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Abstract—This paper introduces a novel implementation of the 

genetic algorithm exploiting a multi-GPU cluster. The proposed 

implementation employs an island-based genetic algorithm where 

every GPU evolves a single island. The individuals are processed 

by CUDA warps, which enables the solution of large knapsack 

instances and eliminates undesirable thread divergence. The MPI 

interface is used to exchange genetic material among isolated 

islands and collect statistical data. The characteristics of the 

proposed GAs are investigated on a two-node cluster composed of 

14 Fermi GPUs and 4 six-core Intel Xeon processors. The overall 

GPU performance of the proposed GA reaches 5.67 TFLOPS. 
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I.  INTRODUCTION 

In 1994 Becker and Sterling [1] proposed the construction 
of supercomputer systems through the use of off-the-shelf 
commodity parts and open source software. Over the ensuing 
year, the so called Beowulf cluster computer systems came to 
dominate the top 500 list [2] of most powerful systems in the 
world. The advantages of such systems are many, including 
ease of creation, administration and monitoring, and full 
support of many advanced programming techniques and high 
performance computing libraries. Interestingly, however, what 
was originally a major advantage of these systems, namely 
price and running costs, is now much less so. This is because 
for even a small to moderately sized cluster it is necessary to 
house the system in specially air-conditioned machine rooms. 

Recently, tools like Compute Unified Device Architecture 
(CUDA) [3] and Open Compute Language (OpenCL) [4] 
developed in order to use Graphics Processing Units (GPUs) 
for general purpose computing have prompted another 
revolution in high-end computing, equivalent to that of the 
original Beowulf cluster concept. Although these chips were 
designed to accelerate rasterisation of graphic primitives, their 
raw computing performance has attracted a lot of researchers to 
use them as acceleration units for many scientific applications 
[5]. Compared to a CPU, the latest GPUs are about 15 times 
faster than six-core Intel processors in single-precision floating 
point operations [6]. Stated another way, a cluster with a single 
GPU per node offers the equivalent performance of a 15 node 
CPU-only cluster. Even more interestingly, the availability of 
multiple PCI-Express buses, even on very low cost commodity 
computers, means that it is possible to construct cluster nodes 
with multiple GPUs. Under this scenario, a single node with 

multiple GPUs offers the possibility of replacing fifty or more 
CPU-only nodes. 

On the other hand, the development tools for debugging 
and profiling of GPU-based applications are in their infancy. 
Obtaining peak performance for many real-world problems is 
very difficult and sometimes impossible. Moreover, only a few 
basic GPU libraries such as LAPACK and BLAS have so far 
been developed, and these are only able to utilize one GPU in 
a node [7]. GPU-based applications are also limited by the 
GPU architecture and memory model making general-purpose 
computing much more difficult to implement than the CPU-
based ones [5]. 

The Genetic Algorithms (GAs) have become a widely 
applied optimization tool since their development by Holland 
in 1975 [8]. Many researchers have shown the capabilities of 
GAs in many real-world problems such as optimization, 
decomposition, design and scheduling [9]. As GAs are 
population-based stochastic search algorithms, they often 
require millions of candidate solutions to be created and 
evaluated. The execution time can then easily come up to the 
order of days or weeks [10]. The considerable advantage of 
GAs is their ability to be easily parallelized in many different 
ways. During the last two decades, many different parallel and 
distributed schemes have been proposed, such as island based 
or spatially structured GAs [11]. 

The goal of this paper is to utilize a cluster of NVIDIA 
GPUs to accelerate the GA and properly compare the execution 
time with a CPU cluster. In order to utilize multiple GPUs, we 
propose an island based GA where a single island is completely 
evolved on a single GPU. All necessary inter-island data 
transfers such as migration of individuals and global statistics 
collection are performed by means of message passing routines 
(OpenMPI). The well-known single-objective 0/1 knapsack 
problem [12] with 10,000 items is used as a benchmark of the 
CPU and GPU-based GA implementations.   

II. GPU ARCHITECTURE AND CUDA TOOLKIT 

 As our GPU cluster is based on NVIDIA GTX 580 cards, 
we implemented the algorithms in CUDA 4.0 [3]. The CUDA 
hardware model of the GTX 580 is shown in Fig. 1. The 
graphics card is divided into a graphics chip (GPU) and 1.5GB 
of main memory. Main memory, acting as an interface between 
the host CPU and GPU, is connected to the host system using 
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a PCI-Express 2.0 bus. This bus can easily become a bottleneck 
as its bandwidth is only a fraction of what both GPU and CPU 
memories provide [13].  

GPU main memory is optimized for block transactions and 
stream processing providing very high bandwidth but also high 
latency. Hiding this latency is very important for keeping GPU 
executions units busy. The GTX 580 offers 768KB of fast on-
chip L2 cache to allow reordering of the memory requests and 
on-chip shared memory, and large register fields to get the 
working data as close to execution units as possible. 

The GTX580 processor consists of 16 independent 
Streaming Multiprocessors (SM), each of which is further 
divided into 32 CUDA cores. SMs are based on the Single 
Instruction, Multiple Thread (SIMT) concept allowing them to 
execute exactly the same instruction over a batch of 32 
consecutive threads (referred to as a warp) at a time. This 
concept dramatically reduces the control logic of SMs, but on 
the other hand, dictates strict rules on thread cooperation and 
branching. A few consecutive warps form a thread block that is 
the smallest resource allocation unit per SM.  

In order to fully exploit the potential of a given GPU, a few 
concepts must be kept in mind [14]:  

• Thousands of threads are necessary to be executed 
concurrently on the GPU to hide memory latency.  

• All the threads within a warp should follow the same 
execution path minimizing the thread divergence. 

• All memory requests within a warp should be 
coalesced reading data from consecutive addresses. 

• Synchronization and/or communication among threads 
can be done quickly only within a thread block.  

• Working data set should be partitioned to fit on-chip 
shared memory to minimize main memory accesses.  

• Data transfers between CPU and GPU memories can 
easily become a bottleneck given the low PCI-Express 
bandwidth. 

III. GPU-BASED GA DESIGN POSSIBILITIES 

Recently, there have been several attempts to accelerate the 
genetic algorithm on the massively parallel GPU architecture. 
However, many researchers have taken only simple numeric 
benchmarks without any global data or with only a very limited 
data set [15], [16], [17]. This is in contradiction to the real-
world problems, where big simulations have to be carried out 
and the fitness evaluation is often the most time-consuming 
operation. 

The individual creation and fitness evaluations can be 
performed independently for each individual in the population. 
A master-slave GA can be used here, i.e. candidate solutions 
are evolved on the CPU side and transferred to a GPU or GPUs 
only for evaluation [18]. The fundamental prerequisite of this 
approach is that the fitness value evaluation takes a few orders 
of magnitude more time than genetic manipulation phase to 
overlap and hide slow PCI-Express transfers, CUDA kernels 
launch overhead, etc. 

 

Figure 1.  CUDA hardware model of NVIDIA GTX 580. 

In cases where the fitness evaluation takes a comparable 
time to the rest of GA, it is usually better to execute the entire 
GA on the GPU. Recently, a few papers have investigated this 
possibility. The key here is the distribution of the individuals 
over SMs. Some approaches assign an individual per thread 
[15], [16], [19], others assign an individual per thread block 
[20]. Both approaches have their limits.  

Assigning a single individual per thread always leads to 
thousands of individuals per GPU. This is counterproductive 
for some kind of evolutionary algorithms that work with small 
populations. The bigger problem arising from this is a per 
block resource limitation introduced by CUDA [14]. An SM 
can accommodate up to 1536 threads which gives us 21 
registers and 32B of shared memory per thread. This makes it 
very difficult to implement complex fitness functions and deal 
with long chromosomes. On the other hand, assigning an 
individual per thread block requires really long chromosomes 
to give employment to all the threads, or the genes have to be 
read multiple times to perform a complex simulation.  

The other approach employs an SM-based island model 
storing an island in shared memory [19]. Although very 
popular, this model does not scale at all, and can be used only 
for a low dimension numerical optimization as the product of 
the individual length and population size has to fit SM shared 
memory constrains (e.g. 128 individuals, 96 float genes long, 
no other working or temporary data). 



As far as the author knows, nobody has attempted to use 
per warp assignment although it seems be a sweet spot. Warp 
granularity requires a reasonable number of individuals and 
using appropriate mapping does not limit the size of individual. 
Moreover, it virtually eliminates the thread divergence.  

In this paper, a multi-GPU island-based model based on 
warp granularity is proposed. The population of this GA is 
distributed over multiple GPUs. Every GPU is controlled by 
a single MPI process [21], and entirely evolves a single island 
using a steady-state approach with elitism, uniform crossover, 
bit flip mutation, and tournament selection and replacement. 
Migration of individuals occurs after a predefined number of 
generations exchanging the best local solution and an optional 
number of randomly selected individuals. The tournament 
selection is used to pick emigrants and incorporate immigrants. 
The migration is performed along the unidirectional ring 
topology where only adjacent nodes can exchange individuals 
[9]. All the data exchanges are implemented by means of MPI 
[21]. The identical GA is also implemented in C++ to compare 
the multi-GPU implementation with a multi-CPU one. 

IV. MEMORY LAYOUT OF THE PROPOSED GA 

The memory layouts of the population, statistics and global 
data structures are carefully designed. All the host (CPU side) 
structures intended for host-device transfers (migration buffers, 
global statistics) are allocated by CUDA pinned memory 
routines. This allows to use the Direct Memory Access (DMA) 
and reach the peak PCI-Express bandwidth [13], [14].  

On the other hand, the host memory is allocated using the 

memalign routine with 16B alignment when implementing 
the CPU-only version. This helps CPU vector units (SSE) to 
load chunks of data much faster and the compiler to produce 
more efficient code [22]. 

A. Population Organization  

The population of GA is implemented as a C structure 
consisting of two one-dimensional arrays. The first array 
represents the genotype whereas the second one fitness values. 
Assuming the size of the chromosome is L and the size of the 
population is N, the genotype is defined as an array of size of 
� ∗ �� 32⁄ � . As the knapsack chromosomes are based on 
binary encoding, 32 items are packed into a single integer. This 
rapidly reduces the memory requirements as well as accelerates 
genetic manipulations employing logical bitwise operations. 
The fitness value array has the size of N. 

Two different layouts of genotype can be found in the 
literature [20], see Fig 2. The first one, referred to as 
chromosome-based, represents chromosomes as rows of a 
hypothetical 2D matrix implemented as a 1D array. The second 
layout, referred to as gene-based, is a transposed version 
storing corresponding genes of all chromosomes in one row.  

The chromosome-based layout simplifies the individual 
movements in the selection and replacement phases as well as 
the host-device transfers necessary for the migration phase and 
displaying the best solution during the evolutionary process. In 
this case, multiple CUDA threads work on one chromosome to 
evaluate its fitness value. This layout should be preferred also 
for the CPU implementation in order to preserve data locality 

 

(a) chromosome-based layout 

 

(b) gene-based layout 

Figure 2.  Different layouts of the population in GPU Video RAM. 

and enable the CPU to store chromosomes in the L1 cache and 
exploit modern prefetch techniques. On the other hand, the 
gene-based representation allows working with multiple 
chromosomes at a time utilizing the SIMD/SIMT nature of 
CPUs and GPUs assuming there are no dependencies between 
chromosomes. However, evaluating multiple chromosomes at 
a time tends to run out of other resources such as registers, 
cache, shared memories, etc. 

The key to reach peak GPU performance is to allow threads 
within a warp to work on neighbour elements and avoid control 
flow divergence. Different warps can access different memory 
areas with only a small or no penalization. The chromosome-
based layout appears to be the most promising layout enabling 
the warp to work with the genes of one chromosome, especially 
if it is necessary for the benchmark fitness evaluation to read 
genes multiple times. The different warps can simply operate 
on different chromosomes. This reaches the best SIMD/SIMT 
performance while reducing registers, shared memory, and 
cache requirements. For this reason, the chromosome-based 
layout is used in this work.  

B. GA Parameters Storage 

The GA control parameters are maintained by a C structure. 
Such parameters include the population and chromosome size, 
the crossover and mutation rates, the statistic collection and 
migration interval, the total number of evaluated generations, 
etc. Once filled in with command line parameters, the structure 
is copied to the GPU constant memory. This simplifies CUDA 
kernel invocations and saves memory bandwidth according to 
the CUDA C best practice guide [14].  

C. Knapsack Global Data Storage 

The knapsack global data structure describes the benchmark 
listing the price and weight for all items possible included in 
the knapsack. The structure also maintains the capacity of the 
knapsack and an item with the maximum price/weight rate used 
for penalization. The prices and weights are stored in two 1D 
arrays. The benefit over an array of structures is data locality as 
all the threads first read prices and only then the weights. 

The best memory area where to place this structure may 
seem to be the constant memory. Unfortunately, this area is too 
small to accommodate real-world benchmarks. Its capacity of 
64KB allows solving problems up to 4000 items. On the other 



hand, introducing L2 caches and a load uniform instruction in 
Fermi cards makes the benefits of constant memory negligible 
[3]. As a result, the global data are stored in main GPU 
memory. The problem size (the chromosome size in bits) is 
always padded to a multiple of 1024 to prevent not coalesced 
memory accesses while working with chromosomes. 

V. MULTI-GPU GENETIC ALGORITHM IMPLEMENTATION 

This subsection goes through the GA and describes the 
genetic manipulation phase, fitness evaluation, replacement 
mechanism, migration phase, and statistics collection. Each 
phase is implemented as an independent CUDA kernel to put 
the necessary global synchronization between each phase. 

All the CUDA kernels are optimized to exploit the hidden 
potential of modern GPUs and CPUs. For a good GPU 
implementation, it is essential to avoid thread divergence and 
coalesce all memory accesses to maximize GPU utilization and 
minimize required memory bandwidth. The key terms here are 
the warp and the warp size [14]. In order to write a good CPU 
implementation, we have to meet exactly the same restrictions. 
The warp size is now reduced to SSE (AVX) width and GPU 
shared memory can be imagined as CPU cache memory.  

As the main principles are the same for both CPU and 
GPU, the CPU implementation follows the GPU one. Besides 
the island-based CPU implementation, a single population 
multithread GA was developed to compare the performance of 
a single GPU with a multicore CPU. The multithreaded version 
only adds simple OpenMP pragma clauses [21] to distribute 
genetic manipulation and evaluation and the loop iterations 
(individuals) over available CPU cores [23]. 

A. Random Number Generation 

As GAs are stochastic search processes, random numbers 
are extensively used throughout them. CUDA does not provide 
any support for on the fly generation of a random number by 
a thread because of many associated synchronization issues. 
The only way is to generate a predefined number of random 
numbers in a separate kernel [24]. Fortunately, a stateless 
pseudo-random number based on a hash function generator has 
recently been published [25]. This generator is implemented in 
C++, CUDA and OpenCL. The generator has been proven to 
be crush resistant with the period of 2

128
. The generator is three 

times faster than the standard C rand function and more than 

10x faster than the CUDA cuRand generator [25], [7]. 

B. Genetic Manipulation Phase 

The genetic manipulation process creates new individuals 
by performing the binary tournament selection on the parent 
population, exchanging genetic material of two parents using 
uniform crossover, applying a bit-flip mutation, and storing 
them in the offspring population. 

All CUDA thread blocks are organized as two dimensional. 
The x dimension corresponds to the genes within chromosomes 
while the y dimension corresponds to different chromosomes as 
outlined in Fig. 3. The size of the x dimension meets the warp 
size of 32 to prevent lots of divergence within warps. The size 
of the y dimension is chosen as 8 based on the assumption that 
256 threads per block is an appropriate block granularity [26]. 
Thus, 8 independent warps of 32 threads run simultaneously. 

The entire CUDA grid is organized in 2D with the x size of 
1, and the y size corresponding to the offspring population size 
divided by the double of the y thread block size (two offspring 
are produced at once). Since the x grid dimension is exactly 1, 
the warps process the individuals in multiple rounds. The grid 
can be seen as a parallel pipeline processing a piece of multiple 
individuals at once.  

Every warp is responsible for generating two offspring. The 
selection is performed by a single thread in a warp. Based on 
the fitness values, two parents are selected by the tournament 
and their indices within the parent population are stored in 
a shared memory array. As only a single warp works on an 
individual and all the threads are implicitly synchronous within 
a warp, there is no need to use a barrier. Setting the indices 

array as volatile rules out any read/write conflict. This 
prevents independent warps from waiting for each other and 
allows better memory latency hiding.  

Once the parents have been selected the crossover phase 
starts. Every warp reads two parents in chunks of 32 integer 
components (one integer per thread). As binary encoding 
enables 32 genes to be packed into a single integer, the warp 
effectively reads 1024 binary genes at once. Since this GA 
implementation is intended for use with very large knapsack 
instances, uniform crossover is implemented to allow better 
mixing of genetic material. Each thread first generates a 32b 
random number serving as the crossover mask. Next, logic 
bitwise operations are used to crossover the 32b genes, see (1). 
This removes all conditional code from the crossover except 
testing of the condition whether or not to do the crossover at 
all. This condition does not introduce any thread divergence as 
it is evaluated in the same way for the whole warp. 

Child_1 = (~Mask & Parent_1)|( Mask & Parent_2) 

Child_2 = ( Mask & Parent_1)|(~Mask & Parent_2)   (1) 

Mutation is performed in a similar way. Every thread 
generates 32 random numbers and sets the i-th bit of the mask 
to one if the i-th random number falls into the mutation 

probability interval as shown in (2). After that, the bitwise xor 
operation is performed on the mask and the offspring. This is 
done for both offspring. Finally the warp writes the 
chromosome chunk to the offspring population and starts 
reading the next chunk. 

Child_1 ^= (RandomValue[i] < MutationPst) << i   (2) 

C. Fitness Function Evaluation 

The fitness function evaluation kernel follows the same grid 
and block decomposition as the genetic manipulation kernel. 
Evaluating more chromosomes at a time enables the reuse of 
matching chunks of global data and saves memory bandwidth.  

Fig. 3 illustrates the kernel structure. Every warp processes 
one chromosome in multiple rounds handling a single 32b 
chunk at a time. In every round, the first warp of the thread 
block transfers the price and weight values of 32 items into 
shared memory employing coalesced memory accesses. Barrier 
synchronization is necessary because of sharing data among 
multiple warps (the entire thread block). Next, every warp 
loads a single 32-bit chromosome chunk into shared memory. 
As all the threads within a warp access the same memory 



 

Figure 3.  Design of the knapsack fitness function executed by the GPU. The technique is repeated in other GPU kernels. 

location (single integer), L2 GPU cache is exploited. Now, 
every thread masks out an appropriate bit of the chromosome 
chunk, multiplies it with the corresponding item price and 
weight, and add both results to the private partial sums stored 
in shared memory. When the entire chromosome has been 
processed, the partial prices and weights are reduced to single 
values. Since the chromosome is treated by a single warp, 
a barrier-free parallel reduction can be employed. After that, 
the first thread of the warp checks the total weight against the 
knapsack capacity and if the capacity has been exceeded, the 
fitness value (total price) is penalized. Finally, the fitness value 
is stored in the global memory by this thread.  

The CPU implementation evaluates chromosomes one by 
one. The fitness evaluation can be carried out immediately after 
the new offspring has been created which results in the 
chromosome evaluated L1 cache. This might also be possible 
for the GPU implementation; however, the kernel would run 
out of registers and shared memory resulting in poor GPU 
occupancy and low performance. 

D. Replacement Phase 

The replacement phase employs the binary tournament over 
the parents and offspring to create the new parent population. 
The kernel and blocks decompositions are the same as in the 
previous phases. The only modification is that the kernel 
dimensions are derived from the parent population size.  

Every warp compares a randomly picked offspring with the 
parent laying on the index calculated from the y index of the 
warp in the grid. If the offspring fitness value is higher than the 
parent one, the entire warp is used to replace the parent by the 
offspring. This only restricts the thread divergence to the 
random number generation phase. This replacement schema 
also abides by the elitism because it is not possible to override 
the best individual by a worse one.  

E. Migration Phase 

The migration process enables distributed islands to 
exchange good individuals among them. The migration scheme 
is based on the unidirectional ring topology where every island 
sends its migrants to the adjacent island with a higher index 
and receives migrants from the island with a lower index. 

The migration phase consists of three stages: 

1) Selection of Emigrants: First, a CUDA kernel is called 

to select a predefined number of migrating individuals and put 

them into a new population placed in GPU main memory. The 

same selection mechanism as in the case of the genetic 

manipulation phase is employed. In order to ensure that the 

best individual has also been selected, the first warp always 

selects this one and put it to the migration population.  

2) Transferring Migrants to Another Island: After the 

migrants have been selected, it is necessary to download them 

to the CPU memory. This is done by means of two PCE-

Express transfers; first one for individual genomes and the 

second one for their fitness values. After that, two OpenMPI 

non-blocking send [21] routines are employed to dispatch the 

migrants. Concurrently, two non-blocking OpenMPI receive 

routines have been waiting for the migrants from an adjacent 

island. Note that with the upcoming version of OpenMPI and 

CUDA, it will be possible to skip CPU-GPU transfers and 

transfer the data directly from/to GPU memory [27]. 

3) Incorporation of Immigrants: After new immigrants 

have been received, they are stored in a CPU memory buffer. 

First, these individuals have to be uploaded to a GPU using 

two PCI-Express transfers. After that, a kernel merging 

immigrants and the primary island population is invoked. 

Every warp processes a single immigrant and compares it with 



a randomly selected one from the primary population. This 

approach gives every immigrant an opportunity to get into the 

primary island population.  
A problem arises if two warps picked the same individual 

to be replaced. This leads to the racing condition and data 
inconsistency. In order to prevent this, a critical section has to 
be entered before writing anything into the primary population. 
The critical section is guarded by a vector lock where every 
individual in the primary population has its own entry.  

Thus, the first thread of the warp selects an individual from 
the primary population, locks this individual and saves its index 
into shared memory. There is no need for synchronization here, 
because of the SIMT nature of warps. Now, all the warp 
threads read this index and make the decision whether or not to 
replace the individual by the corresponding immigrant. If the 
immigrant has a higher fitness value, the entire warp is used for 
genome replacement. Finally, the first thread unlocks the lock. 

If there is another warp trying to acquire this individual, it 
will succeed after the previous replacement has been finished. 
As better solutions always replace worse ones, the elitism is 
guaranteed.  

F. Global Statistics Collection Phase 

The last component of the genetic algorithm is a module 
collecting the global statistics over all the islands. This module 
maintains the best solution found so far, and the basic statistics 
such as the highest, lowest and average fitness value over all 
the islands, the standard deviation of the fitness values, and 
index of the best island.  

The statistics collection can be divided into two phases. 
First, local island statistical data are collected and then a global 
gathering process over all the islands is carried out.  

The local statistics collection phase first initializes an 
auxiliary structure on the GPU and then launches a data 
collection kernel. The kernel is divided into twice as many 
blocks as the GPU has SM processors. Each block is 
decomposed into 256 threads based on the practice published in 
[26]. After the kernel invocation, the chunks of fitness values 
array are distributed over the blocks. Each thread processes as 
many fitness values as necessary and stores its partial results 
into shared memory. After the barrier synchronization, the 
reductions over statistical data within a thread block are carried 
out. Finally, the first thread of each thread block uses a global 
memory lock to update the local island statistics. 

After completion, the statistical data as well as the best 
individual are downloaded to CPU main memory. These data 
are packed and sent off to the master process (island with 
index 0). The master process collects local island statistics and 

the best solutions using two MPI_gather routine, merges 
them together and stores them into a log file. 

VI. EXPERIMENTAL RESULTS 

All the proposed algorithms were implemented and tested 
on two TYAN servers [28]. Both servers are equipped with two 
six-core Intel Xeon X5650 processors at 2.6 GHz, 24GB RAM 
memory, 7 NVIDIA GTX 580 cards, 40Gb infiniband network 
interface, and running Ubuntu 10.04 server operating system.  

A knapsack instance with 10,000 items was chosen as a test 
case simulating a real-world problem with a reasonable large 
global data set. GA control parameters were experimentally set 
as follows: the crossover probability of 0.7, the gene mutation 
probability of 0.001, the migration interval of 100 generations, 
10% of individuals migrate including the best individual, and 
50% of old population is replaced. The population size varied 
from 128 to 2048 individuals per island. Different GPU 
configurations were tested. Six and twelve GPU islands were 
used to have an analogy to a single six-core CPU and two six-
core CPUs in a server, respectively. Seven and fourteen GPUs 
represent the maximum configuration of a single or both 
servers, respectively. All results shown here represent averaged 
values after 100k generations over 30 independent runs and 
95% confidence intervals. 

Fig. 4 shows the quality of the global best solution evolved 
after 100k generations. The curves show the improvement of 
the solution quality when increasing the island population size 
and evolving a higher number of islands. A significant quality 
leap can be observed between 1 and 14 islands. A considerable 
improvement is also present between 1 and 7, as well as, 7 and 
14 islands. Although differences in solution quality using 6 and 
7, or, 12 and 14 GPUs are not very high, they are still 
statistically significant (based on 95% confidence interval). As 
mentioned in [15], distribution of a large population over 
smaller islands leads to slight quality drops. These drops are 
mainly present for small island sizes (e.g. compare 1 GPU with 
1024 individuals and 7 GPUs with 128 ones).  

Fig. 5 shows the execution time of the proposed multi-GPU 
island based GA. All the curves represent different numbers of 
islands merged together. This implies negligible overhead of 
the inter-GPU migration process that is detailed in Fig. 7. The 
most important observation is that the execution time remains 
constant for island sizes up to 512. Such small islands cannot 
saturate these GPUs. Assuming 50% of individuals are created 
every generation, and a warp processes a single individual, the 
GTX 580 needs at least 256 warps (32 blocks) to be saturated. 
This exactly meets the necessity of running twice as many 
blocks as there are SMs in a given GPU published in [26]. 
Beyond 512 individuals per island, the execution time starts to 
grow linearly. 

Fig. 6 reveals the overhead of the migration process 
including selection and incorporation of migrants, PCI-Express 
transfers and OpenMPI communication routines. With the 
island size of 2048, the overhead is almost negligible. This is 
given by appropriate migration parameters as well as the 40Gb 
infiniband interconnection and fast memory transfers. A bigger 
difference is believed to appear using the 1Gb Ethernet 
interconnection with more frequent migration.  

Fig. 7 compares the execution time of a single island GA 
evolved using 6 and 12 CPU threads and GTX580 with respect 
to a single thread CPU implementation. CPU implementations 
show speedup corresponding to the level of parallelism (5.67 
and 11.32 for 6 and 12 threads, respectively). The reported 
speedups are slightly lower than the theoretical values, limited 
by necessary synchronization and the NUMA architecture [28]. 
The single island GPU implementation reaches a peak speedup 
of 56.3 compared to a single thread CPU. Compared to 6 and 



 

Figure 4.  Average best fitness values after 100k generations evolved using 
1 to 14 GPUs with the island sizes from 128 to 2048. 

 

Figure 5.  Total execution times of the evolution on 1 to 14 GPUs with the 

island sizes from 128 to 2048. 

12 CPU threads, a single GPU reaches speedups of 9.45 and 
4.73, respectively. These values roughly correspond to the 
theoretical peak performance ratio of these architectures. The 
proposed GA implementation was also compared with the 
well-known GALib library [29]. As GALib does not exploit 
multi-core CPUs, sequential implementations were compared 
only. The proposed implementation outperformed the GALib 
by 3.25 times because of exploiting better memory layout, 
avoiding unnecessary data movement and supporting Intel SSE 
4.1 extension.  

Table I summarizes the reached speedup of the island-based 
GA running over multiple CPU cores or GPUs with respect to 
a single thread CPU implementation. The speedup is computed 
as a multiple of time a sequential CPU implementation would 
need to simulate the evolution of all the islands. Table I is 
basically included because of authors who compare their GA 
implementations against a sequential one, which is not fair to 
CPU and results in unrealistic speedups as explained in [6].  

Table II takes joint CPU computation power of both servers 
as a baseline to compares CPU and GPU side of the cluster. It 
is very important to observe 4 six-core CPUs can simply beat 
a single GPU for small populations. Moreover, a benchmark 
instance of 10000 items was used here. As 1024 items pose the 
smallest instance fully utilizing a warp and exploiting the 
potential of Fermi GPU [14], CPUs evolve smaller knapsacks 
much faster while GPU performance stagnates. On the other 

 

Figure 6.  Presentation on negligible overhead of the inter-island 
communication for different number of island with 2048 individuals. 

 

Figure 7.  Comparison of relative speedup when evolving a single island 

using six and twelve CPU threads and a single GPU vs. a single CPU thread. 

hand, for large knapsack instances and higher islands sizes 
necessary for their successful optimization, 14 GPUs can 
outperform four six-core CPUs by a speedup factor of 35.  

In order to assess the FLOP performance of the proposed 
implementations, the PAPI performance counters were used 
[30]. The peak performance of a single GPU reached 405 
GFLOPS and the total GPU cluster performance 5.67 TFLOPS. 
Compared to a synthetic SHOC benchmark [31], this accounts 
for about 26%. In contrast to SHOC, parallel GAs require a lot 
of synchronization, reduction and single thread work, and data 
exchange among islands that leads to GPU stalls. 

VII. CONCLUSIONS 

This paper has proposed a new implementation of island-
based genetic algorithm exploiting a multi-GPU cluster. Every 
island is evolved on a single GPU where the individuals are 
assigned one per warp that reduces the thread divergence below 
0.5% and does not restrict the individual or population size.  

Unlike other related works solving only low dimensional 
numerical problems [15], or very small combinatorial problems 
[19], a benchmark requiring very long chromosomes of 10,000 
bits and a considerably large global data set was used here. The 
computational power of 14 NVIDIA GTX580 cards against 4 
six-core Intel Xeon CPUs was compared. The speedup reached 
by fourteen GPUs reaches 35, 194, and 781 compared to 4 
CPUs, 1 CPU and a single thread, respectively (Table I and II). 
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TABLE I.  SPEEDUP OF ISLAND-BASED CPU AND GPU 

IMPLEMENTATIONS WITH RESPECT TO A SEQUENTIAL CPU IMPLEMENTATION. 

vs. single  

CPU core 

Island size 

128 256 512 1024 2048 

1 CPU 1.00 1.00 1.00 1.00 1.00 

6 CPUs 5.55 5.55 5.55 5.55 5.67 

12 CPUs 11.12 11.13 11.14 11.14 11.32 

24 CPUs 22.18 21.93 22.21 22.26 22.42 

 
1 GPU 10.70 21.31 41.13 55.78 54.49 

6 GPUs 64.38 128.22 247.02 335.38 327.09 

7 GPUs 75.10 149.62 287.85 391.30 381.56 

12 GPUs 128.76 256.40 493.09 670.04 653.68 

14 GPUs 150.21 299.17 573.96 781.78 762.64 

TABLE II.  GPU SPEEDUP COMPARED TO FOUR SIX-CORE PROCESSORS 

vs. 24  

CPU cores 

Island size 

128 256 512 1024 2048 

1 GPU 0.48 0.97 1.85 2.51 2.43 

6 GPUs 2.90 5.85 11.12 15.06 14.59 

7 GPUs 3.39 6.82 12.96 17.58 17.02 

12 GPUs 5.81 11.69 22.20 30.10 29.16 

14 GPUs 6.77 13.64 25.85 35.11 34.02 

 

The overall performance reached by all GPUs in terms of 
FLOPS amount to 5.67 TFLOPs, which corresponds to 26% of 
the theoretical cluster performance. Given that the GA process 
requires a lot of synchronization, parallel reductions, and data 
movement during migration, this number poses a very good 
result when compared with other GPU applications [6]. The 
source codes of the proposed implementations have been 
released under GPU licence at [32]. 
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