  To create this 
behavior, one can construct a finite state machine (FSM), 
PlanEvacuation, which connects the MoveTo and Evacuate 
states for performing all actions needed to evacuate the dis-
tant location.  PlanEvacuation serves as a child FSM to the 
master FSM, IdleState, which awaits commands from 
player and calls the proper child FSM to execute the com-
mand (see Figure 3).   
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III. RELATED WORK 

A. Role of Emotion in Decision-Making 
Since disaster response operations involve “in extremis” 

decision making, intense emotions associated with this type 
of environment can impair decisions by disrupting critical 
thinking.  In fact, one’s emotions are a critical mediator in 
the types of decisions that are made and how people will 
ultimately behave.  Emotion states serve as action tendencies 
that provide additional information to make judgments; es-
pecially when conditions are uncertain—as found in high-
stress and high-consequence situations such as man-made 
and natural disasters.  For example, [3] found that emotion 
states accounted for 34% of the variance in choices made 
when their expected utility was not obvious. Thus, repre-
senting the role of emotion in arriving at a decision may 
prove useful in assessing how people will ultimately behave. 

 

 
Figure 3: Example of Master FSM calling Child FSM to handle evacuation 

and barricade commands 
 
Converging lines of research suggest that a person’s atti-

tude (which is a general opinion towards a person, object, or 
concept) influences behavior. A general theory supporting 
this research, the Theory of Planned Behavior, proposes that 
behaviors are influenced by 1) attitudes towards a specific 
behavior, 2) the subjective norms associated with acting out 
that behavior, and 3) the perception that this behavior is 
within a person’s control. This forms an action intention 
state, which then typically drives that person’s actual behav-
ior [4], [5], [6]. 

A person’s emotional state often plays a large role in de-
termining the ultimate behavior of the individual. According 
to the research by [7] and others, certain experiences may 
create general negative affects (such as the fight or flight 
impulse when a threat is perceived), which then may stimu-
late associations linked to fear and anger. How people re-
spond can be a result of both goal- or moral-related deci-
sions and their perceived emotion state. As mentioned 
above, assessments of the environment and the potential 
outcome can also temper behaviors. Consequently, angry 
persons might refrain from aggressive behavior if it would 
conflict with their goals or moral values. Accordingly, they 
may choose other behaviors that more closely align with 
their goals or values [8]. 

B. Modeling Emotion for Game-based Training Envi-
ronments 
Emotion modeling for NPCs is not a new concept. For 

commercial games, clever character development written 

into game designs allow NPCs to reflect emotional growth 
and behavioral changes based upon the player’s choices [9]. 
Advancements in animation have allowed these NPCs to 
visibly express a wide range of emotions, giving a wider 
range of empathetic responses for the player. Yet, these 
techniques focus on just creating the illusion of emotions 
felt by NPCs, rather than attempting to understand and com-
putationally model the human emotional responses within 
these characters.  With commercial game AI techniques be-
ing viewed as an insufficient model for virtual characters in 
game-based training, or serious gaming [10], the necessity 
for more realistic human modeling has become a prevalent 
research area.    
 As noted in the prior section, emotions tie into a person’s 
motivation for deciding what actions to pursue.  To compu-
tationally represent the role of emotion in motivation, re-
searchers have found mapping perceptions to pre-defined 
emotional states as an effective method for virtual characters 
in these environments.  [11] created agents for a derivation 
of the Iterative Prisoners Dilemma that mapped previous 
interactions with other agents to emotional states for deter-
mining whether to cooperate or defect. [12] incorporated a 
similar approach into a 3D predator/prey type game to aid a 
prey agent in reaching checkpoints without being detected 
by the predator. 
 Though several research efforts on emotion modeling 
exist, few instances of this research have transferred into 
game-based training environments.  An explanation for this 
is the challenge in both modeling how emotion interacts 
with reasoning along with physical behavior. The Institute 
for Creative Technologies (ICT) [13] has undertaken a com-
prehensive effort toward including virtual humans into train-
ing systems, combining cognitive modeling with natural 
language generation and animation for representing to the 
trainee how emotion impacts these virtual characters.  Since 
the Ground Truth platform does not represent virtual team-
mates with the same fidelity as the environments used by the 
ICT, the focus of our research has been on constructing psy-
chology-plausible models of emotion at the agent decision-
making level. This paper will later describe our first at-
tempts at having Ground Truth communicate the emotions 
of the virtual teammates to the trainee.  
  Other researchers involved in modeling human cogni-
tive processes have also investigated how emotion can con-
struct a more realistic virtual teammate.  The ICT virtual 
human research mentioned earlier uses the SOAR architec-
ture [14] in forming their cognitive models.  The SOAR 
community has made several contributions in modeling how 
emotion interacts with working memory, perception, and 
expression for NPCs [15], [16].  While SOAR tags percep-
tions with factors such as arousal, pain, and pleasure to 
make emotion an emergent property of the model, our re-
search serves as a complimentary effort by directly defining 
the role of emotions in the decision making process.     

C. Related Sandia Cognitive Modeling Work 
Our work builds on research that initially sought a com-

putational cognitive architecture that supports Human Natu-

268 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)



  

ralistic Decision Making [17] while incorporating “organic” 
factors such as emotion [18], [19].  The emphasis on emo-
tions from the very beginning distinguishes this program of 
research from other cognitive architectures such as as ACT-
R [20] and SOAR [14].  Preliminary work attempted to com-
bine a psychological model representing knowledge and 
cognitive processes with a physiologically-inspired model 
that provided the basis for incorporating organic factors. 
Using subsequently-developed simulation software that ex-
tended practicality, [21] developed a prototype human aug-
mentation system based on discrepancy detection with re-
spect to a task-based runtime cognitive model.   

 

 
Figure 4.  Conceptual cognitive architecture. 

 
A high-level, psychological framework was fleshed out 

(Figure 4) to enable application within an embodied agent, 
as distinguished from a disembodied “decider” [22], [23].  
At the same time, the Sandia Cognitive Runtime Engine 
with Active Memory (SCREAM) was developed to provide 
a practical cognitive simulation capability that supported 
that psychological framework.  Emphasis on cognitive ele-
ments with activation-levels updated according to dynamics 
distinguishes SCREAM and most other Sandia cognitive 
simulation work from more common production-rule-based 
approaches.  

The Sandia Human Embodiment and Representation 
Cognitive Architecture (SHERCA) is being developed to 
extend the psychological framework for modeling the be-
havior of humans as embodied agents while encouraging 
physiological plausibility.  Conceptually, SHERCA fleshes 
out the high-level architecture down into subsystem models 
of perceptual memory, spatial memory, and action genera-
tion.   SHERCA also refines the psychological model of 
decision-making with respect to action selection, providing a 
more detailed model of how emotional processes are inte-
grated with the application of semantic and contextual 
knowledge.  

Applying SHERCA  for the conceptual and psychological 
model structure and SCREAM for the computational cogni-
tive engine, [24] used runtime cognitive models to control 
the behavior of cognitive characters in a virtual 3D envi-
ronment  in a prototype training application emphasizing 
cultural awareness [22].  Standard embodied-agent simula-

tion techniques implemented in Sandia’s Umbra simulation 
framework [25] model the characters’ ability to “perceive” 
their environment, other entities, and those entities’ various 
attributes and actions.  

Several other efforts at Sandia are developing computa-
tional cognitive modeling technologies that have foreseeable 
application in gaming.  An example with current capability 
is the Cognitive Foundry [26], which provides (a) a theory-
of-cognition-agnostic framework for developing cognitive 
models for intelligent agents and (b) a set of tools for auto-
matically populating such models and evaluating them using 
statistical, machine learning, and visualization techniques.  
An example with applicability on the horizon is the devel-
opment of a computational, neuro-physiologically plausible 
model of episodic memory [27]. 

IV. MODELING EMOTION IN VIRTUAL TEAMMATES 

A. SHERCA 
SHERCA was designed to correspond to the theories and 

supporting research mentioned in Section III [24].  
SHERCA allows for multiple cues, cognitive perceptions, 
goals, action intentions, etc., to concurrently have some de-
gree of activation. In SHERCA’s model of decision-making, 
once a cognitive perception—an element of percep-
tual/situational awareness—has been activated by cues in the 
environment, it may trigger activation of specific, intermedi-
ate goals that are consistent with higher-level goals and 
other active cognitive perceptions.  For example, one high-
level goal might be to protect family, and another, to protect 
oneself.  Intermediate goals help support the higher-level 
goals by breaking down the goals into discrete tasks.   The 
overall emotional state mediates activation of action inten-
tions from the intermediate goals. As a consequence, the 
intended actions are a product of both the intermediate goals 
and the current emotional state of the simulated human.  
This emotional state may change dynamically, for example 
from very low to very high levels of anger, if the perceptions 
change.  Action intentions that are contradictory with re-
spect to goals can become concurrently highly activated due 
to the influence of emotion.  At the same time, cognitive 
perception is influenced by a hierarchy of higher-level 
goals/directives or moral states, as well as state within a be-
havior  (e.g., current step in a procedure). 

In SHERCA, an impression of culture can be generated 
by varying a simulated human’s emotional response to par-
ticular perceptions. Cultures also exhibit variations within 
their high-level and intermediate goals.  As a result, their 
intended and actual behaviors will show cultural uniqueness.  
The result is a complex set of behaviors that have certain 
emergent properties common to a particular group.   

While SHERCA is intended eventually to achieve hu-
man-plausibility at a detailed level as various cognitive 
component models improve [27], initial emphasis has been 
on applying it to virtual embodiment.  In this role SHERCA 
has been instantiated as a human-representative computa-
tional model through which a cognitive character recognizes 
patterns of stimuli in the environment and responds to those 
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stimuli according to current contexts, goals, and emotions 
[24].   Our main focus has been endowing characters with 
SHERCA’s model of decision-making to select behavior-
level actions rather than model detailed procedures or low-
level control.  Instead, we make use of non-cognitive 
AI/gaming techniques or features built into the virtual char-
acter model and virtual environment to implement those 
capabilities.   

 
Figure 5 Model of decision-making to select actions in SHERCA. 

 

B. SCREAM 
SHERCA models in Ground Truth NPCs use SCREAM 

for the computational cognitive engine.  SCREAM’s repre-
sentations combine aspects of ANNs and fuzzy logic net-
works.  For example, we use ANN computations to model 
intensities of fear and anger, and convert them to fuzzy sets 
that are more easily understood by a human cognitive model 
builder.  We now summarize key components of SCREAM, 
describe the basic cognitive elements, and sketch out their 
computational updates. 

1) Basic cognitive elements in SCREAM 
A concept is the fundamental semantic element in 

SCREAM. For convenience, concepts have names, but 
SCREAM associates no meaning with those names. To 
function in environments with multiple entities (e.g., things, 
creatures, features, etc.) of a given type requires a mecha-
nism to associate concept activations with specific entities.  
SCREAM takes the simple approach of endowing concepts 
with slots.  A concept instance associates slots with entities. 
Concept instances are created as needed.  Each has its own 
activation state and is uniquely identified by concept and a 
vector of entity identifiers, which are merely labels to enable 
convenient interaction with people and other non-SCREAM 
system components.  For example, chases {22, 31} identifies 
an instance of the concept chases (i.e., entity #22 chases 
entity #31).  Thus, a concept is similar to a fuzzy predicate, 
but we do not claim that SCREAM implements any logic. 

Contexts can be defined as meaningful perceptual repre-
sentations that are based on recognizable patterns of stimuli, 
as well as, consistent with situation models, schema and 
theme-based representations of events. Context activation is 
governed by pattern recognition applied to the activation 
states of concepts that are the cues for/against that context.  
For example, the concepts bicycle, clown, elephant and pop-
corn might be cues for the context Circus.    A context in-
stance is related to a context similar to the way that a con-
cept instance is related to a concept.   In SCREAM, a con-
cept whose raw (input) activation is driven by the contextual 
pattern recognition process is also called a context.  

Because contextual knowledge can include behaviors, 
SCREAM includes a context-to-abstract-action module that 
applies specified patterns to expand context instances into 
schema instances that describe behavior at a high level. 

2) Updating cognitive state 
  At game start-up, each cognitive model instance is 

loaded with model definition and parameterization files.  
These files declare concepts and contexts and define context 
recognition patterns, context-to-behavior expansion patterns, 
and associations between concepts and emotions. 

The main runtime cognitive state representation can be 
viewed as a dynamically-structured activation network of 
concept, concept instance, context instance and emotional 
state nodes.  The concept instance driver, semantic associa-
tion network, context recognizer, emotional processes and 
context-to-abstract-action modules of a SCREAM-based 
agent share the responsibility for updating the network struc-
ture and node activation.  For example, the context recog-
nizer uses a maximal unification criterion with respect to 
concept instances in maintaining the set of context instances.  
SCREAM episodic memory and spatial memory modules 
are not currently used in Ground Truth. Node activation 
values are always non-negative.  

The instantiation and raw activation of input-level con-
cepts are controlled from outside SCREAM via a concept 
instance driver. For example, a model definition might in-
clude the following input-level concept declarations: 

c morning {} 
c afternoon {} 
c noon {} 
c eats {ID1 ID2} 

If the agent’s perception module saw an entity it labeled 
Fred nibbling on one labeled L19, then it could call the 
agent’s concept instance driver to set the raw activation level 
of the concept instance eats {Fred, L19} to, say, 0.7.   

The semantic association network module updates the 
gross (output) activation of concept instances.  Gross activa-
tion of a concept instance is computed from raw activation, 
spreading priming from concepts specified in the model, and 
top-down priming from contexts for which the concept is a 
cue. Priming is specified by global spreading- and top-
down-gain gains and directed pairwise weights.  For exam-
ple, 

sa noon {eats 0.2} 
specifies a spreading activation weight of 0.2 from the con-
cept noon to the concept eats. 

Priming is distributed from concept nodes to concept in-
stances.  Summation with raw activation at instance nodes is 
followed by application of an activation function and 
rise/decay model.  Concept instance node output updates are 
individually scheduled at rates within the alpha (8-13Hz) 
range, with frequency rising with activation level. 

SCREAM currently includes two types of context recog-
nition patterns. The first type of pattern is a template de-
scribing how specific concept instances act as inputs to as-
sociated instances of a given context and how the weights 
will be applied to the input activation levels.    

 For example, we can use 
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S Breakfasts {ID} { 
Eats-meal {{ID} 1.0} 
Breakfast-time {{} 1.0} 
 morning {{} 1.0}  
 afternoon {{} -10.0} 

 } {ii 1.0} 
as the pattern for a context whose activation reflects the 
awareness of the model that an observed entity is having 
breakfast.  If, say, the concept instance Eats-meal {99} is 
active, then it will be an input to the context instance Break-
fasts {99} with weight 1.0.   The “{ii 1.0}” specifies that an 
intrinsic inhibitive bias of 1.0 will be applied when comput-
ing the activation level of an instance of Breakfasts.  If 
Breakfasts is also a concept, then the Breakfasts {99} con-
text instance output is the input to the corresponding concept 
instance, subject to capacity limitation.  (See Figure 6.) 

If χ  is an instance of the context X , then the immediate 
activation level of χ  is expressed by  

 ( )
immed ( ) max ( ) , 0 .X

k k
k

a w a pχ β= −⎛⎛ ⎞ ⎞
⎜⎜ ⎟ ⎟
⎝⎝ ⎠ ⎠

∑  

Here ( )ka p  and kw  are, respectively, the gross activation 

and weight coefficient of the thk  input concept instance 
with respect to χ , and ( )Xβ  is the intrinsic inhibitive bias of 
context X .  The gross activation level of χ  is computed 

from immed ( )a χ  by applying an activation function followed 
by a normalized leaky integrator.  It is important for the ac-
tivation function to be non-linear, and some activation func-
tion choices that SCREAM provides include: 

-1

if 

otherwise

                        x 1
( )

1+tan ( 1)     

x
x

x

≤
=

−

⎧ ⎫
⎨ ⎬
⎩ ⎭

A ; and 

( ) min( ,1).x x=A  
The latter is more intuitive for building models by hand, 
while the former appears better suited for machine learning. 

Gross (output) activation levels of all context instances 
are updated at 5Hz (i.e., in the theta band).  Outputs are 
made available synchronously to enable efficient implemen-
tation of simple capacity limitation. 

A second type of context pattern is used for templates of 
context instances whose immediate activation is based on 
the activations all instances of the same concept that have 
matching values at specified slots.  This pattern type has 
been useful in abstracting away slot values from con-
cept/context instances and in approximately expressing a 
minimum quantity.  For example, 

XQ Eats-meal {ID1} {eats {{ID1 ID2} 1.0}} {ii 2} 
XQ Breakfast-time {} {Breakfasts {{ID} 1.0} } {ii .5}. 

In the first pattern specifies that currently active instances 
of the concept eats with matching first slots will contribute 
activation to the same instance of context Eats-meal.  The 
“plain English” interpretation is that somebody is eating a 
meal if (s)he is eating at least three things.  Immediate and 
gross activation of instances of contexts of the “XQ” type 
are computed similarly to the “S” type context activation.  

This type of context pattern offers tremendous benefit in 
representation capacity for large numbers of concept in-
stances that can be related in this fashion. 

For example, subject to simple parameter choices, if we 
consider the model examples presented earlier in this section 
and activate the concept instances eats {99 19}, eats {99 31}, 
eats {99 31}, eats {86 6}, eats {86 31}, eats {86 20}, and 
morning {} all with raw activation 1.0, then the concept and 
context instance network will have the structure shown in 
Figure 6.  The ability to define a set of context patterns that 
can give rise to recurrent network structures enables the 
models to be stateful even without additional memory com-
ponents.  
 

 
Figure 6: SCREAM runtime model with recurrent structure.  Ovals repre-
sent concept instance nodes, and rectangles, context instance nodes;  flow is 
from left to right except where indicated by arrows 
 

A basic capability for modeling emotional processes in 
cognition [3], [24] has been implemented in SCREAM. 
SCREAM updates the level of activation of each emotion 
based on concept activation levels and parameters that spec-
ify how the concepts influence emotional state.  Each con-
cept can be associated with a level of activation and a weight 
coefficient for each emotion. For example, in an emotion 
parameters file,  

cee clown 2  fear 0.6 0.7  anger 1.5 0.9 
specifies that concept clown influences two emotions.  For 
fear it has a weight coefficient of 0.6 and a target activation 
of 0.7, and for anger it has a weight coefficient of 1.5 and a 
target activation of 0.9.  

The emotional processes module takes as input the over-
all activation levels of all concepts. The immediate activa-
tion level aμ  of emotion μ  can be expressed as 

 

( ) 11

, , ,
0 0

( ) 11
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0 0
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Here, ,( )i jpα  is the activation of the th
j  of ( )m i active 

instances of concept i ; ,iwμ  and ,iμξ  are the weight coeffi-
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cient and target activation for concept i  associated with 
emotion μ ; and there are n  concepts.  Thus, the emotional 
state is computed similarly to center of mass. 

The activation levels of the modeled emotions are con-
verted into fuzzy-set representations whose membership 
levels determine the activation of corresponding concepts.  
For example, the level of anger can be represented by mem-
bership levels in the fuzzy sets anger::Low, anger::Medium, 
and anger::High that cover the range of anger activation 
levels.  We currently use normalized Gaussian fuzzy set 
representations.  Thus converted into concept instance repre-
sentations, emotional state affects the activation of concept 
instances and context instances via the mechanisms de-
scribed previously in this section. 

C. Integration of SHERCA into Ground Truth Agents 
We now describe architectural aspects of how SHERCA 

is integrated into Ground Truth agents.  Each cognitive 
agent has a SHERCA-based cognitive model, which it 
mainly uses to continuously determine and update its high-
level behavior. Each cognitive agent is an instance of the 
ScreamAgent class and has its own SCREAM Cognitive-
ModelObject instance.  The ScreamAgent class builds on the 
class of state-machine-driven agents described in Section 
III.C., and a cognitive agent uses this inherited capability to 
carry out the cognitively-selected behavior. 

When a cognitive agent is created, it loads cognitive 
model definition (data) files whose contents include  

• the concepts, contexts, and context patterns; 
• context-instance to behavior/action conversion 

patterns; and 
• spreading activation (priming) and emotional as-

sociation parameters. 
Currently, individual cognitive model definitions in Ground 
Truth differ only in emotional association parameters and 
levels of activation of high-level goals, reflecting differences 
in personality, culture and values. Setting activation of other 
specific concepts appropriately allows us to customize the 
generic model for each specific type of Ground Truth NPC. 

To explain how the update of agent cognitive state fits 
into the game state update, we first view the latter loop at 
very high level: 

• The respective Managers for fog, evacuation, traf-
fic, etc., update the states of game elements not di-
rectly controlled by the agents. 

• The Agent Manager updates the states of the NPC 
agents. 

The AgentManager updates the states of the agents in an 
update cycle by doing the following: 

• It updates the agents’ physical states, based on 
their current states and game state external to the 
agents. 

• It has the agents update their perceptual states, 
with help from the Perception Manager. 

• It has the agents make decisions. 
• It has the agents act on their decisions. 

The last item is carried out by the cognitive agents’ state-
machine elements.  Some actions take the form of making 
requests to the Game State, so that it can maintain consis-
tency, instead of updating state directly. 

To make decisions, a cognitive agent: 
• Updates raw activation levels of input-level con-

cept instances  
• Iterates its internal CognitiveModelObject to the 

current game time. 
• Passes the highest-ranked behavior option to its 

state machine component for execution. 
The receipt of a user command that includes at least one 

argument, such as a location, corresponds to a concept that 
has a matching number of slots.  Each unique argument 
value is translated into a symbolic label for activation of a 
concept instance.   This label is subsequently converted back 
when the start state of a behavior is initialized.   

In both the state-machine-based agents and cognitive 
agents, decision-making considers perceptual data, the most 
recent command received from the player, and various state 
data.  For a state-machine-based agent, user commands di-
rectly set the high-level behavior that the agent will perform.  
A new user command results in the state machine popping 
states until one is reached that can dispatch the desired be-
havior.  However, in a cognitive agent, the cognitive model 
determines the high-level behavior. 

States in the state machine of a cognitive agent can access 
its emotional state for use in modeling affect within a behav-
ior.  For example, dialogue output takes into account emo-
tional state.  Generally, determination of low-level behavior, 
such as path planning, also makes use of separate algorithms 
that are called from within states. 

D. Implementation of SHERCA Driven Teammate 
We have developed a SHERCA cognitive model for 

Ground Truth NPCs and use specific model instances to 
govern their behaviors independently. The model currently 
contains roughly 80 concepts and contexts and over 50 con-
text patterns. It is intended only to be sufficient for those 
NPCs, and we view its development as an exploration into 
the use of emotional cognitive models to increase the real-
ism of the effects of player decisions.  

In our initial cognitive model development and integra-
tion spiral, we constructed a minimalist cognitive model 
whose behavior selection enabled the cognitive NPCs to act 
like the state-machine-based NPCs.  To begin our more re-
cent spiral, we identified game situations for individual 
NPCs that we believed should evoke emotional responses.  
We then expanded the cognitive model to follow the 
SHERCA framework of decision making, and we identified 
situations in which it would be intuitive to a player when an 
NPC chose not to obey the most recent command it re-
ceived, based on its emotional state and activation levels of 
its high-level goals. 

Developing the minimalist cognitive model enabled us to 
exercise model elements needed for the behavior selection 
role.  We defined input-level concepts for communicating: 
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• simple perceptive state, such as current location, 
noticing the toxic fog, or current action/behavior; 

• receiving commands; 
• endogenous state; 
• declarative state knowledge, such as whether agent 

has PPE to wear, and whether it is being worn. 
Note that in this discussion, names of input-level concepts 
will begin with a lower-case letter.    

Because it is located between user-issued commands and 
the behavior-executing state machine, the cognitive model 
must keep track of the current command to (possibly) be 
acted upon.  We defined contexts for achieving this capabil-
ity.  For example, we have a context whose instances model 
whether the current command is to move to a given location:  

S Curr-cmd-move-to {LOC} { 
    rcv-move-command {{LOC} 1.0} 
    Curr-cmd-move-to {{LOC} 1.0} 
    self-at {{LOC} -5.0} 
    Task-some-other-loc-cmd {{LOC} -10.0}  }. 
Activation of a rcv-move-command instance results in ac-

tivation of a corresponding Curr-cmd-move-to context in-
stance.  Because the activation duration of an input-level 
concept instances that model receiving a command is limited 
by a timer to approximate, e.g., conversation duration,  a 
Curr-cmd-move-to context instance is self-stimulating  once 
activated.  (Recall that the activation function will modulate 
output activation.)  The self-at negative cue models complet-
ing command execution or ignoring the command if the 
agent is already at the destination.  The Task-some-other-
loc-cmd negative cue, whose activation is also (context) 
pattern-driven, enables activation to be canceled by more 
recent reception of another command.  Thus, the context 
pattern defines a recurrent relationship for sustaining self-
activation until overcome by terminating cues. 

SCREAM computes emotional state with respect to con-
cept activation.  In addition to basic recognition of certain 
stimuli or aspects of those stimuli, there are three particu-
larly interesting categories of concepts that influence emo-
tional state in Ground Truth agents: 

• physical state or sensation; 
• assessment of a situation; 
• assessment of a situation including behavior of an-

other agent. 
The first category is currently limited to (the intuitively 
named) feel-sick and feel-dying concepts in Ground Truth 
ScreamAgents, which convert their health levels to activa-
tion levels of these concepts.  The latter two categories fall 
into the Perceptual Awareness part of the SHERCA decision 
making model.  An example from the second category is the 
concept that models awareness that the agent is endangered 
by the presence of toxic fog because (s)he is not wearing 
PPE.  Examples from the third category correspond to being 
aware of carrying out an order that will result in people dy-
ing and being aware of carrying out an evacuation when the 
situation is appropriate.  Ground Truth cognitive models 
include a permanently activated dummy concept and associ-
ated emotional parameters to define a base emotional state 

and to provide resistance to mood swings due to low-
activation concept instances. 

Ground Truth cognitive models include three concepts 
that model the high-level goals of staying alive, maintaining 
discipline, and saving lives.  Activation patterns of these 
concepts and those representing perceptual awareness give 
rise to the activation of intermediate goals and action inten-
tions.  Intermediate-goal-action-intentions (IGAIs) that 
might imply a non-local behavior generally require the agent 
to receive a user command, such as the order to evacuate a 
specific block of the city, in order to be recognized.  The 
high-level goal of maintaining discipline can help overcome 
local observations that might not apply at a task destination.  
IGAIs whose recognition only requires local information 
can become activated without the NPC receiving a prompt-
ing command from the user, and even in opposition to a user 
command.  An example of this latter type of IGAI is to seek 
to stop an evacuation in the presence of toxic fog to avoid 
hurting civilians. 
 

 
Figure 7: Heads-up display for an agent after SHERCA integration.  The 
green bar shows the agent's health level, yellow shows fear, and red shows 
anger level. 
 

Emotion further contributes to selection among behaviors 
that are responses to the same situation.  Higher levels of 
fear help prompt the behavior of putting on PPE in the pres-
ence of toxic fog without a command or approval from the 
IC, while sufficient levels of fear and anger in the same 
situation will cause the agent to panic and flee instead of 
communicating with the IC if the goal of maintaining disci-
pline is not sufficiently high. 

E. Discussion and Ongoing/Future Development 
With a basic capability achieved, there are many direc-

tions for further development and research. Our plan is to 
improve the feedback to the player with respect to the NPCs 
emotional state by outputting context sensitive dialog and 
sound effects. By doing this we would seek to eliminate the 
need for the emotional status bars. However, we foresee this 
to be a labor-intensive process due to the necessity for a 
wide variety of relevant, yet different, verbal responses. In 
addition, we plan on semantically tagging areas of the game 
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world. This will provide our cognitive agents with richer 
perceptions of the game world and allow for more substan-
tive cognitive models. Lastly, we plan on conducting further 
experiments to quantitatively demonstrate that our training 
objectives were fulfilled with the inclusion of cognitive 
NPCs. These tests will include subject matter experts from 
the training community. 

Experience developing Ground Truth cognitive NPCs 
leads us to consider several directions for improvements to 
SCREAM, SHERCA, and integration of cognitive models 
into NPCs.  We have noticed that emotion levels fall more 
quickly than what is intuitively appropriate.  Implementing 
support for individual decay rates for concepts, and possibly 
computed emotion levels that they tend to evoke, could be a 
solution.  We would like to understand how to appropriately 
model suppression or maintenance of a behavior for a dura-
tion that is most easily understood in terms of a particular 
length of time. We also need to consider whether/how to 
enable SCREAM to model emotions being directed at par-
ticular entities.  In more complex environments, a model of 
attention would be needed.  Finally, in the long term, 
SCREAM/SHERCA requires an understanding of how epi-
sodic memory is used in decision-making, with and without 
context learning. 

Future scenario development from this work should look 
at events that span multiple cities, shared resources, and 
multiple attacks. High-level decisions from those scenarios 
impact response by adding extra constraints responders must 
operate in, thus affecting their emotional pressures. This 
opens up a new avenue for training even higher-level deci-
sion makers.  Related developments could include training 
for leadership and teaming abilities. Another option is to 
adopt emotional models for the civilian population. For ex-
ample, telling a region to evacuate while the toxic cloud is 
right over them would cause panic. Would the civilians con-
tinue to respectfully obey the first responders? This would 
enhance the training by providing support for civil disobedi-
ence. 

 

V. CONCLUSION 
Based on our early experiences with integrating 

SHERCA-driven cognitive models into Ground Truth NPCs 
we have seen positive results with increasing the realism of 
the training experience.   The SHERCA cognitive model 
structure and methodology enables us to use SCREAM’s 
combination of neural network representation and AI-based 
model description to effectively build psychologically plau-
sible models that select behaviors as intended.  We were 
able to incorporate fear and anger in an intuitive manner 
within SHERCA’s modeling guidelines. Also, we are able to 
give the NPCs individual variations by specifying different 
emotional sub-models and setting different high-level goal 
activations at runtime.  Within expected limitations, the 
cognitive NPCs make decisions and exhibit emotional states 
that are mutually consistent with the perceptions they are 
provided about the game state via its interface to the cogni-
tive models.  Thus, including emotion in NPCs via 

SHERCA-based cognitive models increases the realism of 
effects based upon an IC trainee’s decisions when playing 
Ground Truth. 
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