
Clustering Composite SaaS Components in Cloud

Computing using a Grouping Genetic Algorithm

Zeratul Izzah Mohd Yusoh and Maolin Tang, Senior Member, IEEE

Science and Engineering Faculty

Queensland University of Technology

Brisbane, Australia

{z.mohdyusoh, m.tang}@qut.edu.au

Abstract—Recently, Software as a Service (SaaS) in Cloud com-
puting, has become more and more significant among software
users and providers. To offer a SaaS with flexible functions at
a low cost, SaaS providers have focused on the decomposition
of the SaaS functionalities, or known as composite SaaS. This
approach has introduced new challenges in SaaS resource man-
agement in data centres. One of the challenges is managing the
resources allocated to the composite SaaS. Due to the dynamic
environment of a Cloud data centre, resources that have been
initially allocated to SaaS components may be overloaded or
wasted. As such, reconfiguration for the components’ placement
is triggered to maintain the performance of the composite SaaS.
However, existing approaches often ignore the communication or
dependencies between SaaS components in their implementation.
In a composite SaaS, it is important to include these elements,
as they will directly affect the performance of the SaaS. This
paper will propose a Grouping Genetic Algorithm (GGA) for
multiple composite SaaS application component clustering in
Cloud computing that will address this gap. To the best of our
knowledge, this is the first attempt to handle multiple composite
SaaS reconfiguration placement in a dynamic Cloud environment.
The experimental results demonstrate the feasibility and the
scalability of the GGA.

Index Terms—Cloud Computing, Composite SaaS, Clustering,
Grouping Genetic Algorithm.

I. INTRODUCTION

Cloud computing [1] is an emerging computing paradigm

in which applications, data and IT resources are provided as

a service to users over the Internet. One kind of service that

can be offered through the Cloud is Software as a Service or

SaaS [2]. Nowadays, SaaS is receiving considerable attention

from software vendors as well as software users. A report

from the International Data Corporation (IDC) states that there

will be a significant increase in companies’ subscriptions for

SaaS practices in their company in the near future [3]. In

fact, within three years, companies that have provided SaaS

could generate up to an 18 percent increase in revenue, as

reported in Dubey&Wagle [4]. Not only that, advances in

Cloud computing have provided an efficient means for SaaS

hosting; and, therefore, have made SaaS more accessible to a

wide range of software users. All these echo the fact that SaaS

has become more and more significant among software users

and providers.

Recently, SaaS providers have focused on developing SaaS

that would be able to effectively address different levels of

user’s functionalities. One of the ways to achieve this is

through decomposition of the software, or composite SaaS.

A composite SaaS is a group of loosely coupled individual

applications that communicate with each other in order to form

a higher-level functional system or application [5]. Through

this way, providers can gain a number of benefits including

reduced delivery cost, flexible offers of the SaaS functions

and decreased cost of subscription for users. However, this

approach also introduces new challenges for SaaS resource

management in a data centre.

Large-scale data centres like Cloud data centres usually con-

sist of thousands of physical servers with network links. There

are also storage servers that are located within the data centre.

Virtualization technology is used to achieve simultaneous use

of resources in the physical servers as well as lowering the

cost for clients. Through virtualization technology, a single

physical server is sliced into a number of virtual machines

(VMs) where each of the VMs represents an isolated execution

environment in the Cloud. These VMs are assigned a chunk of

their physical servers’ resources including processing capacity,

memory and secondary storage. The VMs can have their own

applications and operating systems.

At the initial stage of the SaaS deployment process, the SaaS

application components and their data components are placed

onto the physical servers and storage servers. The application

components are then deployed at the virtual machine for

execution. The virtual machine that hosts the application

components must have sufficient resources in order to fulfil

the performance level of certain applications, as specified

in terms of the client’s Service Level Agreement (SLA).

Due to the dynamic environment of a Cloud data centre,

where the workload of applications and resource capacities

keep changing over time, the initial deployment may need to

be modified. As such, the scheduled reconfiguration of the

VM is triggered at a certain period of time to maintain the

performance of the composite SaaS as well as to minimize

the resource usage. In order to do this, the current application

component placement needs to be re-configured. One of the

ways to achieve this is by clustering two or more application

components into a VM. The placement reconfiguration in

existing resource management for Cloud data centres often

ignores the communication or dependencies between the ap-

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia IEEE CEC

plication components in their implementation. In a composite

SaaS, these elements are important to be included, as they will

directly affect the performance of the SaaS. This paper will

propose a solution for multiple composite SaaS application

component clustering in the Cloud that will address this gap.

The remainder of the paper is organized as follows. Sec-

tion II discusses related work. The problem formulation is

described in Section III. Section IV presents the proposed

algorithm. Then Section V is about the evaluation that has

been carried out. The concluding remarks are presented in

Section VI.

II. RELATED WORK

Recently, resource management for Cloud data centres has

been actively studied and large parts of the work fall into

optimizing the resource management in the data centre. The

common objectives for optimization include minimizing the

resource usage while maintaining the application’s perfor-

mance [6], [7], [8], [9], minimizing the data centre’s power

consumption [10], [11] and balancing the thermal distribution

among the servers [12]. These objectives are achieved through

various management plans at different levels. For instance,

at the platform level, most existing works focus on the

management of VM mapping to physical servers, while at the

application level, the plan is to manage VM resources based

on the application’s workload.

Existing works on resource management at the platform

level apply migration of the VM as the main method of

dealing with dynamic changes in the Cloud environment [7],

[9], [13]. The VM migration method is used as it allows better

utilization of resources at the physical servers. Authors in [9]

proposed a two-phase solution for VM reconfiguration in a

data centre, named Entropy. In the first phase, the minimum

number of physical servers that can host the current VMs is

determined. In this phase the problem is formulated as the

Constraint Satisfaction Problem (CSP), where the constraints

are the capacities of the servers. . The second phase of the

problem concerns finding the cheapest reconfiguration plan

of the VM, based on the physical servers found in the first

phase. The cost is determined by the migration’s overhead that

occurs during the reconfiguration process, where the overhead

is calculated based on the memory requirement of the virtual

machine that is being migrated. The solution in this work is

triggered by the current status of the VM. Other work like the

one proposed in [7] triggers the migration periodically, based

on its maintenance schedule. They proposed an algorithm that

consists of four main processes, which are selection of the

physical server that needs migration, selection of the suitable

VM on that physical server, selection of the new physical

server and assignment of the VM to the physical server. The

selection is based on load profiles as well as the behaviour

of the servers. All these works at the platform level consider

a VM as an independent entity where it does not need to

communicate with other VM or storage servers in completing

its task. This paper proposes a different approach that concerns

the communication involved between VMs and it will be

tackled at the application level.

The communication among VMs is highlighted in [6] where

the authors proposed a solution for reconfiguration placement

that supports three types of constraints which are the VMs

demands, communications and availability. The data centre

is modelled as a hierarchical structure that represents com-

munication costs based on its hierarchy. Another work that

also concerns the communication among VM is presented in

[10]. In this paper, they consider a multi-tier application where

the deployment may span over multiple VMs. The proposed

solution is designed at two levels. At the application level,

there is a controller that will dynamically assign resources to

applications based on their requirement, and at the platform

level, they propose a consolidation algorithm to re-map VMs

to physical servers in the case of overload problems. The aim

at the platform level is to optimize the data centre’s power

usage. A similar work can be found in [11] where a multi-

level solution is also proposed. The authors in this paper

highlight the implementation of the adaptive technique at the

application-level, where the application adapts automatically to

the availability of the resources, and at the resource-allocation

level where the resources allocated adapts to the dynamic

workload requirements. There is another level considered in

this work, where the power consumption is adapted to the

demands at the resource-power level. Our work differs from

all these solutions in the sense that they do not consider

a composite application, in which a VM can host multi-

ple components with different requirements. In addition, the

components have to work with other components to achieve

the overall applications’ functionalities that are subject to the

user’s SLA. This paper will propose a solution to address this

gap.

III. PROBLEM FORMULATION

As mentioned in the Introduction, composite SaaS applica-

tions and data components are placed in the Cloud’s physical

machine and storage servers during the initial phase, and later

are executed in virtual machines. Fig. 1 illustrates a high level

of such a scenario, where the different shapes represent an

application component of a composite SaaS, and a VM can

host multiple components at a time. In order to deliver a higher

level of functionality to users, a composite SaaS may span over

multiple VMs.

Physical servers

VM VM

Physical servers

VM VM VM

Storage servers

VM

Data

VM

SaaS 1 SaaS 2

SaaS 3

Figure 1. An example of multiple composite SaaS placement in a Cloud
data centre.

Due to the dynamic environment of a data centre, re-

sources that have been initially allocated to SaaS applications’

components may be overloaded or wasted. A typical data

centre usually schedules a placement reconfiguration where

this activity occurs at certain periods of time based on its

need. Different approaches can be taken at different periods

of time, and can be done either dynamically or statically. In

order to obtain an optimal solution, our approach is to deal

with the dynamic environment at a static point of time, where

a whole data centre will be considered.

The problem of clustering multiple composite SaaS com-

ponents is aiming to reconfigure the initial placement by

clustering the components such that the new placement can

minimize the resources used while satisfying the SaaS SLA.

The problem’s inputs are:

• A Cloud’s data centre with its physical servers and

storage servers. The physical servers may consist of at

least one virtual machine.

• The Cloud’s data centre network topology with its links

between physical servers and storage servers.

• Multiple composite SaaS with their resource requirements

and constraints according to their SLA, and the current

placement of the components in the Cloud data centre.

A. Cloud Data Centre Modelling

A Cloud data centre consists of physical servers and storage

servers. Each server has its own resource capacities including

processing capacity, memory size and storage capacity. Each

physical server has at least one virtual machine (VM), where

the VM is given slices of the resources capacity of a physical

server. A value is assigned to every VM, which will represent

the ’cost’ of the VM. Each resource type is given a value,

and the VM cost is determined based on the capacity of the

resources that the VM has. Table 1 summarizes the data centre

attributes.

Table I
SETS AND ATTRIBUTES OF CLOUD RESOURCES

Cloud resources Description

csx ∈ CS
The xth physical server, csx, in CS, where CS
is a set of k physical servers and 1 ≤ x ≤ k

ssi ∈ SS
The ith storage server, ssi, in SS, where SS is a
set of r storage servers and 1 ≤ i ≤ r

vmx,y ∈ VM
The yth virtual machine, vm, for csx and VM
is a set of all virtual machine, y ≤ N

PCvmx,y
Processing capacity for vmx,y

MCvmx,y
Memory capacity for vmx,y

ST vmx,y
Secondary storage for vmx,y

Cvmx,y
Cost of vmx,y

B. Cloud Network Topology

The Cloud network is represented by an undirected graph

where G = 〈V,E〉. V = {CS ∪ SS} is the sets of vertices

including physical servers and storage servers, e ∈ E is the set

of undirected edges connecting the vertices, if and only if there

exists a physical link transmitting information from vi to vj ,

where vi, vj ∈ V . Bvi,vj
: E → R

+and Lvi,vj
: E → R

+is

the bandwidth and latency functions of the link from vi to vj
respectively.

C. Composite SaaS Modelling

As mentioned earlier, there are multiple composite SaaS

deployed in a Cloud data centre at a time. Each of the com-

posite SaaS has its own application and data components with

its minimum requirement for resources, as well as its SLA. In

this paper, we will consider the maximum response time of the

SaaS only as the SLA attribute. The SaaS modelling presented

here is made general enough to represent a composite SaaS.

Table II summarizes the SaaS components’ requirements, and

their workflow.

Table II
SETS, PARAMETERS AND REQUIREMENTS OF COMPOSITE SAAS

SaaS modelling Description

SCi ⊆ S
The ith composite SaaS, SCi in S. S is a set of
n composite SaaS, SC , and 1 ≤ i ≤ n

aci,j ∈ AC
The jth application component, aci,j for SCi

and AC is a set of all application component,
1 ≤ j ≤ z

dci,q ∈ DC
The qth data component, dci,q for SCi and DC
is a set of all data component, 1 ≤ q ≤ x

wf i,p ∈ WF
A pth business workflow for SCi where
WF ⊆ AC , 1 ≤ p ≤ y

rtSCi
The maximum response time for SCi

TSaci,j Task size of aci,j

Maci,j Memory requirement of aci,j

SZaci,j Size of aci,j

ADaci,j Amount of read/write task of aci,j

Wwfi,p
Weighing for wfi,p

Apart from the attributes defined in Table II, there are also

other inputs and constraints concerning the current placement.

These are defined as:

• A current placement configuration, P , of application

components AC, onto virtual machines, VM , given as

P : AC → VM where aci,j �→ P (aci,j) = vmx,y .

• A current location, L, of the data components, DC, at

storage servers, SS, given as L : DC → SS where

dci,q �→ L(dci,q) = ssk.

D. Problem’s Constraints

There are four types of constraints of the problem as

follows:

1) Resource Constraints: For all application components

placed in a virtual machine, the total requirements of the re-

sources must not exceed the VM’s capacity. This is expressed

by the equations below for processing capacity, memory and

secondary storage, respectively:

∀vmx,y∈VM

∑
aci,j∈AC

TSaci,j ≤ PCvmx,y
| P (aci,j) = vmx,y

(1)

∀vmx,y∈VM

∑
aci,j∈AC

Maci,j ≤MCvmx,y
| P (aci,j) = vmx,y

(2)

∀vmx,y∈VM

∑
aci,j∈AC

SZaci,j ≤ ST vmx,y
| P (aci,j) = vmx,y

(3)

2) Placement Constraints: There are two types of place-

ment constraint: a) An anti-location constraint that determines

the list of virtual machines that should not be considered

for hosting a specific component, aci,j . The list is defined

as AL =
{
(aci,j , vmx,y)z , ...

}
where z ∈ N, b) An anti-

colocation constraint that determines the list of application

components that cannot be placed in the same virtual machine.

The list is defined as ACL =
{
(aci,j , acs,t)w , ...

}
where

w ∈ N. The solution must comply with the anti-location and

anti-colocation constraint defined in the lists:

aci,j �→ P (aci,j)
= vmx,y , ∀(aci,j , vmx,y) ∈ AL (4)

P (aci,j)
= P (acp,q), ∀(aci,j , acp.q) ∈ ACL (5)

3) Response time constraints: The total execution time

of a composite SaaS is calculated based on four numerical

attributes: a) the time taken for transferring data between the

storage servers and the virtual machine, b) the processing time

of a component in a selected virtual machine, c) the execution

time of a path in the SaaS workflow, and d) the sum of the

execution time of the critical path of each workflow multiplied

by its weighting. All these attributes have been defined in

our previous work [17]. Based on these four values, the total

execution time of the SaaS, TET, is determined. The TET must

not exceed the maximum response time of a SaaS as agreed

in the users’ SLA. This constraint is defined as below:

TET (SCi) ≤ rSCi
(6)

4) Sequence of migration constraints: : To change the

placement from one virtual machine to another, the solution

has to consider the sequence of components that need to be

moved based on the current placement at that time. This

sequence may affect the cost of changing the placement

directly. Two scenarios will be considered in this problem:

• Sequential move: A particular component can only be

moved when another one has been completed. This is in

the case where the migrations of two components cannot

be done in parallel because of insufficient resources

(processing capacity/memory/secondary storage) in the

destination virtual machine for one of the components.

This is because the virtual machine contains another

component that is due to be migrated. As such, the latter

component needs to be moved first to free some resources

for the other component.

• Cyclic move: The migration of a set of components may

need an intermediate destination machine. This is the

case where two or more components need to exchange

places. This can create a cyclic constraint if the machines

involved have insufficient resources.

Given all the input defined above, the objective of the problem

is to find a new placement of S onto VM by clustering

the application components AC, such that the placement

will minimize the resources’ costs while satisfying the SaaS

constraints. As component placement reconfiguration is an

expensive process, the proposed solution will try to achieve the

objective with a minimum number of changes to the current

placement configuration.

IV. THE PROPOSED SOLUTION DESIGN

From the computational point of view, this problem is a

large-scale and complex combinatorial optimization problem

with constraints, for which an evolutionary computation tech-

nique would be suitable. As the approach for this problem

is to cluster components into VMs, the Grouping Genetic

Algorithm (GGA) technique is a natural choice. GGA [15]

is a modified version of Genetic Algorithm (GA) [16] where

it is designed for solving grouping problems. While the GA

treats its chromosomes and cost function as a whole, the

GGA divides its chromosomes based on relevant groups and

the optimization of the cost functions is done based on the

grouping. The genetic operations in the GGA are also done

based on the defined groups. This is to ensure that the groups

can fully explore the search space in order to find the optimal

solution.

In the following we discuss the design of the GGA in detail.

A. Chromosome Representation

The chromosome is grouped based on composite SaaS

in the Cloud. Each group has two compartments. The first

compartment contains n genes, each of which corresponds to

an application component in that particular group. The second

compartment contains the ID of the VM, where the application

component would be placed in the new placement plan. Fig.

2 shows an instance of the chromosome representation, where

the total number of composite SaaS is q, and each of the SaaS

has a different number of application components.

B. Infeasible Solutions

The chromosomes generated in a solution may be infeasible

due to constraints that a SaaS implies. There are four types of

constraint defined in Section III that need to be satisfied by

each of the chromosomes. The first three constraints concern

the SaaS requirements and the maximum response time. All

the solutions that do not comply with these constraints will

be repaired. The repairing technique performs a simple check

in each group to find any combinations that violate the

A1 A2 A3 A1 A2 A3
...

Application
component

Virtual
Machine

SaaS 1
.

.

.

SaaS 2 SaaS q

A4 A5 A6

1 42 700 1 42 700 3 78 466

A1 A2 A3 A4

1 42 700 1

Figure 2. An example of GGA chromosome encoding scheme with q composite SaaS with different number of application components

A1 A2 A3 A1 A2 A3
...

SaaS 1 SaaS 2 SaaS N

A4 A5 A6

1 42 700 1 42 700 3 78 466

A1 A2 A3 A4

1 42 700 1

A1 A2 A3 A1 A2 A3
...

SaaS 1 SaaS 2 SaaS N

A4 A5 A6

1 4 90 32 78 57 9 14 871

A1 A2 A3 A4

2 37 111 76

Crossover point

A1 A2 A3 A1 A2 A3
...

SaaS 1 SaaS 2 SaaS N

A4 A5 A6

1 42 700 1 42 700 3 78 466

A1 A2 A3 A4

2 37 111 76

A1 A2 A3 A1 A2 A3
...

SaaS 1 SaaS 2 SaaS N

A4 A5 A6

1 4 90 32 78 57 9 14 871

A1 A2 A3 A4

1 42 700 1

OFFSPRINGS

PARENTS

Figure 3. An example of inter-group crossover operation among composite
SaaS

constraints. A new value will be generated randomly to replace

the invalid one. The fourth constraint concerns the sequence

of migration, which will affect the migration’s cost. This

constraint will be incorporated in the fitness function that is

described in Section IV-D.

C. Genetic Operators

1) Crossover: The crossover operation is design based

on the grouping chromosomes. A single point inter-group

crossover will be used. This will combine segments from

different SaaS, and produce two offsprings. The top two fittest

among the parents and children are selected for the next

generation. Fig. 3 illustrates the crossover operation.

2) Mutation: To promote further exploration in the search

space, an inner-group mutation operator is used in order to

keep the diversity of chromosomes in the population. The

mutation operator is applied within a composite SaaS. It

changes a VM for a component to another VM that also

satisfies all the constraints. Fig. 4 shows an example of the

mutation operation.

D. Fitness Function

The aim of the problem is to create groups of components

of the multiple composite SaaS. Components that are grouped

together will be placed onto the same server such that the

new group and placement can minimize the total resources

allocated to the SaaS as well as the resource costs while

satisfying the SaaS constraints. The proposed solution will try

to achieve this aim with a minimum number of changes to the

A1 A2 A3 A1 A2 A3
...

SaaS 1
.

.

.

SaaS N

A4 A5 A6

1 4 90 32 78 57 9 14 871

A1 A2 A3 A4

1 42 700 1

VM

mutation

SaaS 2

A1 A2 A3 A1 A2 A3
...

SaaS 1
.

.

.

SaaS N

A4 A5 A6

1 4 90 32 12 57 9 14 871

A1 A2 A3 A4

8 42 700 1

SaaS 2

Figure 4. An example of inner-group mutation operation within a SaaS

current placement. These will be incorporated in the objective

function of the problem. There are two parts of the objective

function that will be used as a basis to evaluate each of the

solutions.

1) The cost of VMs used by the SaaS: VMs have their

costs which is based on their resources’ capacity, the higher

the capacity, the more it will cost. To calculate the total cost

of the virtual machines for a chromosome, the total VM cost

to host the SaaS components, TC, will be the basis of the

evaluation. This is defined as:

TC =
∑

vmx,y∈VM

Costvmx,y
(7)

where

Costvmx,y
=

{
Cvmx,y

, ∃vmx,y
| P (aci,j) = vmx,y

0 otherwise
(8)

The following equation is to normalize TC, and to ensure

TC is less than the current placement cost:

F (TC) =

{
0, TC ≥ initialCost
initialCost−TC

initialCost
, otherwise

(9)

2) The changes cost for a solution: Changing the cur-

rent placement of a component from one VM to another

requires some memory and bandwidth on both the source

and destination servers. Greater resources will be needed

for large components or a component with a large memory

requirement. These will incur some costs. To estimate this

cost, the calculation for placement changes are based on the

size of the components as well as its memory requirement. The

migration cost for all the SaaS, MC, will be based on the size

of the component, Szaci,j as well as its memory requirement,

Maci,j which is defined below:

MC =
∑

aci,j∈AC

Szaci,j

max(SzAC)× 2
+

Maci,j

max(MAC)× 2
(10)

The following equation is to normalize MC:

F (MC) = 1−
M

N(AC)
(11)

Based on the attributes that have been defined above, the

fitness function for the algorithm is:

F (X) = (F (TC)× w1) + (F (MC)× w2) (12)

where w1 and w2 are the weightage for each part and w1+
w2 = 1.

E. The Algorithm

In the beginning, the initial population is initialized ran-

domly. A repairing function is imposed to repair any indi-

vidual that violates the SaaS resource requirements and SaaS

constraints. The fitness evaluation is done in two parts: the

calculation of the VM cost and the calculation of the migration

costs. The population then undergoes the genetic operations

and fitter individuals will be copied to the next generation.

These processes will be conducted iteratively until the termi-

nation condition is met. The following is the algorithm for the

GGA.

Algorithm 1: Grouping Genetic Algorithm

1 bestF itness = 0
2 randomly initiliase (Population)

3 while termination condition is not true do

4 for X ∈ Population do

5 if X violates SaaS resource requirements, SaaS

placement constraint or SaaS response time

constraint then

6 Repair(X)

7 end

8 Calculate the new VM’s cost

9 Calculate the cost of changing placement based

on sequence of migration constraint

10 Calculate X fitness value, F (X)
11 if F (X) > bestF itness then

12 Replace bestF itness and store X

13 end

14 end

15 Select individuals from the Population based on

roulette wheel selection

16 Probabilistically apply the crossover operator to

generate new individual

17 Probabilistically select individuals for mutation

18 Use the new individuals to replace the old individuals

in the Population
19 end

20 output bestF itness

Table III
SETS AND ATTRIBUTES OF CLOUD RESOURCES

Parameter Value/Condition

Population size 100

Initial population Randomly generated solutions

Crossover probability 0.95

Mutation probability 0.05

Termination condition
No improvement for the best individual in 25
consecutive generations

V. EVALUATION

The GGA described above has been implemented using

Microsoft .NET Visual Studio C++ 6.0. Two experiments were

conducted, the first is to evaluate the quality of the solutions

produced by the GGA and the second experiment is to study

the scalability of the GGA. In both experiments, we tested

the GGA for five test cases that represent five different Cloud

data centre sizes, from 300 to 1500 VMs, with an increment

of 300. The number of composite SaaS is fixed at three, with

a total of 15 application components and 6 data components.

The parameter settings for the GGA are listed in Table III.

For the fitness function, w1 was set to 0.6 while w2 was set to

0.4. The experiments were carried out on a desktop computer

with 3 GHz Intel Core 2 Duo CPU and 4GB RAM.

To evaluate the quality of solutions produced by the GGA

in the first experiment, we developed a First Fit Decreasing

(FFD) heuristic for comparison. In the FFD heuristic, the VMs

and SaaS components are sorted in decreasing order based on

the capacity or requirement, and the heuristic will migrate each

component to the first available VM. If the solution violates

the time constraint, a new VM will be selected randomly.

Considering the nature of both techniques, each of the test

cases was repeated 10 times. Table IV shows the statistics of

the experimental results including the best, worst, average and

standard deviation of the VM costs for the GGA and the FFD.

Fig. 5 visualises the VM costs for the two techniques.

Based on the results, it can be seen that the GGA always

produced solutions that have lower VM costs than the FFD

with significant savings of around 20%-30%, hence a better

reconfiguration placement plan for the composite SaaS. It

should also be noted that all these solutions have a lower

migration cost than the FFD solutions.

We also analyzed the performance differences between the

GGA and the FFD. A series of one-tailed t-tests indicated the

statistics are significantly diffrerent (p < 0.01). The solutions

generated by the proposed GGA outperformed the FFD in all

test cases.

For the second experiment, Fig. 6 visualises the average

computation time taken by the GGA and the FFD for finding

the solutions for each of the test cases. It shows that the

computation time of the GGA grows closely to linear with

the Cloud data centre size and the longest computation time

is below two minutes. However, there is a big gap with

Table IV
EXPERIMENTAL RESULTS OF THE GGA AND THE FFD FOR ALL TEST CASES

Problem Size VM Costs (GGA) VM Costs (FFD)

Test
Case
ID

VM S AC DC Best Worst Ave StDev Best Worst Ave StDev

1 300 3 15 6 27.4 31 29.3 1.4 40.1 43.2 41.7 1.3

2 600 3 15 6 26.7 32.6 29.6 1.7 39.3 42.6 41.5 0.8

3 900 3 15 6 26.5 32.3 28.6 1.5 38 41.1 40.2 1.5

4 1200 3 15 6 25.6 28.9 27 1 32.4 36.9 34.3 1.5

5 1500 3 15 6 26.2 29.5 28.4 1.6 32.3 37.1 35.2 1.9

�

�

��

��

��

��

��

��

��

��

� � � � �

�
��
��
�
�	

�
�
�
�

�
	�
�
�
��

�	
��
�
	���

���

���

Figure 5. Comparison of the VMs costs produced by the GGA and FFD for
all test cases

�

���

���

���

���

�

���

���

���

���

	�� ���
�� ���� ����

�
�
�
�
�
��
�	
�

��
	�
�
�

�
	

��

�
������������
�����������

��

!!"

Figure 6. Computation times of the GGA and the FFD for different sizes
of Cloud data centre

the computation time taken by the FFD which is less than

one minute for each of the test cases. Although the time

differences are significant, considering the large improvement

in minimizing the resource usage by the GGA, this is still

affordable. Furthermore, the maintenance phase of the SaaS

reconfiguration placement in the Cloud occurs at different time

scales, from seconds to days, depending on the data centre’s

needs.

VI. CONCLUSION AND FUTURE WORK

We have presented the problem formulation and modeling

of the multiple composite SaaS component clustering problem

for the dynamic resource management of Cloud data centres.

The major objective of the problem is to minimize the usage

of resources of the SaaS without violating their SLAs by

reconfiguring the placement of the applications’ components.

Meanwhile, it also aims to achieve the objective with the

minimum changes possible.

A Grouping Genetic Algorithm (GGA) has been proposed

and implemented. The GGA is specifically designed to cater

for the structural group of a composite SaaS. The clustering

and reconfiguration placement problem considers not only the

resource requirements of the SaaS, but the communication

needs of other application components, as well as the data

components. To the best of our knowledge, this is the first

attempt to handle the multiple composite SaaS reconfiguration

placement in a dynamic Cloud environment. Based on the

experimental results, the proposed GGA always produces a

feasible solution for all test problems. It can also be seen that

the new placement that was proposed by the GGA can save the

resources consumed by the SaaS. Although the computation

time taken is quite long, it is still acceptable considering that

there are various types of maintenance in a data centre that

are conducted at different time scales.

As for future work, we note that there is room for opti-

mization in the implementation of the algorithm to improve

its computation time.Although the algorithm is scalable, the

computation time taken in finding the solutions can be further

improved by implementing the GGA in a parallel manner. The

network can be decomposed into several segments, and the so-

lution can be executed in parallel based on the segmentations.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

valuable comments on this paper.

This research was carried out as part of the activities of, and

funded by the Smart Services Cooperative Research Centre

(CRC) through the Australian Government’s CRC Programme

(Department of Innovation, Industry, Science and Research).

The study of Zeratul Izzah Mohd Yusoh was sponsored by

the Ministry of Higher Education Malaysia through Universiti

Teknikal Malaysia Melaka.

REFERENCES

[1] Foster, I., Yong, Z., Raicu, I., & Lu, S. (2008). Cloud Computing and
Grid Computing 360-Degree Compared. In Grid Computing Environ-

ments Workshop (pp. 1-10). Austin, Texas: IEEE..
[2] Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2009). A

Break in the Clouds: Towards a Cloud Definition. SIGCOMM Computer

Communication Review, 39(1), 50-55.
[3] Candan, K. S., Li, W.-S., Phan, T., & Zhou, M. (2009). Frontiers

in information and Software as Services. In Proceeding of the IEEE

25th International Conference on Data Engineering (pp. 1761-1768).
Shanghai, China: IEEE.

[4] Dubey, A., & Wagle, D. (2007). Delivering Software as a Service. The

McKinsey Quarterly, 1-12.
[5] Cisco System Inc. (2008). Cisco Service-Oriented Network Architecture:

Support and Optimize SOA and Web 2.0 Applications [Electronic
Version]. Retrieved Mac 2011, from http://www.cisco.com/

[6] Jayasinghe, D., Pu, C., Eilam, T., Steinder, M., Whally, I., & Snible, E.
(2011). Improving Performance and Availability of Services Hosted on
IaaS Clouds with Structural Constraint-Aware Virtual Machine Place-
ment. In Proceeding of the IEEE International Conference on Services

Computing (pp. 72-79). Washington, USA: IEEE.
[7] Verma, A., Ahuja, P., & Neogi, A. (2008). pMapper: power and

migration cost aware application placement in virtualized systems. In
Proceedings of the 9th ACM/IFIP/USENIX International Conference on

Middleware (pp. 243-264). New York, USA: Springer-Verlag New York,
Inc.

[8] Wood, T., Shenoy, P., Venkataramani, A., & Yousif, M. (2007). Black-
box and gray-box strategies for virtual machine migration. In Proceeding

of the 4th USENIX Symposium on Networked Systems Design & Imple-

mentation (Vol. 7, pp. 229-242). Cambridge: USENIX.
[9] Hermenier, F., Lorca, X., Menaud, J. M., Muller, G., & Lawall, J.

(2009). Entropy: a consolidation manager for clusters. In Proceedings of

the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual

execution environments (pp. 41-50). New York, USA: ACM.
[10] Wang, Y., & Wang, X. (2010) Power optimization with performance

assurance for multi-tier applications in virtualized data centers. In
Proceeding of the 2010 39th International Conference on Parallel

Processing Workshops (ICPPW), (pp. 512-519). San Diego, CA: IEEE.
[11] Cucinotta, T., Palopoli, L., Abeni, L., Faggioli, D., & Lipari, G. (2010).

On the Integration of Application Level and Resource Level QoS Control
for Real-Time Applications. In Proceeding of the IEEE Transactions on

Industrial Informatics (Vol. 6, pp. 479-491): IEEE.
[12] Xu, J., & Fortes, J. A. B. (2010). Multi-Objective Virtual Machine

Placement in Virtualized Data Center Environments. In Proceeding

of the 2010 IEEE/ACM Int’l Conference on & Int’l Conference on

Cyber, Physical and Social Computing (CPSCom), Green Computing
and Communications (GreenCom) (pp. 179-188).

[13] Gao, Q., Tang, P., Deng, T., & Wo, T. (2011). VirtualRank: A Prediction
Based Load Balancing Technique in Virtual Computing Environment. In
Proceeding of the 2011 IEEE World Congress on Services (SERVICES)

(pp. 247-256). Washington DC: IEEE.
[14] Andreolini, M., Casolari, S., Colajanni, M., & Messori, M. (2010).

Dynamic load management of virtual machines in cloud architectures.
Cloud Computing, 34, 201-214.

[15] Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin
packing. Journal of heuristics, 2(1), 5-30.

[16] Mitchell, M. (1998). An introduction to genetic algorithms: The MIT
press.

[17] Yusoh, Z., & Tang, M. (2010): A Penalty-based Genetic Algorithm for
the Composite SaaS Placement Problem in the Cloud. In IEEE World

Congress on Computational Intelligence. (pp. 600-607). IEEE: Spain

