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Abstract— In this paper, we study the event-triggered con-
sensus problem for multi-agent systems with general linear
dynamics under a general directed graph. We propose a
decentralized event-triggered consensus controller (ETCC) for
each agent to achieve consensus, without requiring continuous
communication among agents. Each agent only needs to moni-
tor its own state continuously to determine when to trigger an
event and broadcast its state to its out-neighbors. The agent
updates its controller when it broadcasts its state to its out-
neighbors or receives new information from its in-neighbors.
The ETCC can be implemented in multiple steps. We prove
that under the proposed ETCC there is no Zeno behavior
exhibited. To relax the requirement of continuous monitoring
of each agent’s own state, we further propose a self-triggered
consensus controller (STCC). Simulation results are given to
illustrate the theoretical analysis and show the advantages of
the event-triggered and self-triggered controllers in this paper.

Index Terms— Decentralized event-triggering, consensus con-
trol, multi-agent systems, general linear dynamics, directed
graphs.

I. INTRODUCTION

In the last decade, the consensus problem of continuous-
time multi-agent systems (MAS) has been attracting much
attention due to its wide applications. Many significant
works have been obtained, e.g., see [1]–[6], just to name
a few. Note that in the above works the agents need to
continuously employ their own and neighbors’ states and
hence these states need to be obtained continuously. To
avoid this disadvantage, some researchers has begun to study
the centralized/distributed event-triggered consensus problem
[7]–[14]. The event-triggered average-consensus problem
was considered for MAS with single-integrator dynamics
in [7] and [8]. The event-triggered consensus problem for
MAS with general linear dynamics was investigated in [10]
and [15]. However, while the controllers in [7], [8], [10],
and [15] are updated less often by using the event-triggered
algorithms, they still require the agents to communicate with
their neighbors continuously.

It is well known that unnecessary communication can
lead to a waste of energy. Continuous communication would
also cause the communication resource competition among
agents. To reduce the communication cost as much as
possible, researchers have begun to study the event-triggered
consensus without continuous communication, self-triggered
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consensus, or decentralized event-triggered consensus for
continuous-time MAS recently [9], [11]–[14], where there
is no need for continuous communication. A periodic event-
trigger based consensus algorithm was studied in [9] for
single-integrator agents over undirected connected commu-
nication topologies. A self-triggered control algorithm for
single-integrator agents was given in [11]. In [12], a decen-
tralized event-triggered consensus algorithm was considered
for single- and double- integrator agents. However, in [9],
[11], and [12], the agents were assumed to be with single-
or double- integrator dynamics. For MAS with general linear
dynamics, although [13], [14], and [15] have recently solved
the event-triggered consensus problem without continuous
communication, they all have some limitations. The con-
sensus error in [13] could only converge to a neighborhood
around the origin and the communication topology in [14]
and [15] was assumed to be undirected. In short, the event-
triggered consensus problem for MAS with general linear
dynamics under directed graphs has not been addressed.

Motivated by the above discussion, we consider the con-
sensus problem for MAS with general linear dynamics
under a general directed graph based on an event-triggered
broadcasting scheme. The communication topology among
agents is assumed to be a general directed graph containing
a directed spanning tree. We propose a decentralized event-
triggered consensus controller (ETCC) implemented in mul-
tiple steps for each agent to achieve consensus. Under our
proposed controller, there is no continuous communication
required among agents. We further prove that there is no
Zeno behavior exhibited during the control process, that is,
the event would not be triggered continuously. Note that
under the ETCC, each agent needs to monitor its own state
continuously. To relax this limitation, we further propose a
self-triggered consensus controller (STCC), where the next
triggering instant is predetermined by the agent itself at the
previous triggering instant. It should be pointed out that the
stability analysis of the closed-loop systems is partly inspired
by [5] and [12]. The primary contributions of the paper are
summarized as follows.

1) To the best of our knowledge, this is the first paper
addressing the event-triggered/self-triggered consensus
problem for MAS with general linear dynamics under
general directed graphs without continuous commu-
nication and monitoring. Most works in the existing
literature have some limitations such as agents’ dynam-
ics, communication graphs, nonzero final consensus
error, and continuous communication. So, the methods
proposed in the literature cannot be directly used in
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our paper.
2) The matrix exponential function eAt is used in the

proposed ETCC to estimate the current states of the
agents and exclude the Zeno behavior. Note that, for
single-integrator agents, the event-based controller can
be obtained directly from the continuous consensus
controller. But for double-integrator agents or gen-
eral linear agents, the continuous controllers cannot
be directly implemented in the event-triggered form.
Introducing the matrix exponential function eAt is an
innovative point of our research. The results in [12]
dealing with single- and double-integrator dynamics
can be regarded a special case of our result. It is
worth mentioning that the analysis for convergence
and exclusion of Zeno behavior in our framework is
nontrivial and there exist significant challenges.

The rest of this paper is organized as follows. Some
useful results and the dynamics are introduced in Section
II. The event-triggered consensus is investigated in Section
III and the self-triggered scheme is discussed in Section IV.
A simulation example is given in Section V. Section VI
concludes the paper.

II. PRELIMINARIES

A. Notation and graph theory

Let Rm×n and Cm×n be, respectively, the set of m× n
real and complex matrices. Let 1m and 0m denote, respec-
tively, the m × 1 column vector of all ones and all zeros.
Let 0m×n denote the m × n matrix with all zeros and Im
denote the m×m identity matrix. The superscript T means
the transpose for real matrices. We denote by λi(·) the ith
eigenvalue of a matrix. By diag(A1, · · · , An), we denote
a block-diagonal matrix with matrices Ai, i = 1, · · · , n,
on its diagonal. A matrix A ∈ Cm×m is Hurwitz if all of
its eigenvalues have strictly negative real parts. The matrix
A ⊗ B denotes the Kronecker product of matrices A and
B. Let ∥ · ∥ denote, respectively, the Euclidean norm for
vectors and the induced 2-norm for matrices. Let ∥ · ∥F
denote the Frobenius norm of a matrix. Let dim(·) describe
the dimension of a square matrix. For a complex number,
Re(·) denotes its real part.

A directed graph G is a pair (V, E), where V =
{v1, · · · , vN} is a nonempty finite set of nodes and E ⊆
V × V is a set of edges, in which an edge is represented by
an ordered pair of distinct nodes. An edge (vi, vj) means that
node vj can receive information from node vi or equivalently
node vi can broadcast information to node vj . Here we call
vi an in-neighbor of vj and vj an out-neighbor of vi. A
directed path from node vi1 to node vil is a sequence of
ordered edges of the form (vik , vik+1

), k = 1, · · · , l − 1.
A directed graph contains a directed spanning tree if there
exists a node called the root such that there exist directed
paths from this node to every other node. The adjacency
matrix A = [aij ] ∈ RN×N associated with the directed
graph G is defined by aii = 0, aij > 0 if (vj , vi) ∈ E and
aij = 0 otherwise. The Laplacian matrix L = [lij ] ∈ RN×N

is defined as lii =
N∑

j=1,j ̸=i

aij and lij = −aij , i ̸= j. The

graph G is undirected if aij = aji, ∀i, j = 1, · · · , N and
directed otherwise.

B. Problem statement and background

Consider a group of N identical agents with general linear
dynamics. The dynamics of the ith agent are described by

ẋi(t) = Axi(t) +Bui(t), (1)

where xi(t) ∈ Rn is the state, ui(t) ∈ Rp is the control
input, A ∈ Rn×n, and B ∈ Rn×p. The communication
topology among agents is represented by a general directed
graph G. The objective of this paper is to design a distributed
event-triggered control law for each agent such that the states
of all the agents achieve consensus. We need the following
assumption and lemmas to derive our main results.

Assumption 2.1: The matrix pair (A,B) in (1) is stabiliz-
able and the graph G contains a directed spanning tree.

Lemma 2.1: [16] If G contains a directed spanning tree,
0 is a simple eigenvalue of the Laplacian matrix L and all
the other eigenvalues have positive real parts. Moreover 1N

is a right eigenvector associated with the zero eigenvalue and
there is also a nonnegative left eigenvector associated with
the zero eigenvalue.

Lemma 2.2: Suppose that A∈Rn×n is Hurwitz. Then, for
all t ≥ 0, it holds that ∥eAt∥ ≤ ∥PA∥∥P−1

A ∥cAeaAt, where
PA is a nonsingular matrix such that P−1

A APA=JA with JA
being the Jordan canonical form of A, cA > 0 is a positive
constant determined by A, and max

i
Re(λi(A))<aA<0.

Proof: For every A with s distinct eigenvalues
{λ1(A), · · · , λs(A)}, there is a nonsingular matrix PA such

that P−1
A APA = JA = diag{J1, · · · , Js} and

s∑
i=1

dim(Ji) =

n. For each eigenvalue λi(A), i = 1, · · · , s, the Jordan
segment Ji is made up of mi Jordan blocks, that is, Ji =
diag{Ji1, · · · , Jimi} with

Jij =


λi(A) 1 · · · 0

...
. . . . . .

...
0 · · · λi(A) 1
0 · · · 0 λi(A)

 ,

i = 1, · · · , s, j = 1, · · · ,mi and
mi∑
j=1

dim(Jij) = dim(Ji).

Note that the matrix exponential function eJAt of the
matrix JA is of a block diagonal form given by eJAt =
diag{eJ1t, · · · , eJst} with eJit = diag{eJi1t, · · · , eJimi

t}.
Note that eJijt has the form

eJijt=


eλi(A)t teλi(A)t · · · tdim(Jij)−1

(dim(Jij)−1)!e
λi(A)t

...
. . . . . . . . .

0 · · · eλi(A)t teλi(A)t

0 · · · 0 eλi(A)t

 .

As the induced 2-norm is always not greater than the
Frobenius norm for a matrix, we get ∥eJijt∥ ≤ ∥eJijt∥F ≤
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|eλi(A)t|F ϱ ≤ eRe(λi(A))t max{1, tdim(Jij)−1}, where

ϱ =

∥∥∥∥∥∥∥∥∥∥


1 t · · · tdim(Jij)−1

(dim(Jij)−1)!

...
. . . . . .

...
0 · · · 1 t
0 · · · 0 1


∥∥∥∥∥∥∥∥∥∥
F

.

Similarly, for the matrix exponential function eAt of the
matrix A, it follows that

∥eAt∥ = ∥PAe
JAtP−1

A ∥ ≤ ∥PA∥∥eJAt∥∥P−1
A ∥

≤ ∥PA∥∥P−1
A ∥emax

i
Re(λi(A))t

max
i,j

{1, tdim(Jij)−1}.

Since A is Hurwitz, Re(λi(A)) are all strictly negative. By
noting that dim(Jij) ≤ n=dim(A) is finite, there must exist
constants cA > 0 and max

i
Re(λi(A))<aA<0 such that

e
max

i
Re(λi(A))t

max
i,j

{1, tdim(Jij)−1} < cAe
aAt.

Thus, we have ∥eAt∥≤∥PA∥∥P−1
A ∥cAeaAt.

Zeno behavior is a phenomenon in hybrid systems where
an infinite number of discrete transitions occur in a finite
time interval.

III. EVENT-TRIGGERED CONSENSUS CONTROL

In this section, we will propose an event-triggered scheme
for MAS with general linear dynamics under a general
directed graph and prove that no Zeno behavior is exhibited.

The widely-studied consensus controller for (1) was pro-
posed in [5] as

ui(t) = cK
N∑
j=1

aij (xi(t)− xj(t))) , (2)

where c > 0 is the coupling gain, K ∈ Rp×n is the feedback
gain matrix, and aij is the ijth entry of the adjacency matrix
A. It was proved in [5] that under the assumption that the
graph G contains a directed spanning tree, the controller (2)
solves the consensus problem if and only if all matrices A+
cλi(L)BK, where λi(L) ̸=0, are Hurwitz.

In (2) each agent needs to use its in-neighbors’ states
all the time. Thus continuous communication is needed. To
reduce the communication cost among agents, we propose
an ETCC that only relies on intermittent communication as

ui(t)=cK
N∑
j=1

aij

(
eA(t−tiki

)xi(t
i
ki
)−e

A(t−tjkj
)
xj(t

j
kj
)

)
,

(3)
where c, K, and aij are defined as in (2), tiki

is the most
recent triggering instant of agent i, ki = 1, 2, · · · , A is the
system matrix of the agents’ dynamics, and xi(t

i
ki
) is the

last broadcast state of agent i.
For each agent i, we define the measurement error

ei(t) = eA(t−tiki
)xi(t

i
ki
)− xi(t). (4)

The triggering function for each agent i is given by

fi(t, ei(t)) = ∥ei(t)∥ − c1e
−αt, (5)

where c1 > 0 and α is a positive constant to be determined.
Under the ETCC, the controller of agent i monitors its own
state continuously. When the measurement error of agent i
exceeds a certain given threshold, that is, fi(t, ei(t)) ≥ 0, an
event is triggered for agent i. Agent i updates its controller
using its current state and broadcast its current state to its
out-neighbors at the same time. Meanwhile, the measurement
error of agent i is reset to zero. When agent i receives
new states broadcast by its in-neighbors (equivalently, its in-
neighbors’ events are triggered), the agent also updates its
controller immediately. If the measurement error is less than
the threshold, there is no communication needed until the
next event is triggered.

Remark 1: The matrix exponential function eAt in (3) is
used to estimate the current states of the agents. Introducing
the matrix exponential function eAt is an innovative point
of our research. We extend the results in [12] to the agents
with general linear dynamics. In fact, the main results in [12]
can be considered as special cases of our results. Theorem
3.2 (Theorem 5.2) in [12] for agents with single-integrator
(double-integrator) dynamics is a special case of Theorem
3.1 in our paper.

For the whole system with N agents, let t∗ denote the
latest triggering instant. With the stack vectors x(t) =[
xT
1 (t), · · · , xT

N (t)
]T , x(t∗) = [xT

1 (t
1
k1
), · · · , xT

N (tNkN
)]T ,

and e(t) =
[
eT1 (t), · · · , eTN (t)

]T
, the closed-loop system of

(1) using (3) can be written as

ẋ(t) = (IN ⊗A)x(t) + (cL ⊗BK) e(IN⊗A)(t−t∗)x(t∗)

= (IN ⊗A+ cL ⊗BK)x(t) + (cL ⊗BK) e(t). (6)

In order to analyze the stability of (6), we define the
disagreement vector

δ(t) = x(t)−
(
1NrT ⊗ In

)
x(t), (7)

where r=[r1, · · · , rN ]
T is the nonnegative left eigenvector

of the Laplacian matrix L associated with the zero eigenvalue
satisfying

∑N
j=1 rj = 1. Note that 0 is a simple eigenvalue

of IN−1NrT with 1N being the right eigenvector and 1 is
the eigenvalue with algebraic multiplicity N−1. From (7),
we know that δ(t)=0Nn if and only if x1(t)= · · ·=xN (t).
So the consensus problem can be converted to the stability
problem of δ(t) under the ETCC (3).

Now we are ready to present our main result.
Theorem 3.1: Consider the MAS (1) satisfying Assump-

tion 2.1. Suppose the triggering function (5) with c1 > 0
and 0 < α < −max

i
Re(λi(Π)), where Π is defined after

(9). Then, with the ETCC (3) and the triggering function (5),
the disagreement vector δ(t) of the closed-loop system (6)
asymptotically converges to zero for all initial conditions if
and only if all matrices A + cλi(L)BK, where λi(L) ̸= 0,
are Hurwitz. Moreover, the closed-loop system (6) does not
exhibit Zeno behavior under the ETCC.
Proof: (Sufficiency) We define a new vector

ε(t) =
(
T−1 ⊗ In

)
δ(t) =

[
εT1 (t), ε

T
2−N (t)

]T
, (8)
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where ε1(t) ∈ Cn and ε2−N (t) ∈ C(N−1)n. Using similar
derivations in [5], it follows that ε1(t) ≡ 0n and the vector
ε2−N (t) satisfies

ε̇2−N (t) = Πε2−N (t) + (c∆W ⊗BK)e2−N (t), (9)

where Π , IN−1 ⊗A+ c∆⊗BK ∈ C(N−1)n×(N−1)n and
e2−N (t) , [eT2 (t), · · · , eTN (t)]T .

Let P ∈ C(N−1)n×(N−1)n and P−1 ∈ C(N−1)n×(N−1)n

be the matrices such that P−1ΠP = JΠ, where JΠ is the
Jordan canonical form of the matrix Π. From the definition of
Π after (9), it is obvious that if all matrices A+ cλi(L)BK,
where λi(L) ̸= 0, are Hurwitz, the matrix Π is surely
Hurwitz and all Re(λi(Π)) < 0. Since the triggering function
fi(t, ei(t)) for agent i is reset to zero when an event is
triggered. Before the next event is triggered, fi(t, ei(t)) will
not cross zero, that is, ∥ei(t)∥ < c1e

−αt is satisfied until the
next event is triggered. Hence ∥e2−N (t)∥ <

√
N − 1c1e

−αt

and ∥e2−N (t)∥ → 0, as t → ∞. It follows from (9) and
the input-to-state stability argument that ε2−N (t) approaches
zero. Then, it follows that the disagreement vector δ(t) of
the closed-loop system (6) asymptotically converges to zero
for all initial conditions, that is, the ETCC (3) solves the
event-triggered consensus problem.

Next, we will show that under the ETCC (3), the closed-
loop system (6) does not exhibit the Zeno behavior. The
solution of ε2−N (t) can be obtained as

ε2−N (t) = eΠtε2−N (0)

+

∫ t

0

eΠ(t−s) (c∆W ⊗BK) e2−N (s)ds.(10)

It follows from Lemma 2.2 that for 0 ≤ s ≤ t,

∥eΠ(t−s) (c∆W ⊗BK) e2−N (s)∥
≤ cΠc1

√
N − 1∥P∥∥P−1∥∥c∆W⊗BK∥eaΠ(t−s)e−αs,(11)

where cΠ is a positive constant with respect to Π and
max

i
Re(λi(Π)) < aΠ < 0.

Let a1 = cΠ∥P∥∥P−1∥∥ε2−N (0)∥ and a2 =
cΠc1

√
N − 1 ∥P∥∥P−1∥∥c∆W ⊗ BK∥. It follows from

(10), (11), and Lemma 2.2 that

∥ε(t)∥=∥ε2−N (t)∥≤
(
a1+

a2
|aΠ+α|

)
eaΠt+

a2
|aΠ+α|

e−αt.

Then it follows from (8) that ∥δ(t)∥ satisfies

∥δ(t)∥ ≤ ∥T ⊗ In∥∥ε(t)∥ ≤ k1e
aΠt + k2e

−αt,

where k1 = ∥T∥
(
a1 +

a2

|aΠ+α|

)
and k2 = ∥T∥ a2

|aΠ+α| .
Let u(t) be the column stack vector of ui(t). Using the

property: L1N ≡ 0N , we conclude that

(IN ⊗B)u(t) = (cL ⊗BK)(x(t) + e(t))

−(cL ⊗BK)
(
(1NrT ⊗ In)x(t)

)
= (cL ⊗BK)(δ(t) + e(t)).

Similarly, ∥(IN ⊗B)u(t)∥ is upper bounded by

∥(IN ⊗B)u(t)∥ ≤ ∥cL ⊗BK∥(∥δ(t)∥+ ∥e(t)∥)
= b1e

aΠt + b2e
−αt, (12)

where b1=∥cL⊗BK∥k1 and b2=∥cL⊗BK∥(k2 +
√
Nc1).

Note that the states of each agent xi(t
i
ki
), i = 1, · · · , N ,

remain constant since the latest triggering instant t∗. It
follows from (4) that ė(t) = d

dte
(IN⊗A)(t−t∗)x(t∗)− ẋ(t) =

(IN ⊗ A)e(t) − (IN ⊗ B)u(t). Moreover, with (12) and
the fact that ∥e(t)∥ ≤

√
Nc1e

−αt before the next event is
triggered, we can get the upper bound of ∥ė(t)∥ between the
two triggered events as ∥ė(t) ≤ b1e

aΠt + d2e
−αt , g(t),

where d2 = ∥IN ⊗ A∥
√
Nc1 + b2. Note that b1 and d2 are

both positive constants here.

Since the latest triggering instant, it follows that ∥e(t)∥ =∥∥∥∫ t

t∗
ė(s)ds

∥∥∥ ≤
∫ t

t∗
g(s)ds. From the definition of the

triggering function (5), we know that the next event will not
be triggered before fi(t, ei(t)) = 0 or equivalently ∥ei(t)∥ =
c1e

−αt. Hence the next event will not be triggered before∫ t

t∗
g(s)ds =

√
Nc1e

−αt. Since t ≥ t∗ and both aΠ and −α

are negative, we have eaΠt ≤ eaΠt∗ and e−αt ≤ e−αt∗ . Let
τ = t − t∗ be the time-interval between the two triggered
events. So τ is greater than or equal to the solution of the im-
plicit equation

(
b1e

aΠt∗ + d2e
−αt∗

)
τ̃ =

√
Nc1e

−α(t∗+τ̃),
which is equivalent to

(
b1e

(α+aΠ)t∗ + d2
)
τ̃ =

√
Nc1e

−ατ̃ .
Noting that from the condition α < −max

i
Re(λi(Π)) given

in Theorem 3.1, there must exist a negative constant aΠ
such that max

i
Re(λi(Π)) < aΠ < −α < 0. As α < −aΠ,

we know the term b1e
(α+aΠ))t∗ + d2 is upper bounded by

b1 + d2. So the solution of the implicit equation is greater
than or equal to the solution of (b1 + d2)τ̄ =

√
Nc1e

−ατ̄ ,
which is strictly positive. It means that if the coefficients c1
and α in (5) satisfy c1 > 0 and 0 < α < −Re(λ1(Π)), there
is a positive lower bound τ̄ on the inter-event times. So,
the event-triggered consensus problem of the general linear
MAS is solved with no Zeno behavior exhibited.

(Necessity) The necessity is obvious. Note that the initial
measurement error might not be zero. If at least one matrix
A + cλi(L)BK is not Hurwitz, where λi(L) ̸= 0, ε2−N (t)
will go to infinity as t → ∞ and so will δ(t). Then, the
states of the N agents will not reach consensus for all initial
conditions.

Remark 2: In the triggering function (5), the designed
parameter α plays an important role in the convergence rate
of the measurement error vector. It is noted from (10) that
−Re(λi(Π)) could be understood as the convergence rate
of the closed-loop system (6). Actually, the convergence
rate α of the measurement error’s threshold should be
smaller than the convergence rate of the closed-loop system
−Re(λi(Π)). Otherwise, there will be the Zero behavior
exhibited. That also explains why we need α to be smaller
than −max

i
Re(λi(Π)).

Motivated by [5], we now present a multi-step event-
triggered consensus control algorithm.

Algorithm 1: Given (A,B) that is stabilizable, an event-
triggered algorithm in the form of (3) and (5) solving the
consensus problem of general linear MAS can be constructed
according to the following steps.
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1) Solve the following linear matrix inequality

AP + PAT − 2BBT < 0 (13)

to get one symmetric positive-definite solution P .
Then, choose the feedback gain matrix K=−BTP−1.

2) Select the coupling gain c in (3) given by c >
1

min
i

Re(λi(L)) , where λi(L) ̸= 0, denote the nonzero

eigenvalues of Laplacian matrix L.
3) Choose the constants in the function (5) to satisfy c1 >

0 and 0 < α < −max
i

Re(λi(Π)), where Π is defined
after (9).

The steps 1 and 2 are borrowed from [5] to ensure that A+
cλi(L)BK, i = 2, · · · , N are Hurwitz. Since Assumption
2.1 holds, there must exist a matrix P satisfying (13).

IV. SELF-TRIGGERED CONSENSUS CONTROL

The event-triggered scheme proposed in the last section
needs each agent to monitor its own states continuously to
check the triggering function. In this section, we extend the
result to the self-triggered scheme, where the continuous self-
state monitoring is relaxed. The next triggering instant tiki+1

for agent i is predetermined at the previous triggering instant
tiki

. No monitoring is required between two triggering events.
For agent i, since the kith triggering instant

tiki
, its state can be calculated by xi(t) =

eA(t−tiki
)xi(t

i
ki
) +

∫ t

tiki

eA(t−s)Bu(s)ds, where u(s) =

cK
N∑
j=1

aij(e
A(s−tiki

)xi(t
i
ki
) − e

A(s−tjkj
)
xj(t

j
kj
)). Note that

ei(t) = eA(t−tiki
)xi(t

i
k) − xi(t) = −

∫ t

tiki

eA(t−s)Bu(s)ds

and tiki
, xi(t

i
ki
), tjkj

, and xj(t
j
kj
) are known to agent i at the

triggering instant tiki
. Recalling (5) and using the notation

ξi = t− tiki
, the self-triggering function is written as

fi(t, ei(t))=

∥∥∥∥∥
∫ tiki

+ξi

tiki

eA(tiki
+ξi−s)Bu(s)ds

∥∥∥∥∥−c1e
−α(tiki

+ξi)

=0, (14)

where ξi can be decided by agent i at time tiki
.

Based on the above observation, the self-triggering policy
to determine the next triggering instant for agent i at time
tiki

is defined as follows: assume the solution of the implicit
equation (14) is ξ̄i, then the next triggering instant tiki+1 takes
place at most ξ̄i time units after tiki

, i.e., tiki+1 ≤ tiki
+ ξ̄i.

For agent i and all t ∈ [tiki
, tiki

+ ξ̄i], if there is an event
triggered in one of its in-neighbors, i.e., some new state
is broadcast to agent i, agent i re-check the self-triggering
function (14) with the new information. Otherwise, agent i
waits until its predetermined triggering instant tiki+1 to re-
compute the condition (14). Similar to the last section, the
time interval between two consecutive triggered events is
strictly positive for agent i. Note that there is no continuous
monitoring required for each agent. The triggering instant
is predetermined by agent i itself at the previous triggering
instant. Now we present a multi-step STCC algorithm.

Algorithm 2: Given (A,B) that is stabilizable, a self-
trigger based algorithm in the form of (3) and (14) solving

the consensus problem of general linear MAS can be con-
structed according to the following steps.

1) Same as Algorithm 1.
2) Same as Algorithm 1.
3) Choose the constants in the function (14) to satisfy

c1 > 0 and 0 < α < −max
i

Re(λi(Π)).

4) At time tiki
, solve the self-triggering function (14) to

get a solution ξ̄i.
5) Predetermine the next triggering instant at tiki+1 which

is at most ξ̄i after tiki
, i.e., tiki+1 ≤ tiki

+ ξ̄i.
6) For all t ∈ [tiki

, tiki
+ ξ̄i], if there is an event triggered

in one of its in-neighbors, re-check (14) using the new
information received. Otherwise, agent i waits until
tiki+1.

The preceding analysis, along with Theorem 3.1, yields
the following result.

Theorem 4.1: Consider the MAS (1) satisfying Assump-
tion 2.1. Suppose that in the self-triggering function (14)
c1 > 0 and 0 < α < −max

i
Re(λi(Π)), where Π is defined

after (9). Assume that the next triggering instant is chosen
according to Algorithm 2. Then, with the controller (3),
the disagreement vector δ(t) of the closed-loop system (6)
asymptotically converges to zero for all initial conditions if
and only if all matrices A + cλi(L)BK, where λi(L) ̸= 0,
are Hurwitz. Moreover, the closed-loop system (6) does not
exhibit the Zeno behavior.

V. SIMULATION

In this section, we illustrate the above theoretical results by
simulation. Consider a group of 6 agents with general linear

dynamics described by (1), where A =

[
−2 2
−1 1

]
, B =[

1 0
]T . We choose the feedback gain matrix K = [−1 2]

so that A + BK is Hurwitz. The communication topology
among agents is shown in Fig. 1, which is a directed graph
containing a directed spanning tree. The Laplacian matrix of
the communication graph is

L =


3 0 0 −1 −1 −1
−1 1 0 0 0 0
−1 −1 2 0 0 0
−1 0 0 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

 .

Obviously, the nonzero eigenvalues of the Laplacian matrix
L are 1, 1.3376± 0.5623i, 2, 3.3247.

We first illustrate the ETCC algorithm (Algorithm 1).
Here by step 2 of Algorithm 1, we choose c = 1.1. The
eigenvalues of Π defined after (9). are −1, −1, −1, −1, −1,
−1.1, −1.4714± 0.6185i, −2.2, −3.6572. So, according to
the conditions required in step 3 of Algorithm 1, we choose
c1 = 0.5 and α = 0.9. The initial states are given by x1(0) =
[0.4; 0.3], x2(0) = [0.5; 0.2], x3(0) = [0.6; 0.1], x4(0) =
[0.7; 0], x5(0) = [0.8;−0.1], and x6(0) = [0.4;−0.2]. The
state trajectories are presented in Fig. 2. The convergent time
under the ETCC and the controller (2) in [5] is almost the
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TABLE I
THE NUMBER OF COMMUNICATIONS.

Agent Traditional Controller ETCC STCC
1 continuous communication 9 9
2 continuous communication 6 6
3 continuous communication 7 7
4 continuous communication 5 5
5 continuous communication 6 6
6 continuous communication 7 7

same. But the dynamic performance under the ETCC is a
little worse. This is due to the tradeoff between performance
and communication cost. The measurement errors and their
thresholds of agents are shown in Fig. 3. The bottom of Fig.
2 presents the triggering instants of Algorithm 1, where we
can see that the communication among agents is discrete and
the Zeno behavior is avoided. Compared with the continuous
communication, the ETCC can reduce the communication
cost and save much communication source.

1

2 3 4 5

6

Fig. 1. The communication graph among agents.

We also consider the STCC algorithm. Table I compares
the communication under the ETCC and the STCC during the
consensus process. The communication times are the same
for both controllers. Because we consider the normal model
for the agents without disturbances, the performances of the
ETCC and STCC strategies are identical, which may not be
achieved in general model with uncertainties.

VI. CONCLUSION

This paper considered the event-triggered consensus prob-
lem for MAS with general linear dynamics under general
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Fig. 2. The states and the triggering instants of each agent under the ETCC.
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Fig. 3. The errors and the thresholds of the errors of each agent under the
ETCC.

directed graphs. We proposed a decentralized event-triggered
broadcasting algorithm for each agent to achieve consensus,
without requiring continuous communication among agents.
It is proved that under the proposed event-triggered control
algorithm implemented in multiple steps, there is no Zeno
behavior exhibited. We further proposed a self-triggered
control algorithm to relax the requirement of continuous self-
monitoring for each agent, under which the next triggering
instant is predetermined by each agent itself at the previous
triggering instant. This paper extended the existing results
on event-triggered consensus control without continuous
communication for single-integrator and double-integrator
systems to the case of agents with general linear dynamics.
Delay event-triggered consensus for MAS with general linear
dynamics and event-triggered consensus for discrete-time
linear MAS are future topics to be discussed.
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