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Abstract— We study the problem of estimating sparse preci-
sion matrices from data with missing values. We show that the
corresponding maximum likelihood problem is a Difference of
Convex (DC) program by proving some new concavity results
on the Schur complements. We propose a new algorithm to
solve this problem based on the ConCave-Convex Procedure
(CCCP), and we show that the standard EM procedure is a
weaker CCCP for this problem. Numerical experiments show
that our new algorithm, called m-CCCP, converges much faster
than EM on both synthetic and biology datasets.

I. INTRODUCTION

Many applications in statistics rely on estimating ac-
curately covariance matrices and their inverses, precision
matrices. This includes analysis of multivariate data such as
principal component analysis and discriminant analysis [25],
and such models have a wide range of practical applications,
from array processing to functional genomics [10]. The
most common probability model for studying correlations
in continuous data is the multivariate Gaussian distribution
with mean µ and covariance matrix Σ. In the context of
Gaussian distributions defined over undirected graphs, also
known as Gaussian Markov Random Fields (GMRFs), it is
well known that the non-zero entries Si j of the precision
matrix S = Σ−1 of the GMRF correspond precisely to the
conditional dependencies between the variables [21]. Recent
work in the field of learning the structure of graphical models
and especially on sparse GMRFs [12], has demonstrated
that promoting sparsity has compelling advantages, such as
producing more robust models that generalize well to unseen
data [8], cost-effective belief propagation algorithms [18],
and uncovering the interactions between variables (interac-
tions between genes [9] for example). Promoting sparsity
in GMRFs is typically done with an additional `1 penalty
term on the objective function that increases the sparsity
of the solution S. Researchers have proposed algorithms
for the exact optimization of the `1-penalized log-likelihood
[27], [11], [2], [20] specifically in high-dimensional set-
tings where the number of variables p is much larger than
the sample size n. Most of these algorithms assume full-
dimensional observations. With µ̂ the empirical mean and
Σ̂ = 1

n ∑
n
i=1(xi− µ̂)(xi− µ̂)T the empirical covariance of the

dataset D = {xi}i, these algorithms solve:

min
S�0
− log |S|+Tr(Σ̂S)+λ‖S‖1 (1)
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where |S| is the determinant of matrix S, Tr the trace operator,
and ‖S‖1 = ∑i j |Si j|. These results can also be extended
to allow different nonnegative weights assigned to different
entries, i.e. ‖λ ◦S‖1 = ∑i j λi j|Si j|.

In practice, datasets often suffer from missing values [17]
due to mistakes in data collection, dropouts, or limitations
from experimental design. Instead of using the full likelihood
of the samples, we need to consider the marginal likelihood
of the observed values, or observed log-likelihood. Inference
for µ and S can be based on the observed log-likelihood if
we assume that the underlying missing data mechanism is
ignorable, i.e. the probability that an observation is missing
may depend on the observed values but not on the missing
values (Missing at Random) and the parameters of the data
model and the parameters of the missing values mechanism
are distinct [17]. Unfortunately, with an arbitrary pattern of
missing values, no explicit maximization of the likelihood is
possible even for the mean values and covariance matrices
[17]. Concretely, we denote xi a full-dimensional sample
from X ∼ N (µ,Σ), and xi,obs (resp. xi,mis) the observed
values (resp. missing data) in xi. Then, xi,obs is drawn from
the marginal Gaussian distribution with mean µi,obs and
covariance Σi,obs. The marginal mean µi,obs and covariance
Σi,obs are obtained by dropping the irrelevant variables in µ

and Σ.
Following the work of Chandrasekaran [6], we first note

that the marginal precision matrix Si(S) := (Σi,obs)
−1 is the

Schur complement with respect to the block of missing or
latent variables. However, we suppose in our paper that the
number of latent variables and their indices are known, and
that they can change for each observation. This additional in-
formation enables us to formulate a well-posed optimization
problem. The observed log-likelihood is:

− log |Si(S)|+(xi,obs−µi,obs)
T Si(S)(xi,obs−µi,obs) (2)

The inference for µ and S = Σ−1 is based on the observed
log-likelihood:

1
n

n

∑
i=1

(
− log |Si(S)|+Tr(Σ̂i,obsSi(S))

)
+λ‖S‖1 (3)

Due to the structure of Si(S), the observed log-likelihood
is a non-convex function of S for a general missing data
pattern, with possible existence of multiple stationary points
[19], [22]. Thus, optimization of (3) is a non-trivial problem.

For a given vector of values xi,obs observed from a full
vector xi, denote by xi,mis the values of the rest of the
variables. Hypothetically, if we have access to the missing
values xi,mis, we can complete the observed values to obtain
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a full observation xi = (xi,obs,xi,mis) (modulo some permu-
tation). Naturally, this is not possible because the missing
values are unobserved. However, they can be imputed using
the Expectation Maximization (EM) algorithm to obtain a
completed dataset on which standard methods can be applied.
Under mild regularity conditions including differentiability
and continuity, EM converges to a stationary point of the
observed log-likelihood [26], [24]. In the E-step, the impu-
tation is done by conditional means of the sufficient statistics
1
n ∑i xixT

i given the current estimates of the parameters µ(t)

and S(t). This step completes Σ̂i,obs, i = 1, · · · ,n, and has
closed-form solutions in the case of GMRFs. In the M-step,
the optimization of the complete log-likelihood is solved
using standard tools for estimating sparse precision matrices.
In [15], an imputation based on plug-in estimator of the
covariance matrix has also been proposed.

Our central observation is that the problem of minimizing
(3), although nonconvex, has an objective function which
can be decomposed into the sum of a convex and a concave
function. This leads us to apply the concave-convex proce-
dure (CCCP), which is a majorization-minimization (MM)
algorithm that solves difference of convex (DC) programs
as a sequence of convex programs [28], [23]. This approach
has been applied in the past for estimating sparse covariance
matrices [4]. However, that work considers the optimization
problem minΣ�0{log |Σ|+Tr(Σ̂Σ−1)+λ‖Σ‖1}, which differs
from the objective (1) because the sparsity is attained in the
covariance matrix itself rather than in the precision matrix,
and because the data set is complete.

There is a significant body of prior work in machine
learning and statistics that takes advantage of this structure
to develop specialized algorithms: DC programs focusing
on general techniques to find exact and approximate solu-
tions of such problems [13], [1]; majorization-minimization
algorithms for problems in statistics such as least-squares
multidimensional scaling [7]; regularized regression with
nonconvex penalties [29]. The CCCP algorithm has also been
used in various machine learning applications [28], [23].

The article presents several important contributions. We
propose a novel approach called m-CCCP to solve the prob-
lem of minimizing (3) which differs from previous works
[24], [15]. The emphasis is placed on the DC decomposition
of the log-likelihood rather than the statistical analysis used
in the EM method. Moreover, we show that EM is also
an approximation of CCCP using a different DC program,
which provides a powerful analytical framework for com-
paring the two algorithms. This enables us to show that our
algorithm compares favorably to EM in theoretical speed of
convergence. Our results are also supported by numerical
experiments. We hope our analysis will be the starting
point for the design of new algorithms that outperform the
well-studied EM-based methods by developing optimal DC
programs.

II. DIFFERENCE OF CONVEX PROBLEM

We begin by proving that the problem of minimizing (3) is
a DC program. The DC decomposition will ensue by proving

some new properties of the Schur complements.
When we re-order the lines and columns of Σ and S using

a permutation Pi such that the first block corresponds to
the observed values xi,obs, then the inverse of the observed
block in Σ is a Schur complement. In other words, with

xi := PT
i

[
yi
zi

]
, where yi := xi,obs and zi = xi,mis, it follows that

PiΣPT
i =

[
Σyiyi Σyizi

Σziyi Σzizi

]
has inverse

PiSPT
i =

[
Syiyi Syizi

Sziyi Szizi

]
=

[
Ai Bi
Ci Di

]
(4)

where the inverse Si(S) = (Σyiyi)
−1 is the Schur complement

of the block Ai of the matrix PiSPT
i (with Ci = BT

i because
S = ST ): Si(S) = Ai − BiD−1

i Ci. We follow this notation
for the rest of the article. Because the permutation is a
linear operator, we can directly consider the block matrix

S=
[

A B
BT D

]
and prove our results on the Schur complement

S (S) = A−BD−1BT = Syy−SyzS−1
zz Szy (5)

In the p-dimensional Hilbert space Rp with inner product
xT y, we denote the set of symmetric matrices Sp, the set
of positive semidefinite matrices Sp

+, and the set of positive
definite matrices Sp

++, respectively. It has been seen in [3]
(Th. 1.3.3, Corollary 1.5.3) that the Schur complement (5)
is concave. We now prove that the determinant of the Schur
complement is also log-concave, which is a new result to
the best of our knowledge. We first restate Lemmas 1 and 2
from [3], which lead to the main result of this section. The
proofs are provided and will be useful for Proposition 1.

Lemma 1: Let D be positive definite. Then the block

matrix M =

[
A B

BT D

]
is positive definite if and only if

A� BD−1BT .
Proof: We have[

I −BD−1

0 I

][
A B

BT D

][
I 0

−D−1BT I

]
=

[
A−BD−1BT 0

0 D

]
We note that M defined in Lemma 1 has determinant |A−
BD−1BT | · |D|, hence log |A−BD−1BT |= log |M|− log |D|.

Lemma 2: The map (A,B,D) 7→ A− BD−1BT is jointly
concave on Sp

+×Rp×q×Sq
++.

Proof: We need to prove that (B,D) 7→ BD−1BT is
jointly convex. Applying Lemma 1 with A = BD−1BT , we

get
[

BiD−1
i BT

i Bi
BT

i Di

]
� 0, i = 1,2, hence summing the two

matrices givesB1D−1
1 BT

1 +B2D−1
2 BT

2
2

B1+B2
2(

B1+B2
2

)T D1+D2
2

 � 0. Using Lemma 1 again(
B1+B2

2

)(
D1+D2

2

)−1(B1+B2
2

)T
� B1D−1

1 BT
1 +B2D−1

2 BT
2

2

If ensures that S is a concave function on Sp
++ and that

S (S) is positive definite. It is also known that the deter-
minant is log-concave on Sp

++ as seen in [5, Section 3.1.5].
This leads to one of our main results:

Theorem 1: The function S 7→ log|S (S)| is concave on
Sp
++.
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Proof: We have S
(

S1+S2
2

)
� S (S1)+S (S2)

2 from

Lemma 2. Then
∣∣∣S (

S1+S2
2

)∣∣∣ ≥ ∣∣∣S (S1)+S (S2)
2

∣∣∣ ≥
|S (S1)|

1
2 |S (S2)|

1
2 where the first inequality comes

from A � B⇒ |A| ≥ |B| for positive definite matrices, and
the second inequality is from the log-concavity of the
determinant. Taking the log terminates the proof.

Given the concavity of log|S (S)| from Theorem 1 and the
concavity of xT S (S)x = Tr(xxT S (S)) from Lemma 2, the
problem of maximizing the log-likelihood can be restated as
the following minimization problem:

min
S�0

f0(S)−g0(S)+λ‖S‖1

f0(S) =− 1
n ∑

n
i=1 log |Si(S)|

g0(S) =− 1
n ∑

n
i=1 Tr(Σ̂i,obsSi(S))

(6)

where f0 and g0 are both convex functions. We now have
a DC program. The following result gives a guarantee of
convergence to a stationary point if the objective is non-
increasing at each iteration of our algorithm.

Lemma 3: There exists α > 0 such that ∀A, B ∈ Rp×p

similar, ‖A‖1 ≥ α‖B‖1 with ‖M‖1 = ∑i j |Mi j|.
Proof: All norms on Rp×p are equivalent, so ∃r,s > 0

such that r‖·‖1≤‖·‖2≤ s‖·‖1, with ‖·‖2 the spectral norm.
And ‖A‖1 ≥ 1

s ‖A‖2 = 1
s ‖B‖2 ≥ r

s‖B‖1 since two similar
matrices have the same spectral norm.

Proposition 1: Providing that λ > 0, the minimization
problem (6) is bounded below.

Proof: Introducing the auxiliary variables Zi = Si(S),
problem (6) can be rewritten as min 1

n ∑
n
i=1(− log |Zi| +

Tr(Σ̂i,obsZi) + λ‖S‖1) s.t. S � 0, Zi = Si(S), i = 1, · · · ,n.
From the proof of Lemma 1, the matrices S and[
Si(S) 0

0 Szizi

]
are similar, hence ‖S‖1 ≥ α(‖Si(S)‖1 +

‖Szizi‖1) ≥ α‖Si(S)‖1 from Lemma 3. Hence problem
(6) is bounded by min 1

n ∑
n
i=1{− log |Zi| + Tr(Σ̂i,obsZi) +

λα‖Zi‖1} s.t. Zi = Si(S) which can be relaxed in a sum of
n programs 1

n ∑
n
i=1 min

Zi�0
{− log |Zi|+Tr(Σ̂i,obsZi)+λα‖Zi‖1}.

Since λα > 0, each program has a unique solution Ẑi from in
[2, Th. 1]: argmin

Zi�0
{− log |Zi|+Tr(Σ̂i,obsZi)+λα‖Zi‖1}= Ẑi.

Hence (6) is bounded below by 1
n ∑

n
i=1 Ẑi.

The `1-penalty λ‖S‖1 promotes sparsity when learning the
precision matrix, without altering the DC structure of the
objective. With λ ≥ 0, λ‖S‖1 is also a convex function, so it
can be added to the convex part f0 of the DC program. This
generalizes to any regularization of the form λ‖S‖ where ‖·‖
is a norm (e.g. the Euclidian norm ‖·‖2 for ridge regression)
since all norms are convex.

To conclude the section, the note below Lemma 1 gives a
simplification of the objective in (3):

− log |S|+ 1
n

n

∑
i=1

(
log |Si,mis|+Tr(Σ̂i,obsSi(S))

)
+λ‖S‖1 (7)

This reformulation will be useful in Section IV.

III. CONCAVE-CONVEX PROCEDURE

The Concave Convex Procedure (CCCP) computes a sta-
tionary point of DC programs by solving a sequence of
convex programs (see [23] for further details). Here, we
present the general framework of the CCCP along with
some convergence guarantees of the algorithm. CCCP solves
problems of the form

min f0(x)−g0(x) s.t. x ∈ C (8)

where f0 and g0 are convex and C is some convex set.
Assuming g is differentiable at every iteration, CCCP solves
a sequence of convex programs by linearizing g0 about the
current best estimate x(t) in order to obtain the next point
x(t+1), which is solution of

min f0(x)−g0(x(t))−∇g0(x(t))T (x− x(t)) s.t. x ∈ C (9)

Proposition 2: Let h(t)0 (x) be the objective function in (9).
Assuming that the minimization problem (8) is bounded, the
convex program (9) is bounded for all t. Moreover, if we can
solve each convex program (9), the objective function in (8)
is non-increasing at each iteration of CCCP and convergent.

Proof: Using the first order condition for convex func-
tions h(t)0 (x) ≥ f0(x)− g0(x), problem (9) is also bounded.
Now let us assume that we can solve (9) at each iteration
of CCCP. Let x(t+1) be a solution to it at iteration t. Then
we have ( f0− g0)(x(t+1)) ≤ h(t)0 (x(t+1)) ≤ h(t)0 (x(t)) = ( f0−
g0)(x(t)). Hence the objective function is non-increasing and
convergent (because bounded below from Proposition 1).

Therefore, the algorithm is guaranteed to converge. When
CCCP is used to solve Problem (3), the variable x be-
comes a symmetric matrix S, and the feasible set is C =
S n

++. Since the concave part of our objective g0(S) =
− 1

n ∑
n
i=1 Tr(Σ̂i,obsSi(S)) is smooth, we can take the first order

Taylor expansion of g0 at S(t), that is g0(S) ≈ g0(S(t)) +
Tr
(
(∇Sg0)S(t)(S−S(t))

)
. The sequence of convex programs

about the current best estimate S(t) is:

S(t+1) = argmin
S�0

{ f0(S)−Tr(DT
(t)S)+λ‖S‖1} (10)

where D(t) is the gradient of the concave part of the objective:

D(t) := (∇Sg0)S(t) =−
1
n

n

∑
i=1

(∇S Tr(Σ̂i,obsSi(S))S(t) (11)

The difference between the approaches in [24], [15] and
our work stems from the sequence of convex programs
solved. While EM imputes missing values to approximate
the complete log-likelihood, we place the emphasis on the
DC decomposition. We now derive a closed-form expression
for D(t) in (10):

Proposition 3: With permutation matrix Pi in (4), and
denoting Ei := BiD−1

i = Syizi(Szizi)
−1, we have

∇STr(Σ̂i,obsSi(S)) = PT
i

(
Σ̂i,obs −Σ̂i,obsEi

−ET
i Σ̂i,obs ET

i Σ̂i,obsEi

)
Pi (12)
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Proof: Consider the block matrix S =

(
A B
C D

)
and the Schur complement S (S) = A − BD−1C. Using
Tr(MS (S)) = Tr(MA)−Tr(MBD−1C) we have:

∇S Tr(MS (S)) =

(
∇ATr(MS (S)) ∇BTr(MS (S))
∇CTr(MS (S)) ∇DTr(MS (S))

)
=(

∇ATr(MA) −∇BTr(MBD−1C)
−∇CTr(MBD−1C) −∇DTr(MBD−1C)

)
=

(
MT −MTCT D−T

−D−T BT MT D−T BT MTCT D−T

)
, where the last

equality is obtained using these facts:
∇X (M1XM2) = MT

1 MT
2 ,

∇X (M1X−1M2) =−X−T MT
1 MT

2 X−T .
Finally, we substitute M, A, D,C = BT and order the lines
and columns back to the initial order.

Eq. (12) gives a closed-form expression for the objective in
(10). We conclude the section with the following result:

Proposition 4: As long as λ > 0, the minimization prob-
lem (10) is convex and bounded.

Proof: Since λ > 0, the convex program (10) is
bounded by problem (6) from Proposition 2.

IV. COMPARISON WITH EM

In this section, we compare the different approaches taken
by EM and our CCCP algorithm, which we call m-CCCP for
the rest of the article. We show that EM is also a choice of
decomposition CCCP for Gaussians with Missing Values in
which a term of the form of a log barrier function on Si,mis
is included in the concave part.

We recall that when we re-order the lines and columns of
the covariance Σ and its inverse S using a permutation Pi such
that the first block corresponds to the observed values xi,obs,

we obtain xi = PT
i

(
yi
zi

)
, where yi = xi,obs are the observed

entries of xi, and zi = xi,mis are the missing values.
In EM, a probability distribution of the missing values

zi is inferred, conditioned on the observed values xi and
based on some current estimate of the precision matrix S.
It is then used to optimize the score function over the entire
data set. The probabilities computed for zi are the posterior
probabilities computed in the E step, and the new parameter
values are computed in the M step.

E: ρ({zi}i) := f ({zi}i |{yi}i,µ,S)
M: S := arg min

S�0
Ez∼ρ [−`({yi}i,{zi}i; µ,S)] (13)

where the likelihood ` is defined by −`({yi}i,{zi}i; µ,S) =
− log |S|+ 1

n ∑
n
i=1 Tr(xixT

i S). Since the data points zi are i.i.d.,
the distribution ρ in step E decomposes as Πn

i=1ρi where
ρi(zi) := f (zi|yi) and zi|yi is a Gaussian with conditional
mean −ET

i yi (where Ei = Syizi(Szizi)
−1 as in (12)) and co-

variance (Szizi)
−1. Hence the objective in step M of EM

decomposes as − log |S|+ 1
n ∑

n
i=1 Tr(Ezi∼ρi [xixT

i ]S). Hence,
the E and M steps for our problem are:

E: ρ(zi)∼N (−ET
i yi, S−1

zizi
), i = 1, · · · ,n

M: S := arg min
S�0

− log |S|+ 1
n ∑

n
i=1 Tr(Ezi∼ρi [xixT

i ]S) (14)

Beyond the statistical interpretation of EM presented above,
we now show that this algorithm is also a CCCP similar to
the one presented in Section II. To the best of our knowledge,
this is a new result on the problem of inverse covariance
estimation from data with missing values. This stems from
the following key observation on the average of the sufficient
statistics xixT

i over the posterior probabilities:
Lemma 4: Ezi∼ρi [xixT

i ] = ∇S(Tr(Σ̂i,obsSi(S)) +
log |Si,mis|), i = 1, · · · ,n.

Proof: We have Ezi∼ρi [xixT
i ] =

PT
i

(
yiyT

i yiE[zi]
T

E[zi]yT
i E[zizT

i ]

)
Pi. Plugging in yiyT

i = Σ̂i,obs,

the mean E[zi] = −ET
i yi and E[zizT

i ] = (Szizi)
−1 +

E[zi]E[zi]
T = (Szizi)

−1 + ET
i yiyT

i Ei gives E[xixT
i ] =

PT
i

(
Σ̂i,obs −Σ̂i,obsEi

−ET
i Σ̂i,obs ET

i Σ̂i,obsEi +(Szizi)
−1

)
Pi. We recognize

in (12) the term ∇STr(Σ̂i,obsSi(S)) plus an additional term

(Szizi)
−1. Observing that ∇S log |Szizi |= PT

i

(
0 0
0 (Szizi)

−1

)
Pi

finishes the proof.
In words, the conditional expectation of the sufficient

statistics xixT
i is the gradient of a concave part of the

objective rewritten in (7), that is Tr(Σ̂i,obsSi(S))+ log |Si,mis|.
Proposition 5: For Gaussians, the optimization in step M

of EM is a decomposition CCCP:

min
S�0

f1(S)−g1(S)

f1(S) =− log |S|
g1(S) =− 1

n ∑
n
i=1
(
log |Si,mis|+Tr(Σ̂i,obsSi(S))

) (15)

Proof: From the results in Section II, f1 and g1 are both
convex. Plugging in the result from Lemma 4 in step M of
EM for Gaussians in (14), the objective becomes f1(S)−
Tr(∇Sg1(S)S).
Note that for simplicity the `1-penalty term is not included
in the analysis because it does not affect the CCCP decom-
positions discussed in this section and the next one. We have
shown that EM is a CCCP. Since EM linearizes more terms in
the objective than m-CCCP, the objective in EM is a weaker
approximation of the true objective. In fact, we show in the
next section that m-CCCP gives a tighter upper bound on
the objective than EM.

V. CONVERGENCE ANALYSIS

The results in this section stem from the key observation
that EM is in fact a CCCP applied to m-CCCP. Therefore,
applying the same analysis as the one made in section III,
we show that m-CCCP provided a tighter upper bound to the
true objective than EM.

Defining the convex function g2(S) := g1(S)− g0(S) =
− 1

n ∑
n
i=1 log |Si,mis| the objective becomes

arg min
S�0

{ f1(S)−g2(S)−g0(S)} (16)

where f1, g2, and g0 are convex. Denoting the linear map
L such that L f is the 1st-order Taylor expansion of f at
x0, the objectives in m-CCCP and EM at x0 are:

m-CCCP: f0−L g0 = f1−g2−L g0
EM: f1−L g1 = f1−L g2−L g0

(17)
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Hence, EM linearizes the concave part −g2 of the objective
in m-CCCP. In other words, m-CCCP applies CCCP to the
true objective, and EM applies CCCP to the objective in m-
CCCP:

( f0−L g0)− ( f0−g0) = g0−L g0 ≥ 0
( f1−L g1)− ( f0−L g0) = g2−L g2 ≥ 0 (18)

where the inequalities are obtained from the first-order con-
dition on the convex functions g0 and g2. As a consequence:

Proposition 6: The convex program solved by EM at x0 is
an upper bound on the convex program solved by m-CCCP
at x0:

f1−g1 = f0−g0 ≤ f0−L g0 ≤ f1−L g1 (19)
Thus, m-CCCP provides a tighter upper bound on the true
objective (3) than EM, and min

S�0
( f0 − g0)(S) ≤ min

S�0
( f0 −

L g0)(S)≤min
S�0

( f1−L g1)(S).

VI. EXPERIMENTS ON SYNTHETIC DATASETS

We present several evaluations of our algorithm against
current state of the art for missing data. Our first set
of experiments evaluate m-CCCP against EM on standard
synthetic datasets. In the case of EM, the maximization step
is implemented using the QUIC algorithm [14] run until
convergence.

In a first synthetic experiment, we study the rate of con-
vergence of m-CCCP compared with EM: given an inverse
covariance matrix, we generate small subsets of the covari-
ance matrix as synthetic observations. This corresponds to
the ideal case in which we observe empirical covariances
without sampling noise. Given these covariance subsets, we
run m-CCCP and EM to attempt to recover the original
precision matrix (assuming the sparsity pattern is known).
Figure 1 presents an example in which n = 40, m = 50. As
one can see (this is confirmed in subsequent experiments), (1)
m-CCCP reaches a good local minimum in the first iteration,
while EM takes a substantial number of iterations to reach
the same level, and (2) after having found a local minimum,
m-CCCP performs more progress per iteration.

Fig. 1. Comparing m-CCCP and EM.

In a second experiment, we consider model 1, model
2, model 3, and model 4 of [20] with p = 10, 50, 100,
x1, · · · ,xn ∼N (0,Σ) with

Model 1: n = 100, Σi j = 0,7| j−i|, so that the entries of the
covariance matrix decay exponentially.

Model 2: n = 150,, Σi j = I{i= j}+0.4I{|i− j|=1}
+0.2I{|i− j|=2}+0.2I{|i− j|=3}+0.1I{|i− j|=4}
where IC is the indicator function which is 1 if condition C
is true and 0 otherwise.

Model 3: n = 200, Σ = B+ δ I, where each off-diagonal
entry of B is generated independently and equals 0.5 with
probability α = 0.1 or 0 with probability 1−α . Diagonal
entries of B are zero, and δ is chosen so that the condition
number of Σ is p.

Model 4: n = 250,same as model 3 except α = 0.5.

Note that in all models Σ−1 is sparse. In models 1 and 2
the number of non-zeros in Σ−1 is linear in p, whereas in
models 3 and 4 it is proportional to p2.

For all 12 settings (4 models with p = 10, 50, 100) we
perform 20 simulation runs. In each run we proceed as
follows:

• We generate n training observations from the model.
• In the training set we delete uniformly at random

20%, 40%, 60% and 80% of the data. Per setting, hence
we get four training sets with different degree of missing
data, for a total of 48 training sets.

• The m-CCCP estimator is fitted on each of the three
mutilated training sets, with the tuning parameter λ

selected by minimizing the BIC criterion.

Recall that the tuning parameter λ described in the previ-
ous sections is required to control the sparsity of the solution
to fit the data better. A common approach is to form a grid of
exponentially increasing values for λ and choose to minimize
a modified BIC criterion:
BIC(λ ) =−2`({xi,obs}i; µ̂, Ŝ)+ log(n) ∑

i≤ j
I{Ŝi j 6=0}

where (µ̂, Ŝ) are estimated obtained using the tuning param-
eter λ , −2`({xi,obs}i; µ̂, Ŝ) = n( f0(Ŝ)−g0(Ŝ)) is the observed
log-likelihood (modulo some constants), and ∑

i≤ j
I{Ŝi j 6=0} mea-

sures the degrees of freedom.
We observe that for percentages of missing values

20%, 40%, 60%, the tuning parameters that minimize the
BIC criterion results in good estimates. However, for 80%
of missing values, minimizing the BIC criterion often gives
excessively large tuning parameters λ which results in poor
estimates. Hence we minimize the BIC criterion under the
constraint λ ≤ λmax where λmax is the maximum tolerated
value for the tuning parameters λ .

We assume m-CCCP and EM converge when the relative
change of objective value is less than 10−3 and we report
in Table I the number of iterations required for convergence
for both algorithms. m-CCCP converges faster per iteration
for all 48 training sets. The gap is large for 60% and 80% of
missing values because the weight of g2 =− 1

n ∑
n
i=1 log |Si,mis|

in (17) is more important, hence by linearizing out g2, EM
provides a weaker approximation of the objective.

We note that m-CCCP and EM consistently give very close
estimates of the inserve covariance matrix Ŝ, and same values
of ‖Ŝ−S‖F where S is the true precision matrix and ‖ · ‖F
is the Frobenius norm (results not reported here).
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Fig. 2. Top four: Objectives of m-CCCP and EM averaged over 20 runs
for model 4 and p=50. Bottom four: objectives of m-CCCP and EM on
lymph dataset. The arrows mark the convergence of both algorithms.

VII. EXPERIMENTS ON REAL DATASETS
Table I: Number of iterations for convergence of the algorithms:
m-CCCP outperforms EM for all 51 datasets (synthetic and real).

Following experiments done by [14] and [24], we use
the biology datasets preprocessed by [16] to compare the
performance of our algorithm with EM, in the hypothetical
case that values were missing from data. This is an inter-
esting case in practice, as collecting hundreds of biological
parameters for each experiment may become expensive. We
first decimate the data at random, and then perform centering
and variance scaling using the observed data points.

For all three biology datasets (arabidopsis, leukemia, and
lymph) we set λ = 0.5 as in [14], and we use a convergence
threshold of 10−3 on the change of objective value for
both m-CCCP and EM. The number of iterations required
for convergence are reported in Table I. In all cases, the
number of CCCP iterations is (much) lower than the number
of iterations required by EM. In particular, when most of
the data is unobserved (> 80% missing values), m-CCCP

miss model 1 model 2 model 3 model 4
(%) mC EM mC EM mC EM mC EM

p=10 20 5 8 6 7 5 6 1 2
40 11 16 11 13 8 10 1 3
60 1 5 1 4 13 18 1 5
80 1 10 1 8 2 10 1 8

p=50 20 8 10 9 10 8 9 11 12
40 16 20 3 4 16 18 7 9
60 1 7 13 17 16 21 1 10
80 1 15 4 13 3 15 1 19

p=100 20 8 12 11 12 11 12 18 19
40 22 26 25 29 14 16 6 8
60 4 8 1 7 37 49 1 13
80 1 16 1 14 1 20 1 29

miss arabidop. leukemia lymph -
(%) mC EM mC EM mC EM mC EM
20 7 7 9 9 6 6 - -
40 1 2 1 2 1 2 - -
60 1 3 1 4 1 3 - -
80 1 8 1 9 1 7 - -

converges in one iteration to a local minimum, while EM
requires many more iterations.

VIII. CONCLUSION AND FUTURE WORK

The problem of learning sparse inverse covariance from
incomplete data is proven to be a difference of convex prob-
lem. When the data is sparingly observed, the Expectation-
Maximization algorithm leads to slow convergence. Based on
the observation that the determinant of a Schur complement
is a log-concave function, we propose a new Concave-
Convex procedure that shows superior convergence results
on standard synthetic datasets. We are currently working on
extending these results to larger problems by exploiting the
structure of the Schur complement in the case of small ob-
servations combined with a quadratic approximation similar
to the state-of-the-art QUIC algorithm [14].
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