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Abstract— In this paper, we consider the development of
single-timescale schemes for the distributed computation of
Nash equilibria. In general, equilibria associated with convex
Nash games over continuous strategy sets are wholly captured
by the solution set of a variational inequality. Our focus
is on Nash games whose equilibrium conditions are given
by monotone variational inequalities, a class referred to as
monotone Nash games. Unless suitably strong assumptions
(such as strong monotonicity) are imposed on the mapping
corresponding to the variational inequality, distributed schemes
for computing equilibria often require the solution of a sequence
of regularized problems, each of which has a unique solution.
Such schemes operate on two timescales and are generally
harder to implement in online settings. Motivated by this
shortcoming, this work focuses on the development of three
single timescale iterative regularization schemes that require
precisely one projection step at every iteration. The first is an
iterative Tikhonov regularization scheme while the second is
an analogously constructed iterative proximal-point method.
Both schemes are characterized by the property that the
regularization/centering parameter are updated after every
iteration, rather than when one has an approximate solution
to the regularized problem. Finally, a modified form of the
proximal-point scheme is also presented where the weight on
the proximal term is updated as well.

I. INTRODUCTION

Consider an N−person Nash game in which the ith player
solves

Ag(x−i) minimize fi(xi;x−i)

subject to xi ∈ Ki

for i = 1, . . . , N where x−i = (xj)j 6=i, Ki ⊆ Rni is a closed
and convex set and

∑N
i=1 ni = n. Additionally, we assume

that for i = 1, . . . , N , the function fi is a differentiable
real-valued function given by fi : Rn → R and convex
in xi for all x−i ∈

∏
j 6=i Kj . A Nash equilibrium of the

aforementioned noncooperative game is given by a tuple
{x∗i }N

i=1, where x∗i ∈ SOL(Ag(x∗−i)) for i = 1, . . . , N
and SOL(Ag) denotes the set of solutions to problem (Ag).
Throughout this paper, we refer to this canonical Nash game
by G. The convexity of the objectives and the associated
strategy sets allow us to claim that that the first-order
equilibrium conditions are necessary and sufficient. In fact,
these conditions can be shown to be equivalent to a scalar
variational inequality VI(K, F ) (see result from [5, Ch. 1])
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where

F (x) ,

 ∇x1f1(x)
...

∇xN
fN (x)

 and K ,
N∏

i=1

Ki.

Recall that VI(K, F ) is a problem requiring an x ∈ K such
that F (x)T (y − x) ≥ 0,∀y ∈ K. We assume throughout
this paper that the mapping F : Rn → Rn is a single-valued
mapping possessing a monotonicity property over K namely:
(F (x) − F (y))T (x − y) ≥ 0 for all x, y ∈ K. We refer to
the resulting class of Nash games as monotone Nash games.

Much research has been carried out on the development
of algorithms for monotone variational inequalities, amongst
these being projection-based methods, interior-point algo-
rithms, etc (see [5, Ch. 12]). Of these, projection-based
schemes are natural candidates for employment within a
distributed framework. Yet, by themselves, standard projec-
tion methods require a degree of well-posedness in order to
claim global convergence. In particular, if F is either strongly
monotone or co-coercive, we may develop a single timescale
fixed steplength scheme under the caveat that the steplength
is sufficiently small. A single timescale scheme refers to one
where each iterate is obtained by a single gradient or projec-
tion step. However, if F is merely monotone, generally such
an avenue is unavailable. In merely monotone cases, a set
of classical techniques reside in the realm of regularization
and proximal-point methods and requires solving a sequence
of well-posed problems, each of which might require a
distributed iterative process in itself. This is effectively a two
timescale method where the regularization/proximal method
makes changes at a slower timescale while solutions to
the regularized problems in an exact or inexact form are
found at a faster timescale. Our motivation lies in developing
distributed single timescale extensions of standard regu-
larization/proximal methods with appropriate convergence
guarantees. In general, these schemes require updating the
regularization parameters at every iteration, rather than when
an acceptable subproblem solution is available, a property
that leads to the schemes being referred to as iterative
regularization techniques.

Our work is motivated by a host of settings where online
distributed schemes assume relevance. Examples of these
include communications [4], [10], bandwidth and spectrum
allocation [2], [3] and optical networks [7], [8]. Of note
is recent work of Pavel and her coauthors [7] where an
extragradient scheme [5] in a deterministic regime, capable
of accommodating monotone Nash games. Also of interest
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is recent work that examines best response schemes in the
context of monotone Nash games [10].

The key contributions of this paper lie in the introduction
and analysis of several iterative regularization techniques.
The first of these extends a standard Tikhonov regularization
method to the single-timescale regime by requiring that
the regularization parameter be updated at every iteration.
Correspondingly, in the context of proximal-point methods,
we suggest that the centering parameter around which the
prox-term is constructed is also updated at every iteration.
A third scheme is presented where the weighting parameter
in the prox-term is also updated at every iteration. In the
instance of Tikhonov, the scheme accommodates merely
monotone mappings while the proximal-point based methods
currently require strict monotonicity.

This paper is divided into five sections. In section II,
we provide a brief background to the methods of interest.
Section III, presents Tikhonov regularization methods and
Section IV presents a single timescale iterative proximal
point method while section V introduces a modified iterative
proximal scheme.

II. PRELIMINARIES

Our analysis is restricted to Nash games that lead to
monotone variational inequalities, a class of games that takes
on the name monotone Nash games. Our goal, however,
lies in developing distributed schemes implementable in net-
worked settings. Since, strong monotonicity of the mapping
allows us to directly construct precisely such a class of
schemes, this forms our starting point. In the absence of
strong monotonicity however, a direct application of direct
projection schemes does not guarantee a contraction and
thereby convergence [5]. A possible avenue for alleviating
the challenge is through regularization methods, a set of
techniques that address this ill-posedness by sequentially
solving a set of strongly monotone problems. One such
technique is an exact Tikhonov regularization method. Let

F k , F (z) + εkz, (1)

where zk+1 = SOL(K, F k) and εk denotes the regulariza-
tion at the kth iteration. Under suitable conditions (see [5,
Ch.12]) the sequence

{
zk

}
converges to z∗ as εk → 0. The

subproblems are strongly monotone variational inequalities
and can be solved by a host of iterative methods. Note that
inexact solutions of such problems also leads to convergent
schemes [5, Ch. 12].

An alternative scheme is one that maintains a regular-
ization based on the change in consecutive iterates via a
proximal term. Such methods are also referred to as heavy-
ball methods [9]. Given a scalar θ > 0, such a scheme
employs an F k be redefined as

F k , F (z) + θ(z − zk), (2)

where zk+1 = SOL(K, F k). This scheme is guaranteed to
converge for monotone variational inequalities (see [1], [5]).
A key shortcoming, however, is that both schemes require the

solution of a sequence of problems, leading to a natively two
timescale scheme.

Single timescale schemes have several advantages. First,
they are far easier to implement since the complexity of
the scheme is restricted to solving the projection problem.
Second, online implementations that require coordination
in a networked setting are far easier to manage, making
them significantly attractive over schemes that require solv-
ing complex subproblems prior to updating their decisions.
Third, these schemes are easily distributed providing an av-
enue for solving truly large-scale networked game-theoretic
problems. With this being the major motivation, we provide a
unified framework for stating three different single timescale
schemes namely the iterative Tikhonov scheme, the iterative
proximal scheme and the modified iterative proximal scheme.

Given a game G, the general form of the single timescale
scheme is as follows:

zk+1
i = ΠKi

(
zk
i − γk

(
F (zk

i , zk
−i) + θk

1zk
i − θk

2zk−1
i

))
. (3)

Based on the choices of the parameter sequences {θk
1} and

{θk
2}, we have the following schemes:

a) Case 1: If, θk
1 = εk → 0 and θk

2 = 0, then the
scheme is referred to as the iterative Tikhonov regularization
(ITR) scheme.

b) Case 2: If θk
1 = θk

2 = θ is fixed, then the scheme is
referred to as the iterative proximal point (IPP) scheme.

c) Case 3: If θk
1 = θk

2 = c
γk

where c ∈ (0, 1), then
the scheme is referred to as the modified iterative proximal
point (MIPP) scheme.

III. ITERATIVE TIKHONOV SCHEMES

In standard Tikhonov regularization schemes, one con-
structs a sequence of exact (or inexact) solutions to well-
posed regularized problems and the regularization parameter
is driven to zero at the slower timescale. In contrast, we
consider a class of iterative Tikhonov schemes in which the
steplength and regularization parameter are changed at the
same rates. We proceed to show that this scheme is indeed
convergent. The convergence statement for general monotone
mappings also appears in [6] but does so without a proof and
employs slightly different assumptions. Our proof is original
and was presented in a shortened form in past work by the
second author [11]. Here, we restate the proofs with some
modifications with the intent of generalizing it to partially
coordinated settings. Notably, the result for symmetric Nash
games is inspired by a result for optimization problems stated
in [9]. The following Lemmas from [9] are employed in
developing our convergence theory.

Lemma 1: Let uk+1 ≤ qkuk + αk, 0 ≤ qk < 1, αk ≥ 0
and ∞∑

k=0

(1− qk) = ∞,
αk

1− qk
→ 0, k →∞.

Then limk→∞ uk ≤ 0 and if uk > 0, then limk→∞ uk = 0.
Lemma 2: Let uk+1 ≤ (1 + vk)uk + pk, uk, vk, pk ≥ 0

and ∞∑
k=0

vk < ∞,

∞∑
k=0

pk < ∞, k →∞.
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Then limk→∞ uk = ū ≥ 0
Our proof of convergence relies on relating the iterates of

the proposed ITR scheme to that of the original Tikhonov
scheme. The following Lemma is reproduced from [11] pro-
vides a bound between consecutive iteratives of the standard
Tikhonov scheme.

Lemma 3: Let the mapping∇F be monotone and suppose
SOL(K, F ) be nonempty and bounded. Consider the stan-
dard exact tikhonov scheme defined by (1). If M := ‖w∗‖2,
then

‖yk − yk−1‖ ≤ M(εk−1 − εk)
εk

.

Proof: Omitted (See [11]).
The proof of convergence for a constant steplength scheme

when Jacobian ∇F is assumed to be symmetric has been
omitted and may be found in detail in [11]. When ∇F is not
necessarily symmetric, we present a diminishing steplength
scheme in Section III-A.

A. General monotone Nash games

When considering games with mappings that have general
Jacobians, it is not possible to obtain a bound by means
of the mean value theorem.Therefore, we follow a different
methodology, namely a diminishing step size to ensure a
convergent sequence. The regularization parameter {εk} and
the steplength sequence {γk} are assumed to satisfy the
following assumptions.

Assumption 1: (A1) The mapping F (x) is Lipschitz con-
tinuous with constant L. The regularization parameter εk

and steplength γk satisfy
∑∞

k=1 γkεk = ∞, εk+1 ≤
εk,∀k, γk+1 ≤ γk∀k, limk→∞ γk/εk = 0,

∑∞
k=0 γ2

k <
∞,

∑∞
k=0(γkεk)2 < ∞ and

lim
k→∞

εk−1 − εk

γk(εk)2
= 0. (4)

Theorem 1: Suppose the G has a nonempty bounded set
of equilibria. Let K be convex and let F be monotone on
K. Let assumption (A1) hold. Then wk → w∗ as k → ∞,
where wk is obtained via the iterative Tikhonov scheme and
w∗ is the least-norm solution of VI(K, F ).

Proof: By the triangle inequality, ‖wk+1−w∗‖ can be
bounded by terms 1 and 2:

‖wk+1 − w∗‖ ≤ ‖wk+1 − yk‖︸ ︷︷ ︸
term 1

+ ‖yk − w∗‖︸ ︷︷ ︸
term 2

.

Of these, term 2 converges to zero from the convergence
statement of Tikhonov regularization methods. It suffices to
show that term 1 converges to zero as k →∞ which follows
as shown next. By using the non-expansivity of the Euclidean
projector, ‖wk+1 − yk‖2 is given by

‖wk+1 − yk‖2 = ‖ΠK

(
wk − γk(F (wk) + εkwk)

)
−ΠK

(
yk − γk(F (yk) + εkyk)

)
‖2

≤ ‖
(
wk − γk(F (wk) + εkwk)

)
−

(
yk − γk(F (yk) + εkyk)

)
‖2.

This expression can be further simplified as

‖(1− γkεk)(wk − yk)− γk(F (wk)− F (yk))‖2

= (1− γkεk)2‖wk − yk‖2 + γ2
k‖F (wk)− F (yk)‖2

− 2γk(1− γkεk)(wk − yk)T (F (wk)− F (yk))

≤ (1− 2γkεk + γ2
k(L2 + ε2k))‖wk − yk‖2,

where the last inequality follows from γkεk ≤ 1 and the
monotonicity of F (x) over K. If Lemma 1 can indeed be
invoked then it follows that ‖wk+1 − yk‖ → 0 as k → ∞.
The remainder of the proof shows that the conditions for
employing Lemma 1 do hold. It can be seen that

‖wk+1 − yk‖ ≤ qk‖wk − yk‖
≤ qk‖wk − yk−1‖+ qk‖yk − yk−1‖

≤ qk‖wk − yk−1‖+ qkM
(εk−1 − εk)

εk
,

where the second inequality is a consequence of the tri-
angle inequality and the third inequality follows from
Lemma 3. Suppose qk :=

√
(1− 2γkεk + γ2

k(L2 + ε2k).
Invoking Lemma 1 requires showing that
∞∑

k=0

(1−qk) = ∞ and lim
k→∞

qk

1− qk
M

(εk−1 − εk)
εk

= 0.

It is easily seen that
∞∑

k=0

(1− qk) =
∞∑

k=0

1− q2
k

1 + qk
=

∞∑
k=0

(
2γkεk − γ2

k(L2 + ε2k)
1 + qk

)
>

∞∑
k=0

(2γkεk − γ2
k(L2 + ε2k)) = ∞,

where the inequality follows from qk < 1 and the final
equality follows from

∑∞
k=0 γkεk = ∞ and the square

summability of γkεk and γk. The second requirement follows
by observing that

qk

1− qk
M

(εk−1 − εk)
εk

=
qk(1 + qk)

1− q2
k

M
(εk−1 − εk)

εk

=
qk(1 + qk)

2γkεk − γ2
k(L2 + ε2k)

M
(εk−1 − εk)

εk

=
qk(1 + qk)

2− γk

εk (L2 + ε2k)︸ ︷︷ ︸
Term 1

M
(εk−1 − εk)

γk(εk)2︸ ︷︷ ︸
Term 2

.

Since γk, εk → 0, it follows that qk → 1. Since γk/εk → 0,
Term 1 tends to 1 as k →∞. By assumption, Term 2 tends
to zero as k →∞.

Again, the following result shows that a feasible choice of
steplength and regularization parameter sequences do indeed
exist for satisfying (A1), under a slightly different set of
assumptions from [11].

Lemma 4: Consider assumption (A1). Then the update
scheme εk = k−α and γk = k−β satisfies (4) in (A1) where
1
2 < α + β < 1 and β > α for all k.

Proof: Omitted (see [11]).
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IV. ITERATIVE PROXIMAL POINT SCHEME

In this section, we consider an alternate technique that uses
a proximal term of the form θ(z − zk−1) rather than εkz in
modifying the map. Consequently, when such a method is
applied to a variational inequality VI(K, F ), a sequence of
iterates is constructed, each of which requires the solution
of a modified strongly modified problem VI(K, F k)), where
F k , F (z) + θ(z − zk). The convergence of the proximal-
point algorithm is shown to hold under an assumption of
monotonicity of the original mapping and for a positive θ.
Note that the solution of each subproblem, given by zk+1 =
(SOL(K, F k)), is given by the solution of the fixed-point
problem

zk+1 = ΠK(zk+1 − γ
(
F (zk+1) + θ(zk+1 − zk)

)
.

Under assumptions of convexity of the set K and monoton-
icty of F on K, the convergence of the standard proximal-
point algorithm has been established in [1], [5].

In the spirit of the iterative Tikhonov regularization
scheme, we present a single timescale iterative proximal
point (IPP) method alternative. In a game-theoretic general-
ization of this scheme, a projection step using the deviation
between the kth and k−1th iterates yields the k+1th iterate
and is formally stated as

zk+1
i = ΠKi

(
zk
i − γk(Fi(zk) + θ(zk

i − zk−1
i ))

)
, (5)

for i = 1, . . . , N. Next, under an assumption of strict mono-
tonicity of F (x) and the boundedness of K, we establish the
global convergence of the IPP scheme.

Theorem 2: Consider the game G and assume that K
is a compact and convex set and F is a continuous and
strictly monotone map on K. Let {zk} denote the set of
iterates defined by the iterative proximal scheme (5). Let∑∞

k=1 γk = ∞ and
∑∞

k=1 γ2
k < ∞. Then limk→∞ zk = w∗.

Proof: We begin by expanding ‖zk+1 − w∗‖ and by
using the non-expansivity property of projection.

‖zk+1 − w∗‖2 = ‖ΠK(zk − γk(F (zk) + θ(zk − zk−1)))

−ΠK(w∗ − γkF (w∗))‖2

≤ ‖(zk − w∗)− γk(F (zk)− F (w∗))− γkθ(zk − zk−1)‖2.

Expanding the right hand side,

‖zk+1 − w∗‖2

≤ ‖zk − w∗‖2 + (γkL)2‖zk − w∗‖2 + (γkθ)2‖zk − zk−1‖2

− 2γk(zk − w∗)T (F (zk)− F (w∗))

− 2γkθ(zk − zk−1)T
(
zk − w∗ − γk(F (zk)− F (w∗))

)
.

Using Lipschitz and monotonicity properties of F (x), we
have

‖zk+1 − w∗‖2

≤ (1 + γ2
kL2)‖zk − w∗‖2 + (γkθ)2‖zk − zk−1‖2

−2γkθ(zk − zk−1)T
(
(zk − w∗)− γk(F (zk)− F (w∗))

)︸ ︷︷ ︸
Term1

.

Term 1 can bounded from above by the use of the Cauchy-
Schwartz inequality, the boundedness of the iterates, namely
‖zk−w∗‖ ≤ C, and the Lipschitz continuity of F , as shown
next.

‖zk+1 − w∗‖2

≤ (1 + γ2
kL2)‖zk − w∗‖2 + (γkθ)2‖zk − zk−1‖2

+ 2γkθ‖zk − zk−1‖
(
‖zk − w∗‖+ γk‖F (zk)− F (w∗)‖

)
≤ (1 + γ2

kL2)‖zk − w∗‖2 + (γkθ)2‖zk − zk−1‖2

+ 2γkθC‖(zk − zk−1)‖+ 2γ2
kθLC‖(zk − zk−1)‖.

Next, we derive a bound on ‖zk − zk−1‖ by leveraging the
non-expansivity of the Euclidean projector.

‖zk − zk−1‖
= ‖ΠK(zk−1 − γk−1(F (zk−1) + θ(zk−1 − zk−2))))

−ΠK(zk−1)‖
≤ ‖(zk−1 − γk−1(F (zk−1) + θ(zk−1 − zk−2)))− (zk−1)‖
= ‖ − γk−1(F (zk−1) + θ(zk−1 − zk−2)))‖.

It follows from the boundedness of K and the continuity of
F (z), that there exists a β > 0 such that ‖F (z)‖ ≤ β for all
z ∈ K, implying that ‖zk − zk−1‖ ≤ γk−1(β + θC). The
bound on ‖zk − zk−1‖ allows us to derive an upper bound
‖zk+1 − w∗‖2:

‖zk+1 − w∗‖2 ≤ (1 + γ2
kL2)‖zk − w∗‖2

+ (γkθ)2γ2
k−1(β + θC)2 + 2γkγk−1θC(1 + γkL)(β + θC)

≤ (1 + γ2
kL2︸ ︷︷ ︸
,vk

)‖zk − w∗‖2

+ (γkθ)2γ2
k(β + θC)2 + 2γ2

kθC(1 + γkL)(β + θC)︸ ︷︷ ︸
,pk

.

The above sequence can be compactly represented as the
recursive sequence uk+1 ≤ (1 + vk)uk + pk, where

∞∑
k=0

vk = L2
∞∑

k=0

γ2
k < ∞,

∞∑
k=0

pk < ∞,

the latter a consequence of the square summability of γk. It
follows from Lemma 2 that uk → ū ≥ 0. It remains to show
that ū = 0.

Recall that ‖zk+1−w∗‖2 is bounded as per the following
expression:

‖zk+1 − w∗‖2 ≤ (1 + vk)‖zk − w∗‖2 + pk

− 2γk(zk − w∗)T (F (zk)− F (w∗))

Suppose ū > 0. It follows that along every subsequence, we
have that µk = (zk−w∗)T (F (zk)−w∗) ≥ µ

′
> 0,∀k. This

is a consequence of the strict monotonicity of F whereby if
(F (zk)−F (w∗))T (zk−w∗) → 0 if zk → w∗. Since ū > 0,
it follows that ‖zk − w∗‖2 → ū > 0.

1966



Then by summing over all k, we obtain

lim
k→∞

‖zk+1 − w∗‖2 ≤ ‖z0 − w∗‖2 +

∞X
k=0

γ2
kL2‖zk − w∗‖2

− 2

∞X
k=0

γkµk +

∞X
k=0

pk.

Since vk and pk are summable and µk ≥ µ′ > 0 for all k,
we have that

lim
k→∞

‖zk+1 − w∗‖2 ≤ ‖z0 − w∗‖2 +

∞X
k=0

γ2
kL2‖zk − w∗‖2

− 2

∞X
k=0

γkµk +

∞X
k=0

pk

≤ ‖z0 − w∗‖2 +

∞X
k=0

γ2
kL2‖zk − w∗‖2

− 2µ′
∞X

k=0

γk +

∞X
k=0

pk ≤ −∞,

where the latter follows from observing that
∑∞

k=0 γ2
k <

∞,
∑∞

k=0 γk = ∞ and ‖zk − w∗‖ ≤ C. But this is a
contradiction, implying that along some subsequence, we
have that µk → 0 and lim infk→∞ ‖zk − w∗‖2 = 0. But
we know that

{
zk

}
has a limit point and that the sequence

zk converges. Therefore, we have that limk→∞ zk = w∗.

V. MODIFIED ITERATIVE PROXIMAL POINT SCHEME

In this section, we consider a modified form of the iterative
proximal-point scheme. This modification is motivated by
observing that the proximal term at the kth iterate, given by
θ(zk − zk−1), is O(γk−1), a consequence of the bound de-
veloped in the previous result. Therefore, could one develop
an iterative proximal-point method where the proximal term
was less dependent on the steplength?. Furthermore, it would
be expected that this proximal term would converge to zero
at a slower rate. Yet, would we find that the behavior of
the trajectory was indeed smoother and this proximal term
would provide better damping.

We consider a modified IPP scheme in which the ith player
takes a step given by

zk+1
i = ΠKi

(
zk
i − γk(Fi(zk) + θk(zk

i − zk−1
i ))

)
, (6)

for i = 1, . . . , N , where θk = c/γk and c ∈ (0, 1). It follows
that this scheme can be effectively stated as

zk+1
i = ΠKi

(
(1− c)zk

i + czk−1
i − γkFi(zk))

)
.

Essentially, a projection step is carried out using a convex
combination of zk

i and zk−1
i . Note that even in the standard

iterative proximal-point scheme, such a combination is used;
however, in that setting, combination is of the form (1 −
γkθ)zk

i + γkθzk−1
i and as one proceeds, γk → 0 and one

places less and less emphasis on the past. In this setting, we
use a fixed convex combination, specified by the parameter
c ∈ (0, 1). Prior to proving our main convergence statement,
we prove an intermediate result.

Lemma 5: Suppose uk ≤ cuk−1 + γk−1β where c ∈
(0, 1), {γk} > 0 is a decreasing bounded sequence with

∑∞
k=0 γk < ∞ and 0 ≤ uk < ∞ for all k. Then, we have

that
∑∞

k=1 γkuk < ∞.
Proof: By definition, we have that uk ≤ cuk−1+γk−1β

for k = 1, . . . ,. Multiplying this expression by γk−1 and
summing over k, we obtain

k∑
j=1

γj−1uj ≤ c

k−1∑
j=0

γjuj + β

k∑
j=0

γ2
j .

But γk ≤ γk−1 for all k, implying that

k∑
j=1

γjuj ≤
k∑

j=1

γj−1uj ≤ c

k−1∑
j=0

γjuj + β

k−1∑
j=0

γ2
j

=⇒ (1− c)
k−1∑
j=1

γjuj + γkuk ≤ cγ0u0 + β

k−1∑
j=0

γ2
j .

By taking limits, it follows that

(1− c) lim
k→∞

k−1∑
j=0

γjuj + lim
k→∞

γkuk︸ ︷︷ ︸
=0

≤ cγ0u0 + β lim
k→∞

k∑
j=0

γ2
j

=⇒ lim
k→∞

k−1∑
j=0

γjuj < ∞,

since
∑∞

j=0 γ2
j < ∞, limk→∞ γk = 0 and uk is bounded.

Proposition 3: Consider a game G and and assume that
K is a compact and convex set and F is a continuous and
strictly monotone map on K. Let {zk} denote the set of
iterates defined by the iterative proximal scheme (6). Let∑∞

k=1 γk = ∞ and
∑∞

k=1 γ2
k < ∞. In addition let θk = c

γk

where c ∈ (0, 1) for k ≥ 0. Then limk→∞ zk = w∗.
Proof: We begin by observing that ‖zk − zk−1‖ can

now be bounded as follows:

‖zk − zk−1‖
≤ ‖ΠK(zk−1 − γk−1(F (zk−1) + θk(zk−1 − zk−2)))

−ΠK(zk−1)‖
≤ ‖ − γk−1(F (zk−1) + θk(zk−1 − zk−2))‖
≤ γk−1‖F (zk)‖+ γk−1θk−1‖zk−1 − zk−2‖
= γk−1‖F (zk)‖+ c‖zk−1 − zk−2‖.

The above sequence is of the form uk+1 = qkuk+αk, where
qk = γk−1θk−1 = c and αk = γk−1β where ‖F (zk)‖ ≤ β.
Therefore, we have that
∞∑

k=1

(1−qk) = ∞ and lim
k→∞

αk

1− qk
= lim

k→∞

αk

(1− c)
= 0.

Therefore from Lemma 1, the sequence
{
zk

}
converges and

lim
k→∞

‖zk − zk−1‖ = 0.

Since w∗ is bounded and fixed, it is clear that, ‖zk − w∗‖
converges to ū ≥ 0. It suffices to show that ū ≡ 0.

We proceed by contradiction and assume that ū > 0. We
begin by recalling the definition of iterates and leveraging

1967



properties of the projection operator, we have

‖zk+1 − w∗‖2

≤ ‖zk − γk(F (zk) + θk(zk − zk−1))− (w∗ − γkF (w∗))‖2

= ‖(1− γkθk)(zk − w∗)− γk(F (zk)− F (w∗))

+ γkθk(zk−1 − w∗)‖2.

By expanding the expression on the right, we have

(1− γkθk)2‖(zk − w∗)‖2︸ ︷︷ ︸
Term1

+ γ2
k‖(F (zk)− F (w∗))‖2 + γ2

kθ2
k‖(zk−1 − w∗)‖2︸ ︷︷ ︸

Term2

+ 2γkθk(1− γkθk)(zk − w∗)T (zk−1 − w∗)︸ ︷︷ ︸
Term3

−2γ2
kθk(F (zk)− F (w∗))T (zk−1 − w∗)︸ ︷︷ ︸

Term4

−2γk(1− γkθk)(zk − w∗)T (F (zk)− F (w∗))︸ ︷︷ ︸
Term5

.

By using Cauchy-Schwartz on term 3, and subsequently
combining with terms 1 and 2, leads to term 6 below. Addi-
tionally, terms 4 and 5 when added together, along with the
application of Cauchy-Schwartz, lead to the corresponding
terms below.

‖zk+1 − w∗‖2 ≤ ((1− γkθk)‖zk − w∗‖+ γkθk‖zk−1 − w∗‖)2| {z }
Term6

− 2γk(zk − w∗)T (F (zk)− F (w∗))

+ 2γ2
kθk‖F (zk)− F (w∗)‖‖zk − zk−1‖+ γ2

k‖F (zk)− F (w∗)‖2| {z }
,dk

.

Consequently, ‖zk+1 − w∗‖2 can be expressed as

‖zk+1 − w∗‖2 ≤ ((1− γkθk)‖zk − w∗‖+ γkθk‖zk−1 − w∗‖)2

− 2γk(zk − w∗)T (F (zk)− F (w∗)) + dk.

It can be observed that dk ≤ γ2
kβ2 + 2cβγk‖zk − zk−1‖.

From Lemma 5, it is clear that
∑∞

k=1 γk‖zk − zk−1‖ < ∞.
This allows us to claim that

∑∞
k=1 dk < ∞. By recalling that

γkθk = c, the error ‖zk+1 − w∗‖2 can be further bounded

‖zk+1 − w∗‖2 ≤ ((1− c)‖zk − w∗‖+ c‖zk−1 − w∗‖)2 + dk

− 2γk(zk − w∗)T (F (zk)− F (w∗)).

By summing over k, we have

KX
k=1

‖zk+1 − w∗‖2 ≤
KX

k=1

((1− c)‖zk − w∗‖+ c‖zk−1 − w∗‖)2

+

KX
k=1

dk − 2

KX
k=1

γk(zk − w∗)T (F (zk)− F (w∗)).

In the expression above, we observe that the coefficient of
‖zk −w∗‖2 for 2 ≤ k ≤ K − 2 is given by (1− (1− c)2 −

c2) = 2c(1− c). It follows that the inequality above can be
expressed as

KX
k=1

c(1− c) (‖zk−1 − w∗‖ − ‖zk − w∗‖)2 − c‖z0 − w∗‖2

− ‖z1 − w∗‖2 + c‖zK − w∗‖2 + ‖zK+1 − w∗‖2

≤
KX

k=1

dk − 2

KX
k=1

γk(zk − w∗)T (F (zk)− F (w∗)).

Taking limits, we have
∞X

k=1

c(1− c) (‖zk − w∗‖ − ‖zk−1 − w∗‖)2 − c‖z0 − w∗‖2

− ‖z1 − w∗‖2 + c lim
k→∞

‖zk − w∗‖2 + lim
k→∞

‖zk+1 − w∗‖2

≤
∞X

k=1

(dk − γkµk).

Since ū > 0, it follows that along every subsequence, we
have that µk = 2(zk−w∗)T (F (zk)−w∗) ≥ µ

′
> 0,∀k. This

is a consequence of the strict monotonicity of F whereby if
(F (zk) − F (w∗))T (zk − w∗) → 0 if zk → w∗. By noting
that

∑∞
k=0 dk < ∞,

∑∞
k=0 γkµk = ∞ and the boundedness

of zk, it emerges that
∞∑

k=1

(c(1− c))2((‖zk − w∗‖ − ‖zk−1 − w∗‖)2 ≤ −∞,

a contradiction to the nonnegativity of the left-hand side.
Therefore along some subsequence, we have that µk → 0
and lim infk→∞ ‖zk−w∗‖2 = 0. But we know that

{
zk

}
has

a limit point and that the sequence zk converges. Therefore,
we have that limk→∞ zk = w∗.
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