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Abstract— This paper considers the problem of computing
the state reachable points, from the origin, of a linear constant
coefficient descriptor system. A numerical algorithm is pro-
posed that can be implemented to characterize the reachable
set in a numerically stable way. The original descriptor system
is transformed into a strangeness-free system within the behav-
ioral framework followed by a projection that separates the
system into its differential and algebraic parts. It is shown that
the computation of the image space of two matrices, associated
with the projected system, is enough to compute the reachable
set (from the origin). Moreover, a characterization is presented
of all the inputs by which one can reach to any arbitrary points
in the reachable set. The effectiveness of the proposed approach
is demonstrated through numerical examples.

Index Terms— Linear descriptor system, behavior formula-
tion, strangeness-free formulation, reachability

I. INTRODUCTION

The dynamical behavior of many practical systems can
be modeled via descriptor systems (DS) where the system
equation is a differential-algebraic equation, i.e. consists of
a mixture of differential and algebraic equations. In the linear
time-invariant case such systems have the general form

Eẋ(t) = Ax(t) +Bu(t), (1)

where, if algebraic constraints are present, E ∈ R
n×n is sin-

gular, A ∈ R
n×n and B ∈ R

n×m, x(t) is a state vector and
u(t) is input (control) to the system. Typically, also an initial
condition x(t0) = x0 is considered. Examples are e.g. power
system models, where the differential equations describe the
dynamic behavior of electrical machines and other energy
storage components while the algebraic constraints represent
the power flow in the network [1]. Similarly, in spacecraft
and robot trajectory planning, in addition to the differential
equations, an algebraic relation defines a specific trajectory
[2]. When modeling constrained mechanical systems like
cranes and earth moving vehicles, a servo-constraint is de-
scribed by an algebraic relation [3]. For further examples, see
[4], [5], [6]. Descriptor systems are different from ordinary
state-space systems in the sense that the system integrates
and differentiates. The number of differentiations that are
need is usually described by an index. There are many index
concepts, see [7] for a comparison. In all cases (except for
different counting) the index characterizes the smoothness
requirements of the inhomogeneity, i.e., also that of the
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control function. If the inputs are piecewise continuous, then
due to the differentiation, impulsive response may arise [6].
Hence, from the control theory perspective, an important
question is to determine for a given system a smooth control
input which transfers the DS from one state (say the origin)
to another state in finite time. A related question is to
compute the set of all state reachable points (via some chosen
control inputs) of a DS. In this paper we present a systematic
approach to address both these questions in a numerically
computable way.

One of the traditional ways to carry out the analysis of
DS is to transforming the system into an ordinary state space
system governed by an ordinary differential equation (ODE),
by resolving all the algebraic equations [4]. For instance, in
a linearized power system, an ODE model is obtained from
a DS by first expressing the algebraic variables in terms of
the remaining variables and then eliminating them from the
system (see e.g. the procedure in [1], [8]). However, in this
way the algebraic constraints are not available any more and
the system may drift off from the constraints, without being
noticed. Also this procedure is numerically not advisable,
several drawbacks are discussed in [4], [6].

Another approach for the analysis of DS, presented e.g.
in [5], [9], is to decouple the original system into the fast
(algebraic) and slow (differential) subsystem. To accomplish
this, the coefficient matrices of the original system are trans-
formed to Weierstrass canonical form. However, it has been
observed that often ill-conditioned transformation matrices
may arise in the computation of the Weierstrass canonical
form [10], [11]. As a result, slight perturbations in the orig-
inal DS may lead to largely perturbed subsystems (slow and
fast). An alternative to the computation of the Weierstrass
canonical form is to use so-called Wong sequences, see e.g.
the recent work [12], but also this approach is not well
suited for a numerical implementation. In [10] a staircase
form based on orthogonal transformations is derived and
implemented as a numerical method. This method is based
on orthogonal transformations and can be implemented as a
backward stable numerical methods.

All these techniques, however, rely on sequences of rank
decisions which are difficult in finite precision arithmetic to
compute some condensed or canonical form. There are well-
known techniques how to do this in the best possible way
[13], however, in the context of the numerical integration
of differential-algebraic equation another approach has been
shown to be more robust. This alternative approach makes
use of the fact that the system can be regularized by
adding a sufficient number of derivatives of the original DS
to the system, so that it becomes overdetermined but all
necessary derivative information is available. The build-up
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of the derivative array is followed by the computation of
two orthogonal projections to identify the differential and
the algebraic equations. This derivative array approach [4],
[6] has the advantage that is very robust to perturbations,
and it has been implemented successfully in numerical
simulation codes for linear and nonlinear descriptor systems
[6]. Another surplus in this approach is that no changes of
basis are carried out and thus the physical meaning of all
the variables is preserved in the equivalent system. This is
important in particular in the control context, when due to
the application the inputs u are clearly specified. In addition,
since we use orthogonal projection matrices, the procedure
can be implemented as a numerically stable algorithm.

In this paper we employ this approach for the computation
of the state reachable points of a DS. For this, we first
express the original DS in a behavior framework (making
no distinction between the variables like states and inputs)
[14]. Then, we construct an equivalent system (with the
same solution set), called strangeness-free behavior system,
by using derivative array consisting of the original DS and
its derivatives. The minimum number of derivatives required
to obtain a strangeness-free behavior model is referred to
as strangeness-index of the behavior system [6]. From this
derivative array then, via orthogonal transformations from the
left, we filter two separate sets consisting of the differential
and the algebraic equations, respectively. This new system
is then strangeness-free in the behavior sense but not as
a free system (with u = 0). We could then employ the
regularization method in [4] and rename variables to obtain
a system that is strangeness-free as a free system, or we
employ a preliminary feedback to achieve this. We follow
this latter approach. Finally, to identify the reachable set,
we use a recently developed projection representation [15]
to obtain the solution as the sum of the solution of a purely
differential and a purely algebraic system. In this way we
obtain a new methodology to compute the state reachable
points (from the origin) of a DS, and to characterize the
reachable set.

A pictorial diagram to obtain a strangeness-free system is
shown in Figure 1. To demonstrate the procedure we present
the following example.

Example 1: Consider the DS Eẋ = Ax+Bu with
[
0 1
0 0

] [
ẋ1

ẋ2

]
=

[
1 −1
0 1

] [
x1

x2

]
+

[
0
1

]
u.

Solving the second equation yields x2 = −u and inserting
it into the first equation yields x1 = x2 + ẋ2 = −u − u̇
and hence if the input is e.g. a Heaviside function, then the
solution contains an impulse. However, via an appropriate
state feedback this behavior can be changed. Setting u(t) =
uf (t)+ ũ(t), with a feedback uf = Fx, where F = [1 −1],
we can obtain the closed loop system Eẋ = (A+BF )x+Bũ

given by

[
0 1
0 0

]
ẋ =

[
1 −1
1 0

]
x +

[
0
1

]
ũ. Here we obtain

x1 = −ũ and inserting this, we have the standard state space
system ẋ2 = −x2− ũ, which does not contain any impulsive
behavior.

reinterpretation
of variables

strangeness−free system

System

for all inputs strangeness−free system

for all inputs

may not be

strangeness−free system

for all inputs    

Descriptor System

no reinterpretation
  of variables    

Reduced Behavior 

Derivative array

feedback

Fig. 1. Pictorial diagram to obtain a strangeness-free model from the given
descriptor system.

The remainder of the paper is organized as follows. In
Section II we briefly discuss the derivative array approach
to obtain a strangeness-free behavior model associated with
the original DS. The coefficient matrices associated with the
transformed system are used in Section II-A to define two
projection matrices. Then, we use the projection matrices to
separate the DS into its differential and algebraic parts. We
discuss the computation of the state reachable points of the
original DS in Section III. A circuit example is presented in
Section IV followed by concluding remarks in Section V.

II. STRANGENESS-FREE FORMULATION OF DS

In this section we derive a strangeness-free behavior model
associated with (1) via derivative array approach. For this
we rewrite (1) as

Eż(t) = Az(t), (2)

where

E := [E 0] ∈ R
n×(n+m), A := [A B] ∈ R

n×(n+m), (3)

by introducing a new variable z =
[
xT uT

]T
. For the

time being let us formally assume that x(t) and u(t) are
at least µ > 0 times differentiable. We will drop this
assumption later, once the projection matrices Z1, Z2 and
T2 are computed from the derivative array. Subsequently, we
will use only these three matrices to obtain a strangeness-free
system of (2).

By performing a sequence of differentiations of (2) and
stacking all together, we get

Mµżµ = Nµzµ, (4)

6390



Mµ =




E 0 · · · 0 0

−A E · · · 0 0

...
...

. . .
...

...
0 0 · · · −A E


 ; Nµ =




A 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0




and zµ =
[
zT żT · · · z(µ)

T
]T

. Note that (4) stacks the
original system (1) and its derivatives up to level µ. The
sequence of derivatives in (4) must be continued until the
following hypothesis holds [6].

Hypothesis 1: There exist integers µ, d, a such that the
inflated pair (Mµ,Nµ) in (4) has the following properties:

1) rank(Mµ) = (µ + 1)n − a. This implies the existence
of a matrix Z2 ∈ R

(µ+1)n×a with orthonormal columns
and maximal rank a, satisfying ZT

2 Mµ = 0.

2) Denoting Â2 := ZT
2 Nµ

[
In+m

0

]
∈ R

a×(n+m), we have

rank(Â2) = a, and there exists T2 ∈ R
(n+m)×d having

orthonormal columns satisfying Â2T2 = 0.
3) rank(ET2) = d. This implies the existence of a matrix

Z1 ∈ R
n×d with orthonormal columns satisfying max-

imal rank(Ê1) = d where Ê1 = ZT
1 E ∈ R

d×(n+m).
We refer to the smallest µ ≥ 0 for which the above

hypothesis holds as strangeness-index of (2). Once the or-
thonormal matrices Z1, Z2 and T2 are constructed according
to Hypothesis 1, we obtain a strangeness-free system of (2)
according to the following result.

Theorem 1: [4], [6] Assume that Hypothesis 1 holds for
an inflated pair (Mµ,Nµ), corresponding to the pair (E,A).
Consider the strangeness-free system

[
Ê1

0

]
ż =

[
Â1

Â2

]
z (5)

with coefficients Ê1 ∈ R
d×(n+m), Â1 ∈ R

d×(n+m), Â2 ∈
R

a×(n+m) given by

Ê1 = ZT
1 E, Â1 = ZT

1 A, Â2 = ZT
2 Nµ

[
In+m

0

]
∈ R

a×(n+m).

Then, the differential-algebraic system (2) and the
strangeness-free system (5) have the same solution
set.

Example 2: Consider the DS Eẋ = Ax + Bu from
Example 1, which is already strangeness-free in the behavior
sense and thus with Z2 = [0 1]T and Z1 = [1 0]T the
strangeness-free behavior system is obtained.

Once the strangeness-free behavior system is available, it
is possible to check the consistency of initial conditions, i.e.,
whether x(t0) = x0 is consistent with the algebraic equation
Â2z0 = 0 for all possible input functions u. If this is not the
case, then the input function will be restricted in its initial
value through the equation Â2z(t0) = Â2[x

T
0 u(t0)

T ]T = 0.
Using (3), the strangeness-free system (5) can be repre-

sented as follows:

Ẽ1ẋ(t) = Ã1x(t) + B̃1u(t) (6a)

0 = Ã2x(t) + B̃2u(t) (6b)

where Ẽ1 = ZT
1 E ∈ R

d×n,

Ã1 = Â1

[
In
0

]
∈ R

d×n, Ã2 = Â2

[
In
0

]
∈ R

a×n

B̃1 = Â1

[
0

Im

]
∈ R

d×m, B̃2 = Â2

[
0

Im

]
∈ R

a×m.

Since in the behavior setting, there is no distinction be-
tween the states and input variables, the resulting transformed
system (6) may not be strangeness-free as a free system with
u = 0. If a reinterpretation of variables makes no sense from
the point of view of the considered application, because x(t)
and u(t) in (1) are specified as state and input, respectively,
then the only way to achieve a strangeness-free system for all
possible inputs, is to use a state feedback that achieves this
property, see Example 1 and the detailed discussion about
this topic and also on the choice of initial conditions in [4]. In
the context of computing the set of reachable points (from the
origin) of system (1) and if no reinterpretation of variables
is possible, then an appropriate initial feedback is the only
option.

Definition 1: A vector x1 ∈ R
n is said to be reachable

from the initial condition x(t0) = x0, if there exists a
sufficiently smooth control input u(t) and a finite time t1 > 0
such that x(t1) = x1.

Note that for reachability the initial condition has to be
consistent and the set of initial values for the control may be
restricted as well, because they two together have to satisfy
the algebraic constraint.

In the following section we will use a projection method
to determine the reachable set of system (1). More details on
projector based analysis of the differential-algebraic systems
can be found in [16].

A. An Equivalent Projected System

Let us rewrite (6) as

E ẋ = Ax+ Bu

where E =

[
Ẽ1

0

]
, A =

[
Ã1

Ã2

]
and B =

[
B̃1

B̃2

]
, and define

the two subspaces: Ed := Im(ET ), Ea := ker(E) where
Im and ker denote the image and kernel space, respectively.
Note that Ed and Ea are orthogonal complements to each
other. Corresponding to these two subspaces, we can now
partition the state variable x(t) additively into two parts
xd(t) and xa(t), which we will call differential and algebraic
components of x(t) respectively. To obtain xd and xa, let us
define the two projectors

Pd = E+E , and P ′

d = I − E+E (7)

where E+ is the Moore-Penrose inverse of E , [17]. Note that
Pd is an orthogonal projector onto the subspace Ed, whereas
Pa is an orthogonal projector onto the subspace Ea, and we
we set

xd(t) := Pdx(t), xa(t) = P ′

dx(t). (8)
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Then, according to definition (8), we have x(t) = xd(t) +
xa(t). Additionally, let us define another projector Q onto
Im(E) via

Q := EE+ =

[
Id 0

0 0

]
and Q′ = I − EE+. (9)

Then, we have the following result.
Theorem 2: [15, Theorem 4.4] Let the projectors Pd and

P ′

d be as in (7) and the variables xd and xa as in (8). Then,
x(t) is a solution of (1) if and only if xd(t) and xa(t) are
solutions of the system

ẋd(t) = Gdxd(t) +Bdu(t) (10a)

xa(t) = Gaxd(t) +Bau(t) (10b)

where

Ga :=− (Q′AP
′
d)

+(Q′APd), Gd := E+A(Pd +Ga), (11a)

Ba :=− (Q′AP
′
d)

+B, Bd := E+B + E+ABa. (11b)

Moreover, an initial value x0 is consistent if and only if
it satisfies the following relation at initial time t0: (P ′

d −
Ga)x0 = Bau(t0).

Theorem 2 states that a solution x(t) of (1) can be
computed by solving system (10) and forming x(t) =
xd(t)+xa(t). Hence, the set of reachable points of system (1)
can be determined by computing the state reachable points
of system (10). Thus, we can rephrase the Definition of
reachability as follows:

A vector x1 := xd1
+ xa1

is said to be reachable from
a consistent initial condition x(t0) = x0, if there exists a
sufficiently smooth control input u(t) and a finite time t1 > 0
such that xd(t1) = xd1

and xa(t1) = xa1
.

In the following section we compute the set of state
reachable points from the consistent initial condition x(t0) =
x0 of system (1) by using the solution set of system (10).

III. COMPUTING THE REACHABLE SET

Following the discussion in Section II it is clear that a
reachable point x1 of (1) can be determined by computing
its differential complement xd1

and algebraic component
xa1

via the relations given in (10). In this section, we first
compute the differential component xd1

of a reachable point
x1 from the relation ẋd(t) = Gdxd(t) + Bdu(t). Then, we
use xa(t) = Gaxd(t) + Bau(t) to compute the algebraic
component xa1

of x1.
Let us assume that the initial state x0 of (1) is consistent.

Then, the differential component xd0
of x0 would be xd0

=
Pdx0 which is an initial condition for the standard state space
system ẋd = Gdxd + Bdu. The differential component of
a state trajectory x(t), i.e. the solution of the differential
equation in (10) then has the form

xd(t) = eGd(t−t0)xd0
+

ˆ t

t0

eGd(t−τ)Bdu(τ)dτ (12)

and the resulting algebraic component of x(t) would be

xa(t) = Ga

[
e
Gd(t−t0)xd0 +

ˆ t

t0

e
Gd(t−τ)

Bdu(τ)dτ

]

+ Bau(t). (13)

Then it is clear that the state responses xd(t) and xa(t) are
uniquely determined by the initial condition x0, the control
input u(τ) for t0 ≤ τ ≤ t and the initial time t0. Assuming
initial time t0 = 0 and initial condition x0 = 0, then we
have xd0

= Pdx0 = 0 and hence the solution (12) is given
by

xd(t) =

ˆ t

0

eGd(t−τ)Bdu(τ)dτ. (14)

Let us define an operator Ld(u, t) via

Ld(u, t) :=

ˆ t

0

eGd(t−τ)Bdu(τ)dτ.

Then, the set of reachable points xd1
from the origin is

essentially the set of points which are in the image space
of Ld(u, t) (denoted as Im[Ld(u, t)]). In the following result
we show that Im[Ld(u, t)] is equivalent to the image space
of the symmetric matrix W (p, t) given by

W (p, t) :=

ˆ t

0

p(τ)eGd(t−τ)BdB
T
d e

GT

d
(t−τ)p(τ)dτ (15)

where p(τ) is a polynomial which is not identically zero.
Lemma 1: Let W (p, t) be as in (15). Then, we have

Im[W (p, t)] = Im[Ld(u, t)].
Proof: First, we show that Im[W (p, t)] ⊆ Im[Ld(u, t)].

Let us consider a vector xd1
such that xd1

∈ Im[W (p, t)].
Then, there exists a vector w ∈ R

n such that W (p, t)w =
xd1

. Now, by choosing the input

u(τ) = p2(τ)BT
d e

GT

d
(t−τ)w, 0 ≤ τ ≤ t

we have

Ld(u, t) =

[
ˆ t

0

p(τ)eGd(t−τ)BdB
T
d e

GT

d
(t−τ)p(τ)dτ

]
w

= W (p, t)w = xd1
,

and hence, xd1
∈ Im[Ld(u, t)]. Since xd1

is chosen arbitrar-
ily we have Im[W (p, t)] ⊆ Im[Ld(u, t)].

To show the converse implication Im[Ld(u, t)] ⊆
Im[W (p, t)], let xd1

∈ Im[Ld(u, t)]. Then there exists an
input u1(t) such that Ld(u1, t) = xd1

. Suppose that xd1
/∈

Im[W (p, t)], then ker[W (p, t)] is nonempty and we can
find a vector k ∈ ker[W (p, t)] such that kTxd1

6= 0, i.e.
kTW (p, t)k = 0. This implies that
ˆ t

0

[
kT p(τ)eGd(t−τ)Bd

] [
kT p(τ)eGd(t−τ)Bd

]T
dτ = 0

and therefore
´ t

0
‖kT p(τ)eGd(t−τ)Bd‖

2
2dτ = 0, which means

that kT p(τ)eGd(t−τ)Bd = 0 for all τ ∈ [0, t]. Since p(τ) is
not identically zero, we obtain

kT eGd(t−τ)Bd = 0, ∀τ ∈ [0, t], (16)

which implies that kTxd1
= kTLd(u1, t) =

´ t

0
kT eGd(t−τ)Bdu1dτ = 0. However, we had chosen

kT such that kTxd1
6= 0 and hence we have reached at a

contradiction. Hence Im[Ld(u, t)] ⊆ Im[W (p, t)] and the
proof is complete.
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According to Lemma 1 the set of all reachable points xd1

(from the origin) due to the state response xd(t) is essentially
the set of points which belong to Im[W (p, t)]. Moreover, by
defining the subspace

Xd := Im (Cd) , (17)

where Cd =
[
Bd GdBd · · · Gn−1

d Bd

]
it follows from the

proof in [5, Lemma 2.1.1] that

Im[W (p, t)] = Xd. (18)

So far we have characterized the reachability set for the
dynamical part, but we also need to discuss the restrictions
that are forced by the algebraic part. Recall that the algebraic
component of a state x is determined by xa(t) = Gaxd(t)+
Bau(t). Hence, to compute the algebraic component xa1

of
a reachable point x1, assume that xd1

is a reachable point
due to the state response xd(t) with some input u1(t) and
a finite time t1 > 0. Then, corresponding to u1(t) and t1,
the algebraic component xa1

is given by: xa1
= Gaxd1

+
Bau1(t1). Since xd1

∈ Xd, we can write xd1
= Cdy for

some y ∈ R
nm. Hence, xa1

takes the form

xa1
= GaCdy +Bac, (19)

where c = u1(t1) ∈ R
m. Hence, the algebraic component

of a reachable point x1 is determined by the relation (19).
Defining the set

Xa := {xa1
∈ R

n | xa1
= GaCdy +Bac, c = u(t1)} , (20)

where y ∈ R
mn and u(t) is an input to system (10), then,

Xa consists of all the algebraic components of the reachable
points x1. Note that Xa = Im[GaCd Ba] and thus we have
the complete characterization of the set R0 of reachable
points of system (1) from an initial condition x0 = 0 at
t0 = 0.

Theorem 3: Let Xd and Xa be as in (17) and (20) respec-
tively. Then,

R0 = Xd + Xa

where Xd + Xa := {xd1
+ xa1

| xd1
∈ Xd, xa1

∈ Xa}.
Proof: We will show first, that R0 ⊆ Xd +Xa. If x1 ∈

R0, then there exists an input u(t) and a finite time t1 such
that xd(t1) = xd1

and xa(t1) = xa1
. In addition to this,

x1 = xd1
+xa1

. Hence, we only have to show that xd1
∈ Xd

and xa1
∈ Xa.

Recall that xd(t) =
´ t

0
eGd(t−τ)Bdu(τ)dτ . It is well

known, see [5], that corresponding to a matrix Gd ∈ R
n×n

there exists continuous functions αi(t) for i = 1, 2, · · · , n−1
such that

eGdt = α0(t)I + α1(t)Gd + · · ·+ αn−1(t)G
n−1
d . (21)

Then, using (21), we obtain

xd(t) =

ˆ t

0

α0(t− τ)Bdu(τ)dτ +

ˆ t

0

α1(t− τ)GdBdu(τ)dτ+

· · ·+

ˆ t

0

αn−1(t− τ)Gn−1
d Bdu(τ)dτ

=
[
Bd GdBd · · · G

n−1
d Bd

]




´ t

0
α0(t− τ)u(τ)dτ

´ t

0
α1(t− τ)u(τ)dτ

...
´ t

0
αn−1(t− τ)u(τ)dτ


 .

Hence xd1
∈ Xd. Since xd0

= 0, the algebraic component
xa(t) in (13) has the form

xa(t) = Ga

[
ˆ t

0

eGd(t−τ)Bdu(τ)dτ

]
+Bau(t),

and

xa(t) = [GaCd Ba]




´ t

0
α0(t− τ)u(τ)dτ

...
´ t

0
αn−1(t− τ)u(τ)dτ

u(t)


 .

Therefore, xa1
∈ Xa, which proves that R0 ⊆ Xd+Xa. To

show that Xd+Xa ⊆ R0, let us consider a vector x1 ∈ Xd+
Xa. Then, according to the definition of Xd+Xa, we can find
xd1

∈ Xd and xa1
∈ Xa such that x1 = xd1

+ xa1
. Hence,

we only have to show that there exists an input u(t) and
finite time t1 > 0 such that xd(t1) = xd1

and xa(t1) = xa1
.

Since xd1
∈ Xd, it follows form (18) that xd1

∈
Im [W (p, t)]. Hence, we can find a vector w ∈ R

n such that
xd1

= W (p, t)w. Let us choose a polynomial p(τ) = τµ for
any fixed τ > 0. Then, corresponding to the chosen w to
obtain xd1

, let us construct an input via

u(τ) = τ2µBT
d e

GT

d
(t−τ)w, 0 ≤ τ ≤ t. (22)

The resulting state response xd(t) then is

xd(t) =

ˆ t

0

eGd(t−τ)Bdu(τ)dτ

=

[
ˆ t

0

τµeGd(t−τ)BdB
T
d e

GT

d
(t−τ)τµdτ

]
w. (23)

Since the polynomial p(τ) = τµ is not identically zero, the
matrix W (p, t) is well defined (see (15)) and it follows from
(23) that xd(t) = W (p, t)w = xd1

.
Now, since xa1

∈ Xa, there exist two vectors y ∈ R
mn

and c ∈ R
m such that xa1

= GaCdy + Bac. Corresponding
to the input u(τ) defined in (22), the algebraic component
of the state variable x(t) then is

xa(t) =Ga

ˆ t

0

eGd(t−τ)Bdu(τ)dτ +Bau(t)

=Ga

[
ˆ t

0

τµeGd(t−τ)BdB
T
d e

GT

d
(t−τ)τµdτ

]
w+

t2µBaB
T
d e

GT

d
(t−t)w

=GaW (p, t)w + t2µBaB
T
d w

=Gaxd1
+ t2µBaB

T
d w

Setting c = t2µBT
d w, we have xa(t) = Gaxd1

+Bac, hence
we only have to show that there exists a vector y such that
Cdy = xd1

. Note that the vector xd1
is in the image space

of W (p, t). Since, Im(Cd) = Im[W (p, t)], we can find y
such that Cdy = xd1

. Hence Xd +Xa ⊆ R0 and the proof is
complete.

Theorem 3 characterizes the reachable set of the DS (1)
from the origin. In addition, the characterization of all the
inputs u(t) by which one can reach to any arbitrary points in
the reachable set is given by (22). Since, Xd = Im(Cd) and
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Xa = Im[GaCd Ba], the set R0 can directly be computed
using the matrices defined in (11). Moreover, the dimension
of the subspace R0 is dim(R0) = dim(Xd)+dim(Xa) where
dim refers to the dimension of a subspace.

To demonstrate the proposed procedure, in the following
section, we compute the reachable set of an electrical circuit.

IV. A CIRCUIT EXAMPLE

Let us consider an electrical circuit as shown in Fig. 2,
see[5], [9]. Assuming that the voltages in capacitors vc1 , vc2
and currents i1, i2 as states, the dynamic of the electrical
circuit can be represented as Eẋ(t) = Ax(t)+Bvs(t), where
x(t) = [vc1(t) vc2(t) i2(t) i1(t)]

T , vs(t) is the input
voltage to the circuit and

E =



C1 0 0 0
0 C2 0 0
0 0 −L 0
0 0 0 0


 , A =




0 0 0 1
0 0 1 0
−1 1 0 0
1 0 0 R


 , B =




0
0
0
−1


 .

vs

R
i

C1

+

−

vc1

i1

L

C2

+

−

vc2

i2

+

−

v0

Fig. 2. An RLC electrical circuit with input voltage vs. The voltages
across the capacitors C1 and C2 are vc1 and vc2 respectively. The loop
currents are i1 and i2.

Let us assume that all the values of resistor, capacitors and
inductor are one. Then, according to Hypothesis 1, it can
be verified that the above system is strangeness-free in the
behavior framework. Hence, we have the following matrices

Ẽ1 =

[
1 0 0 0
0 1 0 0
0 0 −1 0

]
, Ã1 =

[
0 0 0 1
0 0 1 0
−1 1 0 0

]
, B̃1 =

[
0
0
0

]

Ã2 = [1 0 0 1] , B̃2 = −1.

Corresponding to theses matrices, (11) will take the follow-
ing form:

Gd =




−1 0 0 0
0 0 1 0
1 −1 0 0
0 0 0 0


 , Ga =




0 0 0 0
0 0 0 0
0 0 0 0
−1 0 0 0




Bd =
[
1 0 0 0

]T
, Ba =

[
0 0 0 1

]T
.

Then, the reachable space from the origin, is given by R0 =
Xd + Xa, where

Xd = Im(Cd) = Im




1 −1 1 −1
0 0 1 −1
0 1 −1 0
0 0 0 0




and

Xa = Im[GaCd Ba] = Im




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 1 −1 1 1


 ,

and it has dimension four.

V. CONCLUSION

In this work we have discussed how to compute the reach-
able set of a descriptor system. A derivative-array approach is
used to obtain a strangeness-free behavior system associated
with the original DS. The resulting transformed system is
then decoupled into a differential part and an algebraic part
with the help of a projection method. The coefficient matrices
of the projected system are used to define two subspaces
and finally we have shown that the addition of these two
subspaces is the reachable space of the original DS from
the origin. We have demonstrated the proposed approach by
considering an electrical circuit as a example.
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