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Abstract— In this paper, we consider the distributed compu-
tation of equilibria arising in monotone stochastic Nash games
over continuous strategy sets. Such games arise in settings
when the gradient map of the player objectives is a monotone
mapping over the cartesian product of strategy sets, leading
to a monotone stochastic variational inequality. We consider
the application of projection-based stochastic approximation
(SA) schemes. However, such techniques are characterized by
a key shortcoming: in their traditional form, they can only
accommodate strongly monotone mappings. In fact, standard
extensions of SA schemes for merely monotone mappings
require the solution of a sequence of related strongly monotone
problems, a natively two-timescale scheme. Accordingly, we
consider the development of single timescale techniques for
computing equilibria when the associated gradient map does
not admit strong monotonicity. We first show that, under
suitable assumptions, standard projection schemes can indeed
be extended to allow for strict, rather than strong monotonicity.
Furthermore, we introduce a class of regularized SA schemes,
in which the regularization parameter is updated at every
step, leading to a single timescale method. The scheme is a
stochastic extension of an iterative Tikhonov regularization
method and its global convergence is established. To aid in
networked implementations, we consider an extension to this
result where players are allowed to choose their steplengths
independently and show the convergence of the scheme if the
deviation across their choices is suitably constrained.

I. INTRODUCTION

This paper considers a class of stochastic Nash games
over continuous strategy sets. We cast such a problem as
a stochastic variational inequality, for which we consider
projection-based SA algorithms. Such schemes have been
recently employed for the solution of stochastic variational
inequalities [9] with strongly monotone and co-coercive
maps, which to the best of our knowledge, appears to be the
only existing work considering SA methods for variational
inequalities. The use of SA methods has a long tradition in
stochastic optimization for both differentiable and nondif-
ferentiable problems, starting with the work of Robbins and
Monro [17] for differentiable problems and Ermoliev [6], [7]
for nondifferentiable problems while a subset of more recent
efforts include [3], [4], [16].

The typical SA procedure, first introduced by Robbins and
Monro, works toward finding an extremum of a function h
using the following iterative scheme:

xk+1 = xk + ak(∇h(xk) + Mk+1),
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where Mk+1 is a martingale difference sequence. Under
reasonable assumptions on the stochastic errors Mk, SA
schemes ensure that {xk} converges a.s. to an optimal
solution of the problem. Jiang and Xu [9] consider the use
of SA for strongly monotone and Lipschitz continuous maps
in the realm of stochastic variational inequalities, rather than
optimization problems.

In the current work, we consider two schemes that do
not require strong monotonicity of the map, a stochastic
version of the standard projection method and an iterative
Tikhonov regularization method. We first establish almost-
sure convergence for the stochastic projection method when
applied to a stochastic VI with a strictly monotone map-
ping. To further relax the condition of strict monotonicity,
we consider a stochastic iterative Tikhonov regularization
method, and we show the almost sure convergence of the
method to the minimum norm solution. This result requires
users (players) of the associated game to use equal stepsizes.
We then investigate the case when users may independently
select stepsizes. We show that in this case, the convergence
property of the algorithm is preserved under a restriction on
the maximum deviation across stepsizes.

It should be remarked that Tikhonov-based regularization
methods have a long history in the solution of ill-posed op-
timization and variational problems [8], [15]. Such schemes,
in general, require the solution of regularized (well-posed)
problems, each of which may require solution via an iterative
process. An alternative lies in updating the regularization
parameter at every step, an approach popularly referred to
as iterative regularization. While there have been efforts to
use such techniques for optimization problems (cf. [15]),
there has been noticeably less in the realm of variational
inequalities, barring [11] and more recently in [?], [10], [18].

Game-theoretic models find application in a range of
settings ranging from wireline and wireless communication
networks [2], bandwidth allocation [1], [5] and optical net-
works [12], [13]. Distributed schemes for computing equi-
libria have received significant attention recently [1], [12],
[14]. Of particular relevance to this paper is that of Pavel and
her coauthors [12], [14], the latter in particular employs an
extragradient scheme [8] in a deterministic regime, capable
of accommodating monotone Nash games.

A remark is in order regarding our proposed scheme.
Our goal lies in developing single timescale gradient-based
distributed schemes characterized by low complexity. Such
schemes lie at one end of the spectrum of best-response
methods, where a gradient step is taken towards obtaining
a best-response. While these techniques are not necessarily
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superior from the standpoint of convergence rate, they remain
advantageous from the standpoint of implementability.

The rest of the paper is organized as follows. In Sec-
tion II, we discuss a N -person stochastic Nash game and its
associated equilibrium conditions, as given by a stochastic
variational inequality. A projection-based SA scheme is pre-
sented for this problem in Section III and its convergence is
estabilished under an assumption of strict monotonicity of the
mapping. This assumption is weakened to monotonicity in
Section IV where we propose and analyze a single timescale
stochastic iterative Tikhonov regularization method. Conver-
gence of the resulting sequence of iterates is proved in an
almost-sure sense, in a regime where players shared the same
steplengths and in one where their steplengths require limited
coordination but are not necessarily identical across players.
Finally, in Section V, we provide some concluding remarks.

Throughout this paper, we view vectors as columns and
write xT to denote the transpose of a vector x, and xT y to
denote the inner product of vectors x and y. We use ‖x‖ to
denote the Euclidean norm of a vector x, i.e., ‖x‖ =

√
xT x.

We use ΠX to denote the Euclidean projection operator onto
a set X , i.e., ΠX(x) , argminz∈X ‖x−z‖. The expectation
of a random variable V is denoted by E[V ]. Finally, we often
use a.s. for almost surely.

II. PROBLEM DESCRIPTION

We consider an N -person stochastic Nash game in which
the ith agent solves the parameterized problem

minimize E[fi(xi, x−i, ξi)]
subject to xi ∈ Ki , (1)

where x−i denotes the collection {xj , j 6= i} of decisions of
all players j other than player i. For each i, the variable
ξi is random with ξi : Ωi → Rni , and the function
E[fi(xi, x−i, ξi)] is convex in xi for all x−i ∈

∏
j 6=i Kj .

For every i, the set Ki ⊆ Rni is a closed convex set.
The equilibrium conditions of the game, denoted by G, can
be characterized by scalar variational inequality problem
denoted by VI(K, F ) where

F (x) ,

 ∇x1E[f1(x, ξ1)]
...

∇xN
E[fN (x, ξN )]

 , K =
N∏

i=1

Ki, (2)

with x , (x1, . . . , xN )T and xi ∈ Ki for i = 1, . . . , N.
Recall that VI(K, F ) requires determining a vector x∗ ∈ K
such that

(x− x∗)T F (x∗) ≥ 0 for all x ∈ K. (3)

We let n =
∑N

i=1 ni, and note that the set K is closed
and convex set in Rn, whenever the sets Ki are closed and
convex, for i = 1, . . . , N . The mapping F maps x ∈ K to
F (x) ∈ Rn.

Standard deterministic algorithms for obtaining solutions
to a variational inequality VI(K, F ) require an analytical
form for the gradient of the expected-value function. Yet,

when the expectation is over a general measure space, analyt-
ical forms of the expectation are often hard to obtain. In such
settings, SA schemes assume relevance. In the remainder of
this section, we describe the basic framework of SA and the
supporting convergence results.

Consider the Robbins-Monro SA scheme for solving the
stochastic VI(K, F ) in (2)–(3), given by

xk+1 = ΠK [xk − αk(F (xk) + wk)] for k ≥ 0, (4)

where x0 ∈ K is an initial point, F (xk) is the true value
of F (x) at x = xk, αk is the step-size, wk = −F (xk) +
F̃ (xk, ξk

i ) is a stochastic error,

F̃ (xk, ξk) ,

 ∇x1f1(xk, ξk
1 )

...
∇xN

fN (xk, ξk
N )

 and ξk ,

 ξk
1
...

ξk
N

 .

The projection scheme (4) is shown to be convergent when
the mapping F is strongly monotone and Lipschitz con-
tinuous in [9]. In the sequel, we examine how the use of
regularization methods can alleviate the need for the strong
monotonicity requirement. In fact, we show that either strict
monotonicity or mere monotonicity albeit in a regularized
setting often suffices.

In our analysis we use some well-known results on super-
martingale convergence, which we provide for convenience.
The following result is from [15], Lemma 10, page 49.

Lemma 1: Let Vk be a sequence of non-negative random
variables adapted to σ−algebra Fk and such that

E[Vk+1 | Fk] ≤ (1− uk)Vk + βk a.s. for all k ≥ 0,

where 0 ≤ uk ≤ 1, βk ≥ 0, and
∑∞

k=0 uk =
∞,

∑∞
k=0 βk < ∞, βk

uk
→ 0. Then, Vk → 0 a.s.,

E[Vk] → 0, and for every a > 0, k > 0,

P (Vj ≤ a for all j ≥ k) ≥ 1− 1
a

E[Vk +
∞∑

i=k

βi].

The result of the following lemma can be found in [15],
Lemma 11, page 50.

Lemma 2: Let Vk, uk, βk and γk be non-negative random
variables adapted to Fk. If a.s.

∑∞
k=1 uk < ∞,

∑∞
k=1 βk <

∞, and

E[Vk+1 | Fk] ≤ (1 + uk)Vk − γk + βk for all k ≥ 0,

then a.s. {Vk} is convergent and
∑∞

k=1 γk < ∞.

III. STANDARD PROJECTION SCHEMES UNDER STRICT
MONOTONICITY

Here, we consider standard projection algorithm (4) for
a variational inequality VI(K, F ) with a strictly monotone
mapping F , i.e., a mapping F such that

(F (x)− F (y))T (x− y) > 0 for all x, y ∈ K, x 6= y,

with equality holding in the preceding relation only when
x = y. In addition to this, we make some assumptions on
the steplength sequence {αk} and the stochastic errors wk

that are standard in SA schemes.
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Throughout the rest of the paper, we use Fk to denote the
sigma-field generated by the initial point x0 and errors w`

for ` = 0, 1, . . . , k, i.e.,

Fk = {x0, (w`, ` = 0, 1, . . . , k)} for k ≥ 0.

Now, we specify our assumptions for VI(K, F ) in (2)–(3)
and the algorithm (4).

Assumption 1 (A1): Let the following hold:
(a) The sets Ki ⊆ Rni are closed and convex;
(b) The mapping F : K → Rn is monotone and Lipschitz

with constant L over the set K;
(c) The stochastic error is such that E[wk | Fk] = 0 and∑∞

k=1 α2
kE[‖wk‖2 | Fk] < ∞ a.s.

When the map F is strictly monotone, the solution to
VI(K, F ) is unique whenever it exists (see 2.3.3 Theorem in
[8]). Note, however, that the strict monotonicity of F is not
enough to guarantee the existence of a solution when the set
K is closed and convex.

Next we provide a convergence result for the algorithm (4).
Proposition 1: Let (A1) hold with F being strictly mono-

tone instead of monotone, and assume that VI(K, F ) has a
solution. Let {xk} be the sequence generated by (4) with
the steplength satisfies αk > 0 for all k,

∑
αk = ∞ and∑

α2
k < ∞. Then, {xk} converges to the solution x∗ of

VI(K, F ) a.s..
Proof: As discussed earlier, in view of the strict

monotonicity of F , the solution x∗ of VI(K, F ) is unique.
Using x∗ = ΠK [x∗ − αkF (x∗)] together with the non-
expansiveness property of the projection operator yields

‖xk+1 − x∗‖2 ≤ ‖xk − x∗ − αk(F (xk)− F (x∗) + wk)‖2

= ‖xk − x∗‖2 + α2
k‖F (xk)− F (x∗)‖2 + α2

k‖wk‖2

− 2αk(xk − x∗)T (F (xk)− F (x∗))− 2αk(xk − x∗)T wk

− 2αk(F (xk)− F (x∗))T wk.

By taking expectation and using E[wk | Fk] = 0 and
Lipschitz continuity of mapping F , we obtain

E[‖xk+1 − x∗‖2 | Fk] ≤ (1 + α2
kL2)‖xk − x∗‖2

+ α2
kE[‖wk‖2 | Fk]− 2αk(xk − x∗)T (F (xk)− F (x∗)),

which can be compactly written as

E[‖xk+1 − x∗‖2 | Fk] ≤ (1 + uk)‖xk − x∗‖2 − γk + βk,

where uk = α2
kL2, βk = α2

kE[‖wk‖2 | Fk], and γk =
2αk(xk − x∗)T (F (xk)− F (x∗)). By steplength assumption
and (A1c), we have

∑∞
k=1 uk < ∞ and

∑∞
k=1 βk < ∞. It

follows from Lemma 2 that ‖xk − x∗‖ converges a.s. to a
limit point v̄ ≥ 0 and

∑∞
k=1 γk < ∞ a.s..

It remains to show that v̄ ≡ 0, which is equivalent to
xk → x∗ a.s.. Since we have

∑∞
k=1 2αk(xk−x∗)T (F (xk)−

F (x∗)) < ∞ a.s., and since
∑∞

k=1 αk = ∞, it follows
that lim infk→∞(xk − x∗)T (F (xk) − F (x∗)) = 0 a.s.
The strict monotonicity of F implies that along a subse-
quence, we have that xk → x∗ a.s.. This and the relation
limk→∞ ‖xk − x∗‖ = v̄ ≥ 0 a.s. imply that xk → x∗ a.s.

We note that if (A1b) is strengthened to F being strongly
monotone, then we immediately have almost sure conver-
gence of the algorithm, which has been established in [9].

IV. STOCHASTIC ITERATIVE TIKHONOV SCHEMES

In the previous section, single-valuedness of the map F
was ensured by a strict monotonicity of F . In this section,
we relax the strict monotonicity assumption on the mapping,
but we perturb the map with a regularizing term, which
ensures the single-valuedness of the solution set of the
resulting perturbed map. This is a classical approach known
as Tikhonov regularization [8, Ch. 12]. In the context of
variational inequalities, such techniques typically rely on
solving a sequence of strongly monotone problems, denoted
by VI(K, F + εky), allowing us to claim that lim

k→∞
yk = x∗

where yk is a solution of VI(K, F + εky) and x∗ is the
least norm solution of VI(K, F ). Thus, to reach a solution
of VI(K, F ), one has to solve a sequence of variational
inequality problems, namely VI(K, F + εky) along some
sequence {εk}. However, determining a solution yk for
a regularized variational inequality VI(K, F + εky) itself
requires an iterative algorithm. Alternatively, one may seek
an inexact solution to each VI(K, F + εky) in constructing
such a trajectory [8].

We propose an algorithm that, instead of solving a se-
quence of variational inequality problems, moves toward the
least norm solution by appropriately coordinating the regu-
larization parameters εk with the steplengths αk. Specifically,
our intent lies in developing algorithms that are characterized
by (1) a single-timescale structure; (2) a distributed architec-
ture that can accommodate computation of equilibria; and
(3) finally, accommodate uncertainty via an expected-value
objectives. The resulting coupled agent-specific Tikhonov
updates are given by: for i = 1, . . . , N ,

xk+1
i = ΠKi [x

k
i − αk(Fi(xk) + εkxk

i + wk
i )], (5)

where x0
i ∈ Ki is initial point, Fi(xk) denotes the ith

component of mapping F evaluated at xk, wk
i is the ith

component of stochastic error vector wk and αk is the
stepsize chosen at the kth iterate. Note that, as in Section III,
the iterate updates can be compactly written as

xk+1 = ΠK [xk
i − αk(F (xk) + εkxk + wk)], (6)

where F , K and wk are as in Section III.
In Section IV-A, we examine the global convergence of the

distributed regularized scheme given by (5). A requirement
of this scheme is that αk be enforced uniformly across all
agents. We weaken such a requirement in Section IV-B and
provide a framework under which players are accorded some
flexibility in choosing steplengths.

A. Coordinated Steplengths

We let SOL(K, F ) denote the solution set of VI(K, F )
in (2)–(3), and yk be the solution to VI(K, F + εky). We
have the following result for the Tikhonov sequence {yk}.

Lemma 3: Let the set K ⊆ Rn be closed and convex,
and let the map F : K → Rn be continuous and monotone
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over K. Assume that SOL(K, F ) is nonempty. Consider a
standard Tikhonov scheme for VI(K, F ), where {yk} is the
sequence of exact solutions to VI(K, F + εky), k ≥ 0. Then

‖yk − yk−1‖ ≤ My
|εk−1 − εk|

εk
for all k ≥ 1,

where My is a norm bound on the Tikhonov sequence , i.e.,
‖yk‖ ≤ My for all k ≥ 0.

Proof: Since SOL(K, F ) 6= ∅, the Tikhonov sequence
converges to the least norm solution of VI(K, F ) (cf. [8],
12.2.3 Theorem, page 1128), i.e., limk→∞ yk = x∗, where
x∗ is the least norm solution of VI(K, F ). Since yk solves
VI(K, F + εky) for each k ≥ 0, we have for k ≥ 1,

(yk−1 − yk)T (F (yk) + εkyk) ≥ 0,

(yk − yk−1)T (F (yk−1) + εk−1y
k−1) ≥ 0.

By adding the preceding relations and using the monotonic-
ity of the mapping F , it follows (yk−1 − yk)T (εkyk −
εk−1y

k−1) ≥ 0 and thus (yk−1 − yk)T (εkyk − εkyk−1 +
εkyk−1 − εk−1y

k−1) ≥ 0. By rearranging the terms in the
above expression, we obtain

(yk−1 − yk)T (εk − εk−1)y
k−1 = εk‖yk − yk−1‖2.

However, through an application of Cauchy-Schwartz in-
equality, the left hand side is bounded from above as

(yk−1− yk)T (εk − εk−1)y
k−1 ≤ ‖yk−1− yk‖‖yk−1‖|εk−1− εk|.

Combining the preceding relations we obtain

‖yk − yk−1‖ ≤ ‖yk−1‖ |εk−1 − εk|
εk

≤ My
|εk−1 − εk|

εk
,

where ‖yk‖ ≤ My for all k, which follows from the
boundedness of Tikhonov sequence.

We next state the assumptions that the regularization
parameter {εk} and the stepsize sequence {αk} satisfy for
the remainder of this subsection. In addition to εk be such
that εk ≤ ε0 for all k we also assume the following.

Assumption 2 (A2): Let the following hold:
(a) αk

εk
(ε0 + L)2 ≤ c for all k, where c ∈ (0, 1);

(b) 0 < αkεk ≤ 1
1−c for all k and limk→∞ εk = 0;

(c)
∑∞

k=1
(εk−1−εk)

ε2k

2 (
1 + 1

αkεk

)
< ∞;

(d) limk→∞
|εk−1−εk|

ε3kαk

(
1 + 1

αkεk

)
= 0;

(e) limk→∞
αk

εk
E[‖wk‖2 | Fk] = 0;

(f)
∑∞

k=1 αkεk = ∞.
We now provide an a.s. convergence result for scheme (5).
Proposition 2: Suppose that (A1) and (A2) hold. Also,

assume that SOL(K, F ) is nonempty. Let {xk} be the
sequence generated by iterative scheme (5). Then, {xk}
converges to the least-norm solution x∗ of VI(K, F ) a.s..
Also, for {xk} we have

Prob
{
‖xj − yj−1‖2 ≤ a for all j ≥ k

}
≥ 1− 1

a
E[‖xk − yk−1‖2 | Fk]

+
∞∑

i=k

(
qkM2

y

(εi−1 − εi)
ε2i

2(
1 +

1
αiεi

)
+ α2

i E[‖wi‖2|Fi]

)

Proof: By using the compact representation of the al-
gorithm given in (6), the relation yk = ΠK [yk−αk(F (yk)+
εkyk)] and the non-expansive property of the projection
operator, the difference ‖xk+1 − yk‖2 can be expanded as

‖xk+1 − yk‖2

≤ ‖(xk − yk)− αk(F (xk)− F (yk) + εk(xk − yk) + wk)‖2

= ‖xk − yk‖2 − 2αk(xk − yk)T (F (xk)− F (yk))

− 2αkεk(xk − yk)T (xk − yk)− 2αk(xk − yk)T wk

+ α2
k‖F (xk)− F (yk) + εk(xk − yk) + wk‖2. (7)

Following expansion of last term of preceding relation,
taking expectation E[wk | Fk] = 0 it can be verified that

E[‖xk+1 − yk‖2 | Fk]

≤ (1− 2αkεk + α2
kε2k)‖xk − yk‖2 + α2

k‖F (xk)− F (yk)‖2

+ α2
kE[‖wk‖2 | Fk] + 2α2

kεk(xk − yk)T (F (xk)− F (yk))

− 2αk(xk − yk)T (F (xk)− F (yk)).

Since F is monotone the last term is non-positive. Fur-
thermore, by recalling that F is Lipschitz continuous with
constant L, we have that

E[‖xk+1 − yk‖2 | Fk]

≤ (1− 2αkεk + α2
k(L2 + 2εkL + ε2k))‖xk − yk‖2

+ α2
kE[‖wk‖2 | Fk]. (8)

Next we relate ‖xk − yk‖ and ‖xk − yk−1‖. By the triangle
inequality ‖xk − yk‖ ≤ ‖xk − yk−1‖ + ‖yk−1 − yk‖ while
from Lemma 3 we have ‖yk−1−yk‖ ≤ My

|εk−1−εk|
εk

. Using
this and 2aT b ≤ ‖a‖2 + ‖b‖2 it follows that

‖xk − yk‖2 ≤ ‖xk − yk−1‖2 + M2
y

(εk−1 − εk)
ε2k

2

+ 2
√

αkεk‖xk − yk−1‖ |εk−1 − εk|
εk
√

αkεk
My.

≤ (1 + αkεk)‖xk − yk−1‖2

+ M2
y

|εk−1 − εk|
ε2k

2(
1 +

1
αkεk

)
(9)

Letting qk = 1 − 2αkεk + α2
k(εk + L)2 and combining (8)

and (9), we have

E[‖xk+1 − yk‖2 | Fk] ≤ qk(1 + αkεk)‖xk − yk−1‖2

+ qkM2
y

(εk−1 − εk)
ε2k

2(
1 +

1
αkεk

)
+ α2

kE[‖wk‖2 | Fk].

Next, we estimate the coefficient of ‖xk − yk−1‖2 in the
preceding relation. Let ak := qk(1 + αkεk) and note that
qk < 1 by (A3a), from which it can be verified that
ak ≤ 1 − αkεk

(
1− αk

εk
(εk + L)2

)
. Using εk ≤ ε0 and

αk

εk
(ε0 + L)2 ≤ c, we find ak ≤ 1 − αkεk (1− c) , and the

estimate for E[‖xk+1− yk‖2 | Fk] can be compactly written
as: E[‖xk+1−yk‖2 | Fk] ≤ (1−uk)‖xk−yk−1‖2+vk, where
uk , αkεk(1− c) and vk , qkM2

y
(εk−1−εk)

ε2k

2 (
1 + 1

αkεk

)
+
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α2
kE[‖wk‖2 | Fk]. To claim the convergence statement of the

sequence {‖xk+1−yk‖}, we need to establish the properties
of uk and vk.

First, we show that 0 ≤ uk ≤ 1 and
∑∞

k=1 uk = ∞. When
c < 1, we have that uk = αkεk(1 − c) ≥ 0. Furthermore,
from (A3b) it can be easily verified that uk ≤ 1. Then∑∞

k=1 uk = ∞ since uk = αkεk(1 − c), c < 1 and∑∞
k=1 αkεk = ∞, of which the last holds by (A3f).
Next, we observe that vk/uk ≥ 0 and it suffices to show

that its upper bound converges to zero. Note that, since qk ≤
1, the ratio vk/uk can be bounded above by

M2
y

(εk−1 − εk)
ε3kαk(1− c)

2(
1 +

1
αkεk

)
+

αk

εk(1− c)
E[‖wk‖2 | Fk].

By (A3d) and (A3e), the summation converges to zero in
the limit, implying that limk→∞ vk/uk = 0. Finally, also
by (A3c) and (A2c), we have

∑∞
k=1 vk < ∞. It follows

from Lemma 1 that ‖xk − yk−1‖ converges to 0 a.s. The
probabilistic result follows directly from Lemma 1.

Our next lemma ensures that a feasible set of steplength
and regularization sequences satisfying the conditions of
(A2) do indeed exist.

Lemma 4: Consider the choice αk = k−a and εk = k−b

for all k, where a ∈ (0, 1), b ∈ (0, 1), a + b < 1, a > b.
Then, αk and εk satisfy (A2).

Proof: The condition in (A2a) hold trivially for large k
because a > b. Also, (A2b) and (A2f) hold because αkεk =
k−a−b > k−1. The limit in (A2e) follows from the fact that∑

α2
kE[‖wk‖2 | Fk] < ∞ and

∑
αkεk = ∞. Under the

given form of εk and αk the equation in (A2c) becomes

((k − 1)−b − k−b)2

k−2b

(
1 +

1
k−a−b

)
≤ 2

((1− 1/k)−b − 1)2

k−a−b
,

where the inequality follows from the fact that 1
k−a−b ≥

1, for k ≥ 1. Using the expansion of (1−x)−b for x small
it can be checked that

2
((1− 1/k)−b − 1)2

k−a−b
=

2b2

k2−a−b
+ O(1/k2) = O(k−(2−a−b)).

With a+b < 1 the summation converges. Following a similar
argument, we see that the term in (A2d) reduces to

((k − 1)−b − k−b)2

k−2b

(
1

k−a−b
+

1
k−2a−2b

)
=

b2

k2(1−a−b)
+

b2

k(2−a−b)

and the limit in (A2d) follows from a + b < 1.

B. Limited Coordination of Steplengths

In this subsection, we consider a situation when users have
their individual stepsize and update their estimates according
to the following rule:

xk+1
i = ΠKi [x

k
i − αk,i(Fi(xk) + wk

i + εkxk
i )]. (10)

The rule is the same as in (5), except for the steplength αk,
which is replaced with user i stepsize αk,i.

In our analysis of the method in (10), we make use on
the following assumptions on the user stepsizes and the
regularization parameters.

Assumption 3 (A3): Suppose that:
(a) αk,max

αk,min

αk,max
εk

(ε0 + L)2 ≤ c for all k where c ∈ (0, 1);
(b) 0 < αk,minεk ≤ 2

1−c for all k and limk→0 εk = 0;

(c)
∑∞

k=1
(εk−εk−1)

2

ε2k

(
1 + 1

αk,minεk

)
< ∞;

(d) limk→∞
(εk−εk−1)

2

ε3kαk,min

(
1 + 1

αk,minεk

)
→ 0;

(e) limk→∞
αk,max

εk
E[‖wk‖2 | Fk] = 0;

(f)
∑∞

k=1 αk,minεk = ∞;
(g) 1 <

αk,max
αk,min

< 1 + εk
1−c
4L .

In the following proposition, we provide almost sure
convergence result of the random sequence {xk}.

Proposition 3: Let (A1) and (A3) hold. Also, assume that
SOL(K, F ) is nonempty. Let the sequence {xk} be generated
by method (10). Then, {xk} converges to the least norm
solution x∗ of VI(K, F ) a.s.

Proof: By using the relation yk
i = ΠKi [y

k
i −

αk,i(Fi(yk) + εkyk
i )] and non-expansive property of the

projection operator, it can be verified that

‖xk+1
i − yk

i ‖2

≤ ‖xk
i − yk

i ‖2 − 2αk,i(xk
i − yk

i )T (Fi(xk)− Fi(yk))

− 2αk,iεk‖xk
i − yk

i ‖2 − 2αk,i(xk
i − yk

i )T wk
i

+ α2
k,i‖Fi(xk)− Fi(yk) + wk

i + εk(xk
i − yk

i )‖2. (11)

Expansion of last term, taking expectation together with
E[wk

i | Fk] = 0 (cf. Assumption (A2c)) we get

E[‖xk+1
i − yk

i ‖2 | Fk]

≤ (1− 2αk,iεk + α2
k,iε

2
k)‖xk

i − yk
i ‖2

+ α2
k,i(‖Fi(xk)− Fi(yk)‖2 + E[‖wk

i ‖2 | Fk])

+ 2α2
k,iεk(xk

i − yk
i )T (Fi(xk)− Fi(yk))

− 2αk,i(xk
i − yk

i )T (Fi(xk)− Fi(yk)).

Summing over all i and using αk,i ≤ αk,max together with
Lipschitz continuity of F yields

E[‖xk+1 − yk‖2 | Fk]

≤ (1− 2αk,minεk + α2
k,maxε

2
k + α2

k,maxL
2)‖xk − yk‖2

+ α2
k,maxE[‖wk‖2 | Fk]

+
N∑

i=1

2α2
k,iεk(xk

i − yk
i )T (Fi(xk)− Fi(yk))︸ ︷︷ ︸

Term 1

−
N∑

i=1

2αk,i(xk
i − yk

i )T (Fi(xk)− Fi(yk))︸ ︷︷ ︸
Term 2

. (12)

Next through an application of Hölder’s inequality and
Lipschitz continuity of F Term 1 of (12) can be estimated
as follows:

Term 1 ≤ α2
k,maxεkL‖xk − yk‖2. (13)
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and using monotonicity of F , Hölder’s inequality and Lips-
chitz continuity of F, we get

Term 2 ≤ 2δkL‖xk − yk‖2 (14)

where δk , αk,max − αk,min. Combining the results of
relation (12), (13) and (14) we obtain,

E[‖xk+1 − yk‖2 | Fk]

≤ (1− 2αk,minεk + α2
k,maxε

2
k + α2

k,maxL
2)‖xk − yk‖2

+ α2
k,maxE[‖wk‖2 | Fk] + (2α2

k,maxεkL + 2δkL)‖xk − yk‖2

= qk‖xk − yk‖2 + α2
k,maxE[‖wk‖2 | Fk], (15)

where qk := 1− 2αk,minεk + α2
k,max(εk + L)2 + 2δkL.

Next we invoke the estimate of ‖xk − yk‖2 from rela-
tion (9) but with a slight modification. Instead of using αk

in (9), we use αk,min. More precisely, we have

‖xk − yk‖2 ≤ (1 + αk,minεk)‖xk − yk−1‖2

+ M2
y

(εk−1 − εk)
ε2k

2(
1 +

1
αk,minεk

)
. (16)

Combining the relations of (15) and (16) we obtain the
following estimate:

E[‖xk+1 − yk‖2 | Fk] ≤ qk(1 + αk,minεk)‖xk − yk−1‖2

+ qkM2
y

(εk−1 − εk)
ε2k

2(
1 +

1
αk,minεk

)
+ α2

k,maxE[‖wk‖2 | Fk]. (17)

Next we estimate the coefficient of ‖xk − yk−1‖2. Let
ak := qk(1 + αk,minεk). Using qk < 1 (which holds by
(A4a) and (A4g)) we see that ak ≤ 1 − 2αk,minεk +
α2

k,max(εk + L)2 + 2δkL + αk,minεk. Using εk ≤ ε0 and
α2

k,max(εk+L)2

αk,minεk
≤ α2

k,max(ε0+L)2

αk,minεk
≤ c, we obtain ak ≤

1 − αk,minεk

(
1− c− 2δkL

αk,minεk

)
. From (A4g) we have

2δkL
αk,minεk

≤ 1−c
2 . Thus for k large enough, ak ≤ 1 −

αk,minεk

(
1−c
2

)
and (17) can be written compactly as:

E[‖xk+1 − yk‖2 | Fk] ≤ (1− uk)‖xk − yk−1‖2 + vk

where uk , 1−c
2 αk,minεk and vk =

qkM2
y

(εk−1−εk)
ε2k

2 (
1 + 1

αk,minεk

)
+ α2

k,maxE[‖wk‖2 | Fk].
Since c < 1 we have 0 ≤ uk ≤ 1, and from (A4f)
we have

∑∞
k=1 uk = ∞. Under stepsize condition

(A4c), (A4d) and (A4e) it can be verified that
limk→∞

vk

uk
= 0 and

∑∞
k=1 vk < ∞. Thus, the

conditions of Lemma 1 are satisfied for k large enough.
Noting that Lemma 1 applies to a process delayed by a
deterministic time-offset, we can conclude that ‖xk− yk−1‖
converges to zero a.s. This and the fact that yk → x∗

conclude the proof.

V. CONCLUDING REMARKS

In this paper, we consider computation of equilibria in
monotone stochastic Nash games. Jiang and Xu [9] consid-
ered how SA procedures could address stochastic variational
inequalities when the mappings were strongly monotone.

Yet, these schemes cannot contend with weaker requirements
(such as strict monotonicity or monotonicity) while retaining
the single-timescale structure. Instead, a regularization-based
extension leads to a two timescale method, which is less easy
to implement in networked settings. Accordingly, this paper
makes two contributions. First, we show that a standard SA
scheme is shown to lead to almost-sure convergence under
the assumption of strict monotonicity. Second, when the
assumption on the mapping is further weakened to monotone,
then we turn to a class of iterative Tikhonov regularization
schemes. A crucial difference that such methods display with
their classical Tikhonov counterpart is that the regularization
parameter is updated at every iteration. An extension of this
framework is proposed to the stochastic regime and suitable
conditions are established for the almost-sure convergence
of the resulting scheme. These results require that the
steplengths are common across players. We further show that
when this requirement is relaxed to one where steplengths
are partially coordinated across players, as is the need in
networked settings, convergence of the scheme still holds.
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2003, pp. 473–498.
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