
Evolution of Cellular Automata

Using Instruction-Based Approach

Michal Bidlo

Brno University of Technology

Faculty of Information Technology

IT4Innovations Centre of Excellence

Božetěchova 2, 61266 Brno

Czech republic

Email: bidlom@fit.vutbr.cz

Zdenek Vasicek

Brno University of Technology

Faculty of Information Technology

IT4Innovations Centre of Excellence

Božetěchova 2, 61266 Brno

Czech republic

Email: vasicek@fit.vutbr.cz

Abstract—This paper introduces a method of encoding cellular
automata local transition function using an instruction-based
approach and their design by means of genetic algorithms. The
proposed method represents an indirect mapping between the
input combinations of states in the cellular neighborhood and
the next states of the cells during the development steps. In
this case the local transition function is described by a program
(algorithm) whose execution calculates the next cell states. The
objective of the program-based representation is to reduce the
length of the chromosome in case of the evolutionary design of
cellular automata. It will be shown that the instruction-based
development allows us to design complex cellular automata with
higher success rate than the conventional table-based method
especially for complex cellular automata with more than two cell
states. The case studies include the replication problem and the
problem of development of a given pattern from an initial seed.

Index Terms—Cellular automaton, development, replication,
evolutionary design.

I. INTRODUCTION

In the recent years cellular automata (CA) have been suc-

cessfully applied in many scientific areas. The development

of a cellular automaton usually represents a complex process

during which a non-trivial global behavior based only on local

cell interactions using simple rules may emerge [1]. However,

the design of a transition function according to which the CA

should develop to solve a given problem is a challenging task.

The problem is that the number of possible solutions grows

exponentially with the increasing number of cell states and

the size of the cellular neighborhood. Moreover, the process

of creating the transition function is less intuitive than the

traditional algorithm design because of local cell interactions

and parallel matter of the CA development. Therefore, non-

traditional approaches have often been applied, including

evolutionary algorithms.

The goal of this paper is to introduce an instruction-based

approach for the development of cellular automata. The main

idea is to represent the transition function by a program

(a sequence of instructions performing simple elementary

operations) rather than by a table specifying a new state of

a cell for all the possible combinations of states in the cellular

neighborhood. It will be shown that by using the instruction-

based approach the transition function for a given problem

may be designed in substantially shorter time and with higher

success rate in comparison with the conventional (table-based)

approach. The experiments performed to demonstrate the abil-

ity of the proposed approach consider the replication problem

and the development of a specified pattern in the cellular

automaton. The simple genetic algorithm will be utilized to

design the cellular automata.

The paper is organized as follows. The rest of this section

briefly introduces the basic principles of cellular automata

and summarizes the related work. In Section II the concept

of instruction-based development for cellular automata is

described. The setup of the evolutionary system utilized for

the experiments is stated in Section III. Overview of the

experimental results and discussion is proposed in Section IV.

Finally, Section V provides concluding remarks and possible

direction of future research.

A. Cellular Automata

Cellular automata, originally invented by Ulam and von

Neumann in 1966 [2], represent a mathematical model in-

tended to study the behavior of complex systems, especially

the questions of whether computers can self-replicate. Cellular

automata may also be considered as a biologically inspired

technique to model and simulate the cellular development.

A two-dimensional (2D) cellular automaton consists of a

regular grid of cells, each of which can occur in one state from

a finite set of states. The states are updated synchronously

in parallel according to a local transition function. The

synchronous update of all the cells of the CA is called a

developmental step. The next state of a cell depends on the

combination of states in the cellular neighborhood. In this

paper the cellular neighborhood will be considered as a 5-tuple

comprising the investigated cell and its immediate neighbor in

the north, south, east and west direction. The standard form

of the transition function defines next state of a given cell for

every possible combination of states in its neighborhood. Let

us denote sNsSsEsW sC → sCnew a rule of the transition

function, where sN , sS , sE , sW and sC represents the actual

state of the north, south, east, west and the central cell in the

cellular neighborhood respectively and sCnew denotes the next

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia IEEE CEC

state of the investigated (central) cell. This concept is referred

to as von Neumann’s cellular neighborhood consisting of 5

cells. Boundary conditions have been considered for a finite

size of the cellular grid. Typically zero boundary conditions

have been applied which means that the non-existing neighbors

of the cells at the grid boundary are considered as cells in state

0. Another case may involve cyclic boundary conditions, i.e.

the opposite cells at the grid boundary are considered to be

neighbors and then the 2D CA can be viewed as a toroid.

In case of uniform cellular automata the transition function

is identical for all the cells. In general, non-uniform CA may

have each cell driven by different transition function.

In this paper 2D uniform cellular automata with von Neu-

manns neighborhood and cyclic boundary conditions will be

considered.

B. Related Work

Cellular automata have been applied to solve many complex

problems in different areas. A detailed survey of the principles

and analysis of various types of cellular automata and their

applications is summarized in [1]. Sipper [3] investigated the

computational properties of cellular automata and proposed an

original evolution-based method called cellular programming

for the design of non-uniform cellular automata. He demon-

strated the success of this approach in solving some typical

problems related to the cellular automata, e.g. synchronization

task, ordering task or the random number generation. In the

recent years, scientists have been interested in the design

of cellular automata for solving different tasks using the

evolutionary algorithms.

Several works dealt with the replication problem in the

past as well as in the recent years. Many works have dealt

with the design and development of cellular automata or more

general cell-based systems (e.g. Random Boolean Networks

[4]). For example, Miller investigated the problem of evolving

a developmental program inside a cell to create multicellular

organisms of arbitrary sizes and characteristics. He presented

a system in which the organism organizes itself into a well

defined patterns of differentiated cell types (e.g. the French

flag) [5]. Kowaliw et al. proposed a simplified model of

biological embryogenesis instantiating a subset of 2D cellular

automata and a methodology for “growing” the cells into

agents utilizing only local interactions. His approach was

called Bluenome Developmental Model [6]. Tufte and Haddow

utilized a FPGA-based platform of Sblocks [7] for the online

evolution of digital circuits. The system actually implements

a cellular automaton whose development determines the func-

tions and interconnection of the Sblock cells in order to realize

a specified behavior [8]. The rules for the development of

the cellular automaton has been designed by evolutionary

algorithm. Considering the popular replication problem, prob-

ably the most known approach represents the Langton’s self-

replicating loops [9] that utilize special instructions encoded

in the cell states to determine the development steps of the

cellular automaton. In particular, the loop starts its replication

by creating a “construction arm” by means of which the new

copy of itself emerges. The instruction specified by the com-

binations of states in this arm determines the next step of the

replication process (including turns, loops closing and starting

the next replication process). Pan and Regia also studied the

replication in cellular automata [10]. However, they adopted a

uniform tree-based approach based on Genetic Programming

for representing both arbitrary cellular automata structures and

the rules that control the cell’s transitions. As the authors state

“There is no identifiable instruction sequence or construction

arm, the replicating structures generally translate and rotate

as they reproduce, and they divide via a fissionlike process

that involves highly parallel operations.” [10]. We found their

approach very inspirative because it actually introduces new

way of determining the states during the CA development.

However, we also felt that the method utilized to calculate

the transition function might be simplified substantially by

introducing elementary operations and suitable encoding with

respect to the form of the cellular neighborhood. As we

demonstrate, our approach is applicable on different problems

in two-dimensional cellular automata.

II. INSTRUCTION-BASED DEVELOPMENT FOR CELLULAR

AUTOMATA

The instruction-based development (IBD) was originally

introduced in [11] as an advanced generative genotype–

phenotype mapping in the evolutionary design. The main

goal was to provide an evolutionary system for the automatic

development of generic solutions for different problems. The

instruction-based approach demonstrated its ability to reduce

the search space allowing to develop (arbitrarily) large struc-

tures (instances) of digital circuits.

However, the concept of instructions also may be utilized

for effective representation of functions (similarly to Genetic

Programming for the evolution of computer programs [12]).

Cellular automata belong to the systems in which an efficient

calculation of the local transition function (determining the

process of their development) is essential to solve a given

problem. Conventionally the local transition function is rep-

resented by a table that specifies the next state of a cell for

all the possible combinations of states in its neighborhood. In

case of increasing the number of cell states the number of such

combinations grows exponentially and thus the representation

and design of the transition function becomes difficult. It may

me possible to specify implicit rules of the transition function

(e.g. for some combinations of states the new state of the cell

does not change) but the problem is how to determine the set of

implicit rules for a given task. Therefore, we will represent the

transition function by a program whose instructions perform

elementary or more complex operations over the cell states

of the cellular neighborhood and the next state is chosen

deterministically from this modified neigborhood. Whilst in

[11] the instructions were intended to manipulate the circuit

building blocks (i.e. to perform a construction process), in this

paper another instruction set has to be chosen. In particular,

the instructions will be devoted to the calculation over cell

states and other operations related to the cellular neighbor-

hood. The main idea is to demonstrate that the instruction-

based approach combined with evolutionary algorithms may

be widely applicable. In this paper the case studies include

some problems of cellular automata development, specifically

the replication problem and the development of a given pattern

from an initial seed. The objective is to show that if a suitable

set of instructions is utilized for the evolution of a program-

based transition function of a cellular automaton, then a given

behavior of the CA can be achieved with higher success rate in

comparison with the conventional table-based representation.

A. Operations on the cellular neighborhood

The goal of the IBD approach to cellular automata evolution

is to provide a technique for efficient updating the cell states

during the CA development with respect to the states of the

neighboring cells. The operations of the instructions have been

chosen with respect to the form of the cellular neighborhood.

The execution of the program allows to modify the states in

the cellular neighborhood and subsequently to determine the

next state of the investigated cell. The following development

algorithm will be considered for each cell of the CA:

1) Copy the cell states of the cellular neighborhood into a

temporary data structure whose form corresponds to the

cellular neighborhood.

2) Execute the program representing the transition function

whose instructions will modify the states in the tempo-

rary data structure.

3) Return the state of the central cell in the temporary data

structure as the next state – the result of the transition

function.

The set of instructions that may be utilized in the program

calculating the transition function is summarized in Table I.

As evident the instructions include operations that can modify

one or more cells in the neighborhood copy and the empty

operation allowing to alter the efficient length of the program

during the evolutionary process. Since the instructions operate

over the copy of the cellular neighborhood in a temporary

data structure, the process of calculation of the next state

of a cell does not influence the states of other cells during

a development step and therefore the next states of all the

cells can be determined in parallel which is a characteristic

feature of cellular automata. The instructions were chosen

with respect to general operations that are possible to perform

over cell states (i.e. logic and arithmetic operations over the

state values, transfer a cell state to a different cell in the

neighborhood, swapping the states of two neighbors etc.).

However, no advanced optimization of the instruction set has

been performed in this stage of research because the selection

of proper instructions for a given CA behavior represents a

difficult task and in many cases is a subject of experimental

work.

B. Properties of the Instruction-Based Transition Function

If an evolutionary algorithm is applied to design a CA, the

instruction-based approach is able to shorten the chromosome

substantially and therefore to reduce the search space. In fact,

TABLE I
THE SET OF INSTRUCTIONS UTILIZED FOR THE DEVELOPMENT OF

CELLULAR AUTOMATA. N [i1], N [i2] DENOTE THE CELL STATES FROM THE

NEIGHBORHOOD POSITIONS DETERMINED BY THE INSTRUCTION

ARGUMENTS i1, i2 , S REPRESENTS THE NUMBER OF CELL STATES AND

N, S, E, W AND C SPECIFIES THE CELL STATE IN THE NORTH, SOUTH,
EAST, WEST AND CENTRAL POSITION IN THE NEIGHBORHOOD

RESPECTIVELY.

Instruction Operation Description

AND N [i1] = N [i1] ∧ N [i2] logic AND
OR N [i1] = N [i1] ∨ N [i2] logic OR

XOR N [i1] = N [i1] ⊕ N [i2] logic XOR
NOT N [i1] = notN [i1] bitwise NOT
INV N [i1] = S − N [i1] inverse state
MIN N [i1] = min(N [i1], N [i2]) minimum
MAX N [i1] = max(N [i1], N [i2]) maximum
SET N [i1] = N [i2] replace
INC N [i1] = N [i1] + 1 increment
DEC N [i1] = N [i1] − 1 decrement
SWP N [i1] ↔ N [i2] swap
ROR WCE → EWC rotate right
ROL WCE → CEW rotate left
ROU UCS → CSU rotate up
ROD UCS → SUC rotate down
NOP no operation

the design of a CA consists of the evolution of its local

transition function.

For example, if a transition function ought to be evolved for

a CA working with 4 cell states (that is used in some of the

experiments presented in Section IV), then the fully defined

table-based transition function consists of 45 = 1024 integers

(it is the length of a chromosome representing the complete

table of the transition function). Therefore, there are in total

41024 = 3.2317 × 10616 different transition functions for this

CA which represents the search space of the evolutionary

algorithm. Consider that the IBD approach is utilized and

the goal is to evolve a program consisting of 10 instructions.

Moreover, assume that a single instruction consists of 3 inte-

gers (operation code and two arguments), there are 16 different

instructions (i.e. 16 different operation codes) and each of the

arguments can posses one of 5 different values. Then the length

of a chromosome is 10 × 3 = 30 integers and the size of the

search space consists of (16 × 5 × 5)10 = 1.048576 × 1026

different programs which is substantially less in comparison

with the table-based representation.

As stated in the previous section, the program is executed

over a copy of the cellular neighborhood. Therefore, the next

states of all the cells can be calculated independently (in

parallel) as usual in common (synchronous) cellular automata.

Another important aspect of the IBD approach is that the

process of calculating the next state for a given cell is

deterministic (there is a specific combination of states in

the neighborhood copy which the program operates on, each

instruction of the program performs a deterministic operation

(function) modifying the states in the neighborhood and the

resulting value — next state — is always considered in a

specific cell of the neighborhood after executing the program).

Considering this feature, the instruction-based transition func-

tion can be deterministically transformed to a corresponding

table-based transition function without changing the nature of

cellular automata.

III. EVOLUTIONARY SYSTEM SETUP

The simple genetic algorithm (GA) was utilized for the

evolutionary design of the cellular automaton that exhibits the

specified behavior. For the comparison purposes we consider

the evolution of common table-based local transition function

as well as the program-based transition function as described

in the previous section. The table-based approach considers the

evolution of a complete transition function (i.e. to determine

a next state for all the possible combinations of states in

the cellular neighborhood). In case of the IBD approach a

program to be evolved consists of 10 instructions. This value

was determined experimentally in order to provide a sufficient

resources to calculate the next states. Of course, some of the

resulting solutions use NOP instructions so the effective length

of the program can be reduced. However, if shorter programs

ought be evolved, then the number of correct solutions in the

search space may be reduced and the success rate decreases.

In all the experiments, the population consists of 16 chro-

mosomes which are initialized randomly (with respect to the

correct range of each gene) at the beginning of evolution.

The chromosomes are selected by means of the tournament

operator with the base 4. The experiments showed that the

crossover operator is not suitable for this problem, thus only

the mutation operator is applied as follows. Two integers of

the chromosome are chosen randomly and their values are

mutated by generating new random values in the appropriate

range.

Each candidate CA is evaluated during 30 development

steps according to the transition function encoded in the

chromosome. The following subsections describe the specific

features of the evolutionary system with respect to the two

different approaches.

The initial state of the CA, the way of calculating the

fitness function and the number of generations of the evolution

depends on the problem to be solved and therefore their

description will be covered in Section IV.

The way of encoding the transition function in the genome

for the table-based and program-based representation and its

properties is described in the following subsections.

A. Table-Based Transition Function

In case of the table-based transition function the chromo-

some encodes the next states of a cell for all the possible

combinations of states in the cellular neighborhood. The index

of a given next state in the chromosome is specified implicitly

by means of the value expressed by the number representing

the combination of states in the cellular neighborhood. The

base of this number equals the number of possible cell

states. Therefore, if we consider the general form of the rule

sN sS sE sW sC → sCnew, only the part on the right of the

arrow are encoded in the chromosome. For example, if a cellu-

lar automaton ought to be evolved working with 2 different cell

states and von Neumann’s neighborhood consisting of 5 cells,

there are 25 rules of the local transition function. Consider the

rule 1 0 0 0 1 → 0. Since the combination of states 1 0 0 0 1
corresponds to the binary representation of value 17, the output

value (0) will be placed in the chromosome at the position 17.

B. Program-Based Transition Function

The program-based representation of the transition func-

tion is encoded in the chromosome as a finite sequence of

instructions from Table I. Each instruction is encoded as three

integers (operation code and two arguments) whose value

ranges depend on the number of instructions and the meaning

of their arguments. The main advantage of this approach is that

the length of the genome is independent on the number of cell

states and the size of the cellular neighborhood. Therefore the

search space can be reduced substantially.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The abilities of the proposed instruction-based develop-

ment approach introduced in the previous sections will be

demonstrated on two problems: (1) the replication problem

and (2) the problem of development of a given pattern from

a seed. The experimentsl results and discussion are given in

this section.

A. Replication Problem

The goal of the replication problem is to obtain a copy of

a given structure in a finite number of development steps. The

structure is represented by the initial state of the CA. The

genetic algorithm is applied to design a transition function

by means of which the CA develops so that there is a given

number of copies of the initial structure after a finite number

of development steps. The set of experiments performed in this

section considers searching for the transition function (in the

form of table and program) for the replication of structures of

different complexity and size. As noted in Section I-B there

are several approaches to the replication problem. Probably

the simplest technique able to replicate an arbitrary structure

is based on additive cellular automata rules [1]. This problem

can be viewed as a basis for investigating the abilities of the

proposed method (having a known solution, we may search for

the same or similar transition functions using the conventional

and proposed approach).

Fig. 1. Patterns considered in the experiments.

Five sets of experiments were performed, each of which

contained 100 independent runs of the GA. The first set

considered the replication of a simple grid structure (Figure

1a), the second was devoted to the replication of French flag

pattern (Figure 1b), the third set is the replication of Czech flag

best_fitness = 0 # fitness out of all development steps

const REPLICS = the num. of required copies of the given pattern

initialize the CA by the pattern to be replicated

FOR int step = 1 TO DEVEL_STEPS DO

{

fitness = 0 # fitness in one development step

replicas_cnt = 0 # num. of replicas found in a devel. step

ca_step(ca1, genome->prog);

FOR row = 0 TO CA_HEIGHT - PATTERN_HEIGHT DO

{

FOR col = 0 TO CA_WIDTH - PATTERN_WIDTH DO

{

partial_fitness = 0 # fitness in specific part of CA

FOR pr = 0 TO PATTERN_HEIGHT - 1 DO

FOR pc = 0 TO PATTERN_WIDTH - 1 DO

IF ca[row+pr][col+pc] == pattern[pr][pc] THEN

partial_fitness = partial_fitness + 1

save the partial_fitness value

IF found perfect pattern at position (row, col) THEN

replicas_cnt = replicas_cnt + 1

}

}

fit = sum of the REPLICS best saved partial fits

add a bonus if the solution produces more replicas

fit = fit + replicas_cnt * PATTERN_HEIGHT * PATTERN_WIDTH

save the best fitness out of all development steps

IF fitness > best_fitness THEN

best_fitness = fitness

}

RETURN best_fitness

Fig. 2. Calculating the fitness function for the replication problem. The
pattern dimensions PATTERN WIDTH and PATTERN HEIGHT
also include a border consisting of a single line of inactive cells (cells in state
0) because we require the replicated structures to be separated each other.

(Figure 1c), the fourth and fifth replicate WCCI abbreviation

(Figure 1d), where at least 3 and 4 copies are required

respectively. The evolution was executed independently for the

design of the conventional table-based transition function and

the program-based representation. The algorithm calculating

the fitness function is shown in Figure 2 and its principle can

be described as follows. After each development step, every

part of the CA is explored by comparing the states of the given

pattern with the appropriate cell states at the corresponding

positions in the CA. If a state match is detected, then a partial

fitness value associated with the specific part of the CA is

increased by one. After exploring the part of the CA the

resulting partial fitness is saved into a temporary array. If the

partial fitness equals the number of cells the replicating pattern

is composed of, then the value of a replicas counter variable

is increased by one. After exploring all the parts of the CA,

the replicas counter contains the number of perfectly matched

patterns (i.e. the number of replicas that emerged after a given

development step). The fitness value of the given development

step is calculated as the sum of the REPLICS best partial

fitness values, where REPLICS represents the number of

required copies of the (initial) pattern to be replicated. If the

replicas counter detected at least one replicated pattern, then

the fitness value is increased appropriately to prefer solutions

that are able to create perfect replicas. As a final fitness value

of the CA (i.e. the fitness of the candidate transition function)

is considered the highest fitness from all the development steps

during which the CA was evaluated.

The results of the replication experiments are summarized

in Table II. For each pattern the success rate and the average

number of generations needed to find a perfect solution were

measured. The proposed program-based transition function

overcomes the conventional approach in all presented cases,

TABLE II
STATISTICAL RESULTS FOR THE REPLICATION PROBLEM CONSIDERING

THE INSTRUCTION-BASED AND TABLE-BASED DEVELOPMENT. THE GRID

STRUCTURES (FIG. 1A) WERE DEVELOPED IN CA WITH 2 CELL STATES,
THE OTHER PATTERNS CONSIDERED 4 CELL STATES. IF NOT EXPLICITLY

SPECIFIED, 3 REPLICAS WERE REQUIRED.

Instruction-based development

Number of generations

Pattern Succ avg. std. dev. min. median max.

[%]

Fig. 1a 100.0 23 19.4 1 18 80

Fig. 1b 100.0 22 16.4 1 19 80

Fig. 1c 100.0 22 21.4 1 18 112

Fig. 1d 100.0 23 18.1 1 18 81

Fig. 1d (4 repl.) 100.0 55 43.6 2 47 256

Table-based development

Fig. 1a 9.0 5634 2490.2 1500 5250 9052

especially for more complex patterns. In case of the grid

structure replication a perfect program was evolved in all

runs, whilst the table-based approach succeeded only in 9%

of evolutionary runs. It is important to note that the table-

based approach did not provide any solution to the remaining

patterns considered in the experiments. We assume that this

result is caused by the cardinality of the search space that

is substantially higher for the table-based representation and

the evolution is not able to explore it effectively. Another

aspect of this issue is probably based on the operations needed

to express the local transition function. In case of the table-

based representation, the transition function actually needs to

be created at a low level (i.e. for every combination of states

in the cellular neighborhood a new state has to be specified).

However, if the instruction-based approach is considered, the

new state is calculated using higher-level operations (like in a

common programming language), the corresponding program

can be shorter in comparison with the complete table which

leads to a reduction of the search space and the evolution

is able to explore it more effectively. We determined that

several different programs were evolved that produces at least

3 perfect replicas of the given pattern. Although we required 3

replicas, the evolution found in some case a solution providing

4 replicas of the structure.

An example of evolved solution is shown in Figure 3.

In addition, the table-based transition function produced two

solutions for 3 replicas that exhibit a couple of extra active

cells between the replicated patterns (Figure 4). This behavior

was not observed in the program-based approach (only pure

replicated structures were generated). It is probably caused

by the fact that the evolution of the table-based representation

directly allows to alter each single output state of the transition

function whilst the program-based approach actually repre-

sents an indirect mapping between the input combinations of

states in the cellular neighborhood and the output states. This

feature may be considered as both advantage and disadvantage

of the program-based approach. The benefit lies in the fact that

the program-based solutions produce perfect outputs without

Fig. 3. Development of evolved cellular automaton for the replication of a grid structure.

Fig. 4. Example of replication of a simple grid structures with additional active cells.

undesirable active cells. On the other hand the drawback is that

more complex transition functions require (as expected) more

instructions in the program. Nevertheless the evolution is able

to tackle that very efficiently because the proposed approach

solved all the considered problems with substantially higher

success rate and lower computational effort in comparison with

the table-based transition function.

Another examples illustrating the replication of more com-

plex irregular patterns (the Czech flag and a WCCI pattern) are

illustrated in Figure 5 and 6. Both of these automata operate

with 4 cell states.

The evolved transition functions exhibit the features of

additive rules described in [1]. Several different variants were

obtained differing in the number and direction of replicas with

respect to the position of the initial structure. In addition to

the pattern used during the evolution, the resulting programs

are in many cases able to replicate different structures which

confirms the properties of the replicators mentioned in [1].

B. Pattern Development Problem

Another issue that was investigated in our experiments is the

problem of the development of a given pattern in a cellular

automaton from a seed. It means that the initial state of the

CA is represented only by the central cell in non-zero state,

all the other cells possess the state 0. During the evolutionary

process the CA is examined if it matches with the specified

pattern after each development step. In these experiments

the dimensions of the cellular automaton correspond to the

dimensions of the pattern that ought to be developed. The

goal is to design a transition function (again, in the form of

table and program) according to which the CA develops from

the seed into the given pattern.

Four sets of experiments were performed. The first pair of

experiments considered the development of a grid structure

consisting of 5x5 cells (Figure 1a)) and 9x9 cells (Figure 1e).

In the second pair of experiments French flag ought to be

developed (Figure 1b) with the dimensions 6x6 and 9x9 cells.

The candidate solutions are evaluated as follows. A partial

fitness value is calculated after each development step as the

number of cells of the CA whose state equals the state of the

corresponding cell of the target pattern. The fitness function

of a candidate transition function is evaluated as the maximum

of the partial fitness values from all the development steps.

TABLE III
STATISTICAL RESULTS FOR THE PATTERN DEVELOPMENT PROBLEM

CONSIDERING THE INSTRUCTION-BASED AND TABLE-BASED APPROACH.
THE GRID STRUCTURES (FIG. 1E) WERE DEVELOPED IN CA WITH 2 CELL

STATES, THE OTHER PATTERNS CONSIDERED 4 CELL STATES.

Instruction-based development

Number of generations

Pattern Succ. avg. std. dev. min. median max.

[%]

Fig. 1a 100.0 14358 16711.5 143 7543 86445
Fig. 1e 60.0 32504 23387.7 2888 24828 89228
Fig. 1b 79.0 37925 27117.1 1211 31991 97717
French9x9 23.0 62095 21979.8 18784 62143 90233

Table-based development

Fig. 1a 100.0 402 757.3 19 118 4075
Fig. 1e 76.0 24331 26200.6 118 16353 96980
Fig. 1b 54.0 28896 26264.1 475 22028 92948
French9x9 1.0 30614 0.0 30614 30614 30614

Table III summarizes the statistical results from the exper-

iments mentioned in the previous paragraph. The evolution

succeeded in all cases and provided solutions that perfectly

fulfil the objectives specified in the fitness function. There

are some interesting facts that were observed in both rep-

resentations of the transition function. The first is that the

instruction-based approach exhibits higher success rate in

most sets of experiments. The only case in which the table-

based representation is more successful is the development of

a 9x9 grid structure (the program-based approach succeeded

in 60% whilst the conventional method in 76%). This issue

can be explained as follows. The problem considers a binary

CA whose 5-neighborhood implies 232 possible transition

functions specified by the table (the chromosome consists of

32 bits). However, the search space of the program-based

approach is in this case substantially bigger. For example, if

10 instructions in the programs are considered, each consisting

of 3 integers, there are 30 integers in the chromosome, each

of which can possess at least 5 different values so the search

Fig. 5. Development of evolved cellular automaton for the replication of the Czech flag.

Fig. 6. Development of evolved cellular automaton for the replication of WCCI structure.

space contains at least 530 candidate solutions. Therefore it

is harder to find a working solution for the 9x9-cell structure

in so big search space. The second interesting issue is that

although the program-base approach mostly exhibits higher

success rate, the computational effort (expressed by the num-

ber of generations needed to evolve a working solution) is

higher than in case of the conventional approach. This fact

was observed in all the experiments performed in the pattern

development problem. We assume that this feature is caused

by more complex (indirect) mapping between a program and

the corresponding output states of the transition function of

the cellular automata.

Figure 7 shows an example of evolved solution for the

development of French flag in a cellular automaton. In this

case we obtained several solutions that differ in the behavior

of the developed structure if the CA continues to develop. In

most cases the French flag pattern represents an intermediate

state of the CA that is totally destroyed if the development

continues. The second group of solution is able to periodically

recreate the given pattern and the last case includes several

solutions that produce the French flag that is stable during the

subsequent development of the CA. These classes of solutions

are expectable. Since the CA possesses finite dimensions and

the number of cell states is also finite, it can not exhibit infinite

development through infinite different states. Therefore, if the

CA does not exhibit a stable pattern after a finite number of

development steps, then it generates a finite number of differ-

ent patterns in a loop (e.g. see Figure 7)). The corresponding

program that was found by evolution is shown in Table IV.

It is very difficult to identify the principle of this program

(similarly as to identify the individual rules of a transition

function) because the CA behavior is an emergent property

of interaction of all the cells. It can be observed that all the

(temporary) neighborhood cells are affected by the program so

that the development of French flag is probably not a trivial

task. Note that the exact French flag pattern was reached only

in CA whose dimensions correspond to the pattern size. In

larger CA, although, it is possible to develop the pattern in

a subpart of the CA but some of the other cells are affected

too that surrounds the target pattern immediately (confirmed

by the experiments).

TABLE IV
EVOLVED 6X6 CELLULAR AUTOMATON PROGRAM FOR THE

DEVELOPMENT OF FRENCH FLAG PATTERN. THE EVOLUTION WORKED

WITH 10-INSTRUCTION PROGRAM, THE RESULTING SOLUTION

CONTAINED 2 NOPS THAT WERE SUBSEQUENTLY REMOVED.

Line num. Instruction

1: MAX W C
2: XOR C N
3: MIN S E
4: ROD
5: AND E S
6: DEC E
7: OR C E
8: XOR C W

V. CONCLUSIONS

In this paper we presented an instruction-based approach

to the development of 2D cellular automata and their design

using genetic algorithm. The idea was to shorten the genotype

and reduce the search space especially for the CAs with more

than 2 cell states. Two problems were considered in order to

demonstrate the abilities of the proposed approach: (1) the

replication problem and (2) the problem of development of a

given pattern from a seed.

In case of the replication problem, the instruction-based

approach overcame the conventional table-based transition

function in all the performed experiments. We determined that

in addition to the perfect success rate this method also reduces

Fig. 7. Development of French flag pattern in a cellular automaton. This solution shows the development process in which the French flag emerges for the
first time in step 26. Then the pattern is destroyed and emerges again with the period of 12 development steps (the next instance can be observed in step 38).

the computational effort needed to evolve a working solution

of the replication problem.

The pattern development from a seed proposed interesting

results in both of the instruction-based method and the con-

ventional approach. Whilst the instruction-based development

exhibits substantially higher success rate in most of the experi-

ments, the conventional approach provides lover computational

effort for obtaining a working solution.

In summary the proposed method works very well for more

complex cellular automata, even for those in which no working

solution was found by means of the conventional approach.

We assume that the instruction-based approach is applicable

to many other problems whose solution can be realized using

cellular automata. The experiments that were performed in

this paper represent problems for which successful solutions

are known. However, we are going to experiment with more

applications in order to determine the cellular automata be-

havior in different conditions. For example, the optimization

of instruction set for a specific CA behavior seems to be an

interesting area. Experiments in other application domains are

in progress (e.g. development of computational structures or

image operators may represent suitable candidates).

ACKNOWLEDGMENT

This work was supported by the Czech science founda-

tion projects P103/10/1517 and GD102/09/H042, the research

programme MSM 0021630528, the BUT projects FIT-S-11-

1, FIT-S-12-1 and the IT4Innovations Centre of Excellence

CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] S. Wolfram, A New Kind of Science. Champaign IL: Wolfram Media,
2002.

[2] J. von Neumann, The Theory of Self-Reproducing Automata. A. W.
Burks (ed.), University of Illinois Press, 1966.

[3] M. Sipper, Evolution of Parallel Cellular Machines – The Cellular

Programming Approach, Lecture Notes in Computer Science, volume

1194. Berlin: Springer-Verlag, 1997.
[4] S. A. Kauffman, “Metabolic stability and epigenesis in randomly con-

structed genetic nets,” Journal of Theoretical Biology, vol. 22, pp. 437–
467, 1969.

[5] J. F. Miller, “Evolving developmental programs for adaptation, morpho-
genesis and self-repair,” in Advances in Artificial Life. 7th European

Conference on Artificial Life, Lecture Notes in Artificial Intelligence,

volume 2801. Dortmund DE: Springer, 2003, pp. 256–265.
[6] T. Kowaliw, P. Grogono, and N. Kharma, “Bluenome: A novel develop-

mental model of artificial morphogenesis,” in Proc. of the Genetic and

Evolutionary Computation Conference, GECCO 2004, Lecture Notes in

Computer Science, part I., volume 3102. Springer-Verlag, 2004, pp.
93–104.

[7] P. C. Haddow and G. Tufte, “Bridging the genotype–phenotype mapping
for digital FPGAs,” in Proc. of the 3rd NASA/DoD Workshop on

Evolvable Hardware. Los Alamitos, CA, US: IEEE Computer Society,
2001, pp. 109–115.

[8] G. Tufte and P. C. Haddow, “Towards development on a silicon-based
cellular computing machine,” Natural Computing, vol. 4, no. 4, pp. 387–
416, 2005.

[9] C. G. Langton, “Self-reproduction in cellular automata,” Physica D:

Nonlinear Phenomena, vol. 10, no. 1–2, pp. 135–144, 1984.
[10] Z. Pan and J. A. Reggia, “Computational discovery of instructionless

self-replicating structures in cellular automata,” Artificial Life, vol. 16,
no. 1, pp. 39–63, 2010.

[11] M. Bidlo and J. Škarvada, “Instruction-based development: From evo-
lution to generic structures of digital circuits,” International Journal of

Knowledge-Based and Intelligent Engineering Systems, vol. 12, no. 3,
pp. 221–236, 2008.

[12] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press, 1992.

