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Abstract— The notion of incremental stability has been suc-
cessfully used as a tool for the analysis and design of intrinsic
observers, output regulation of nonlinear systems, frequency
estimators, synchronization of coupled identical dynamical
systems, symbolic models for nonlinear control systems, and
bio-molecular systems. However, most of the existing controller
design techniques provide controllers enforcing stability rather
than incremental stability. Hence, there is a growing need for
design methods for incremental stability. In this paper, we
take a step in this direction by developing a backstepping
design approach to incremental stability. The effectiveness of
the proposed method is illustrated by synthesizing a controller
rendering a magnetic levitator incrementally stable.

I. INTRODUCTION

Stability is a property of dynamical systems comparing
trajectories with an equilibrium point. Incremental stability
is a stronger property comparing arbitrary trajectories with
themselves, rather than with an equilibrium point. It is
well-known that for linear systems incremental stability is
equivalent to stability. However, incremental stability is a
stronger property than stability for nonlinear systems.

The applications of incremental stability have grown in
the past years. Examples include intrinsic observer design
[AR03], consensus problems in complex networks [WS05],
output regulation of nonlinear systems [PvdWN05], design
of frequency estimators [SK08], synchronization of cou-
pled identical dynamical systems [RdB09], construction of
symbolic models for nonlinear control systems [PGT08],
[PT09], [GPT09], and the analysis of bio-molecular systems
[RdBS09]. Hence, there is a growing need for design meth-
ods providing controllers enforcing incremental stability.
Most of the existing design methods guarantee stability rather
than incremental stability.

In [Ang02] Angeli conducted a Lyapunov based study of
incremental stability. He defined incremental global asymp-
totic stability (δ-GAS) and incremental input-to-state stabil-
ity (δ-ISS), proposed a notion of δ-GAS and δ-ISS Lya-
punov function and proved the Lyapunov characterizations
of δ-GAS and δ-ISS properties. In addition to Lyapunov
functions, δ-GAS and δ-ISS properties can be checked by
using contraction metrics. The study of contraction properties
in the context of stability theory goes back to more than
40 years before being used in control theory; see [Jou05],
[PPvdWN04] for a historical discussion. In control theory,
contraction analysis was popularized by the work of Slotine
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[LS98]. Recent work related to contraction analysis can be
found in [AR03], [APS08], [PTS09], [ZPJT10], [Son10].
The descriptions of δ-GAS and δ-ISS properties, based on
contraction metrics, were shown in [AR03] and [ZPJT10],
respectively.

Backstepping design methods providing controllers en-
forcing δ-GAS for parametric-strict-feedback systems1 were
proposed in [JL02], and [SK09]. In this paper, we generalize
these results by developing a backstepping design method
providing controllers enforcing δ-ISS and not just δ-GAS.
The generalization of these results by enlarging the class
of control systems from parametric-strict-feedback to strict-
feedback form1 can be found in [ZT10]. The proposed
approach was inspired by the original backstepping method
described, for example, in [KKK95]. Like the original
backstepping method, which provides a recursive way of
constructing controllers as well as Lyapunov functions, the
approach proposed in this paper provides a recursive way
of constructing controllers as well as contraction metrics.
Our design approach is illustrated by designing a controller
rendering a magnetic levitator δ-ISS.

II. CONTROL SYSTEMS AND STABILITY NOTIONS

A. Notation

The symbols R, R+ and R+
0 denote the set of real, positive,

and nonnegative real numbers, respectively. The symbols Im,
and 0m denote the identity and zero matrices on Rm. Given
a vector x ∈ Rn, we denote by xi the i–th element of
x, and by ‖x‖ the Euclidean norm of x; we recall that
‖x‖ =

√
x21 + x22 + ...+ x2n. Given a measurable function

f : R+
0 → Rn, the (essential) supremum of f is denoted by

‖f‖∞; we recall that ‖f‖∞ := (ess)sup{‖f‖, t ≥ 0}; f is
essentially bounded if ‖f‖∞ <∞. For a given time τ ∈ R+,
define fτ so that fτ (t) = f(t), for any t ∈ [0, τ), and
f(t) = 0 elsewhere; f is said to be locally essentially
bounded if for any τ ∈ R+, fτ is essentially bounded.
A continuous function γ : R+

0 → R+
0 , is said to belong to

class K if it is strictly increasing and γ(0) = 0; γ is said to
belong to class K∞ if γ ∈ K and γ(r)→∞ as r →∞. A
continuous function β : R+

0 × R+
0 → R+

0 is said to belong
to class KL if, for each fixed s, the map β(r, s) belongs to
class K∞ with respect to r and, for each fixed r, the map
β(r, s) is decreasing with respect to s and β(r, s) → 0 as
s→∞.

1See [KKK95] for a definition of parametric-strict-feedback and strict-
feedback systems.
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B. Control Systems

The class of control systems that we consider in this paper
is formalized in the following definition.

Definition 2.1: A control system is a quadruple:

Σ = (Rn,U,U , f),

where:
• Rn is the state space;
• U ⊆ Rm is the input space;
• U is a subset of the set of all locally essentially bounded

functions of time from intervals of the form ]a, b[⊆ R
to U with a < 0, b > 0;

• f : Rn × U→ Rn is a continuous map satisfying the
following Lipschitz assumption: for every compact set
Q ⊂ Rn, there exists a constant Z ∈ R+ such that
‖f(x, u)− f(y, u)‖ ≤ Z‖x− y‖ for all x, y ∈ Q and
all u ∈ U.

A curve ξ :]a, b[→ Rn is said to be a trajectory of Σ if
there exists υ ∈ U satisfying:

ξ̇(t) = f (ξ(t), υ(t)) , (II.1)

for almost all t ∈ ]a, b[. We also write ξxυ(t) to denote
the point reached at time t under the input υ from initial
condition x = ξxυ(0); this point is uniquely determined,
since the assumptions on f ensure existence and uniqueness
of trajectories [Son98]. We also denote an autonomous
system Σ with no control inputs by Σ = (Rn, f). A control
system Σ is said to be forward complete if every trajectory
is defined on an interval of the form ]a,∞[. Sufficient and
necessary conditions for a system to be forward complete can
be found in [AS99]. A control system Σ is said to be smooth
if f is an infinitely differentiable function of its arguments.

C. Stability notions

Here, we recall the notions of incremental global asymp-
totic stability (δ-GAS) and incremental input-to-state stabil-
ity (δ-ISS).

Definition 2.2 ([Ang02]): A control system Σ is incre-
mentally globally asymptotically stable (δ-GAS) if it is
forward complete and there exists a KL function β such
that for any t ∈ R+

0 , any x, x′ ∈ Rn and any υ ∈ U the
following condition is satisfied:

‖ξxυ(t)− ξx′υ(t)‖ ≤ β (‖x− x′‖ , t) . (II.2)
Whenever the origin is an equilibrium point for Σ, δ-GAS
implies global asymptotic stability (GAS).

Definition 2.3 ([Ang02]): A control system Σ is incre-
mentally input-to-state stable (δ-ISS) if it is forward com-
plete and there exist a KL function β and a K∞ function γ
such that for any t ∈ R+

0 , any x, x′ ∈ Rn, and any υ, υ′ ∈ U
the following condition is satisfied:

‖ξxυ(t)− ξx′υ′(t)‖ ≤ β (‖x− x′‖ , t) + γ (‖υ − υ′‖∞) .
(II.3)

By observing (II.2) and (II.3), it is readily seen that δ-
ISS implies δ-GAS while the converse is not true in general.
Moreover, if the origin is an equilibrium point for Σ, δ-ISS
implies input-to-state stability (ISS).

D. Descriptions of incremental stability

One of the methods for checking δ-GAS and δ-ISS prop-
erties consists in using Lyapunov functions. The Lyapunov
characterizations of δ-GAS and δ-ISS properties were de-
veloped in [Ang02]. In this paper we follow an alternative
approach based on contraction metrics. The notion of con-
traction metric was popularized in control theory by the work
of Slotine [LS98]. Before going through the next definition,
we need to introduce variational systems and the notion of
a Riemannian metric.

The variational system associated with a smooth au-
tonomous system Σ = (Rn, f) is given by the differential
equation:

d

dt
(δξ) =

∂f

∂x

∣∣∣∣
x=ξ

δξ, (II.4)

where δξ is the variation2 of a trajectory of Σ. Similarly, the
variational system associated with a smooth control system
Σ = (Rn,U,U , f) is given by the differential equation:

d

dt
(δξ) =

∂f

∂x

∣∣∣∣
x=ξ
u=υ

δξ +
∂f

∂u

∣∣∣∣
x=ξ
u=υ

δυ, (II.5)

where δξ and δυ are variations of a state and an input
trajectory of Σ, respectively.

A Riemannian metric G : Rn → Rn×n is a smooth map
on Rn such that, for any x ∈ Rn, G(x) is a symmetric
positive definite matrix [Lee03]. For any x ∈ Rn and smooth
functions I, J : Rn → Rn, one can define the scalar function
〈I, J〉G as IT (x)G(x)J(x). We will still use the notation
〈I, J〉G to denote ITGJ even if G does not represent any
Riemannian metric.

Definition 2.4 ([LS98]): Let Σ = (Rn, f) be a smooth
autonomous system equipped with a Riemannian metric G.
System Σ is said to be an exponential contraction with
respect to the metric G, if there exists some λ ∈ R+ such
that:

〈X,X〉F ≤ −λ〈X,X〉G (II.6)

for F (x) =
(
∂f
∂x

)T
G(x)+G(x)∂f∂x + ∂G

∂x f(x), any X ∈ Rn

and x ∈ Rn, or equivalently:

XT

((
∂f

∂x

)T
G(x) +G(x)

∂f

∂x
+
∂G

∂x
f(x)

)
X ≤ −λXTG(x)X,

(II.7)
where the constant λ is called contraction rate.

Note that the inequality (II.6) or (II.7) implies:

d

dt
〈δξ, δξ〉G ≤ −λ〈δξ, δξ〉G, (II.8)

where δξ is the variation of a state trajectory of the au-
tonomous system Σ.

We say that a smooth autonomous system Σ is an ex-
ponential contraction if there exists a Riemannian metric G

2The variation δξ can be formally defined by considering a family of
trajectories ξxυ(t, ε) parametrized by ε ∈ R. The variation of the state is
then δξ = ∂ξxυ

∂ε
.
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such that Σ is an exponential contraction with respect to the
metric G.

The following theorem shows that the inequality (II.6)
implies δ-GAS.

Theorem 2.5: If a smooth autonomous system
Σ = (Rn, f) is an exponential contraction, then it is
δ-GAS.
Different variations of this result appeared in [LS98], and
[AR03]; see [AR03] for a concise proof.

The following definition is a generalization of Definition
2.4 for control systems.

Definition 2.6 ([ZPJT10]): Let Σ = (Rn,U,U , f) be a
smooth control system on Rn equipped with a Riemannian
metric G. Control system Σ is said to be an exponential
contraction with respect to the metric G, if there exists some
λ ∈ R+ and α ∈ R+

0 such that:

〈X,X〉F + 2

〈
∂f

∂u
Y,X

〉
G

≤ −λ〈X,X〉G + α〈X,X〉
1
2
G〈Y, Y 〉

1
2
Im

(II.9)

for F (x, u) =
(
∂f
∂x

)T
G(x) + G(x)∂f∂x + ∂G

∂x f(x, u), any
X ∈ Rn, and Y ∈ Rm, or equivalently:

XT

((
∂f

∂x

)T
G(x) +G(x)

∂f

∂x
+
∂G

∂x
f(x, u)

)
X

+2Y T
(
∂f

∂u

)T
G(x)X ≤ −λXTG(x)X

+α(XTG(x)X)
1
2 (Y TY )

1
2 , (II.10)

where the constant λ is called contraction rate.
Note that the inequality (II.9) or (II.10) implies:

d

dt
〈δξ, δξ〉G ≤ −λ〈δξ, δξ〉G + α〈δξ, δξ〉

1
2

G〈δυ, δυ〉
1
2

Im
,

(II.11)
where δξ and δυ are variations of a state and an input
trajectory of the control system Σ.

We say that a smooth control system Σ is an exponential
contraction if there exists a Riemannian metric G such that
Σ is an exponential contraction with respect to the metric G.

The following theorem shows that the inequality (II.9)
implies δ-ISS.

Theorem 2.7 ([ZPJT10]): If a smooth control system
Σ = (Rn,U,U , f) is an exponential contraction, then it is
δ-ISS.
In the next section, we propose a backstepping design
procedure to make control systems incrementally stable.

III. BACKSTEPPING DESIGN PROCEDURE

The method described here was inspired by the original
backstepping described, for example, in [KKK95]. Consider
the class of control systems Σ = (Rn,U,R, f) with f of the
parametric-strict-feedback form [KKK95]:

f1(x, u) = h1(x1) + b1x2,
f2(x, u) = h2(x1, x2) + b2x3,

...
fn−1(x, u) = hn−1(x1, · · · , xn−1) + bn−1xn,
fn(x, u) = hn(x) + g(x)u,

(III.1)

where x ∈ Rn is the state and u ∈ R is the control input. The
functions hi : Ri → R, for i = 1, . . . , n, and g : Rn → R are
smooth, g(x) 6= 0 over the domain of interest, and bi ∈ R,
for i = 1, . . . , n, are nonzero constants. We can now state
one of the main results, describing a backstepping controller
for the control system (III.1).

Theorem 3.1: For any control system Σ = (Rn,R,U , f)
with f of the form (III.1) and for any λ ∈ R+, the state
feedback control law:

k(x) =
1

g(x)

[
kn(x)− hn(x)

]
, (III.2)

where

kl(x) = −bl−1 (xl−1 − φl−2(x))− λ

2
(xl − φl−1(x))

+
∂φl−1
∂x

f(x, k(x)), for l = 1, · · · , n,(III.3)

φl(x) =
1

bl

[
kl(x)− hl(x)

]
, for l = 1, · · · , n− 1,

φ−1(x) = φ0(x) = 0 ∀x ∈ Rn, b0 = 0, and x0 = 0,

renders the control system Σ δ-GAS with contraction rate λ.
Proof: Consider the following system:

Σl :

{
η̇l = Fl(ηl) +Blξl,

ξ̇l = kl(ηl, ξl),
(III.4)

where ηl = [ξ1, · · · , ξl−1]T , Bl = [0, · · · , 0, bl−1]T ∈
Rl−1, zl = [yTl xl]

T ∈ Rl is the state
of Σl, yl = [x1, · · · , xl−1]T , and
Fl(yl) = [f1(x, u), · · · , fl−2(x, u), hl−1(x1, · · · , xl−1)]T .
By using induction on l, we show that the system (III.4) is
an exponential contraction with respect to the contraction
metric Gl, defined by:

Gl(yl) =

 Gl−1(yl−1) +
(
∂φl−1

∂yl

)T ∂φl−1

∂yl
−
(
∂φl−1

∂yl

)T
− ∂φl−1

∂yl
1

 ,
(III.5)

where the contraction rate is λ, and G1(y1) = 1. For l = 1,
it can be easily checked that G1(y1) = 1 is a contraction
metric with the contraction rate λ for the scalar system:

Σ1 : ξ̇1 = k1(ξ1) = −λ
2
ξ1.

Assume that the system Σk−1, for some 3 ≤ k ≤ n, is an
exponential contraction with respect to the contraction metric
Gk−1 and with contraction rate λ. This implies:[

Y T X
]((∂(Fk +Bkφk−1)

∂yk

)T
Gk−1(yk−1)

+Gk−1(yk−1)
∂(Fk +Bkφk−1)

∂yk

+
∂Gk−1

∂yk
(Fk +Bkφk−1)

)[
Y
X

]
≤ −λ

[
Y T X

]
Gk−1(yk−1)

[
Y
X

]
, (III.6)

for any Y ∈ Rk−2, and X ∈ R. Since the metric Gk−1 is
only a function of yk−1 = [x1, · · · , xk−2]

T , and the vector
Bk has zero entries except the last entry, it can be easily
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shown that ∂Gk−1

∂yk
Bk = 0k−1, and the inequality (III.6)

reduces to:[
Y T X

]((∂(Fk +Bkφk−1)

∂yk

)T
Gk−1(yk−1)

+Gk−1(yk−1)
∂(Fk +Bkφk−1)

∂yk
+
∂Gk−1
∂yk

Fk

)[
Y
X

]
≤ −λ

[
Y T X

]
Gk−1(yk−1)

[
Y
X

]
. (III.7)

Now, we show that:

Gk(yk) =

 Gk−1(yk−1) +
(
∂φk−1

∂yk

)T ∂φk−1

∂yk
−
(
∂φk−1

∂yk

)T
− ∂φk−1

∂yk
1

 ,
(III.8)

is a contraction metric for the system Σk. Positive definite-
ness of Gk(yk) follows from:[

Y T X
]
Gk(yk)

[
Y
X

]
=
[
Y T X

]
· Gk−1(yk−1) +

(
∂φk−1

∂yk

)T
∂φk−1

∂yk
−
(
∂φk−1

∂yk

)T
−∂φk−1

∂yk
1


·
[
Y
X

]
= Y TGk−1(yk−1)Y +

(
∂φk−1

∂yk
Y −X

)2
.

Since Gk−1 is a metric and [Y T X]T ∈ Rk is a nonzero
vector, the metric Gk is positive definite. Using the inequality
(III.7), the long algebraic manipulations in (III.9) show
that Gk satisfies (II.7) with the contraction rate λ. Hence,
the metric Gk is a contraction metric for the system Σk.
Therefore, for any l ≤ n, the system (III.4) is an exponential
contraction with respect to the contraction metric Gl and with
the contraction rate λ.

The proposed control law (III.2), transforms the control
system of the form (III.1) to:

Σn :

{
η̇n = Fn(ηn) +Bnξn,

ξ̇n = kn(ηn, ξn),
(III.10)

which, as shown by induction, is an exponential contraction
with respect to the contraction metric Gn and with the
contraction rate λ. By using Theorem 2.5, we conclude that
the control system of the form (III.1), equipped with the state
feedback control law (III.2), is δ-GAS. The δ-GAS condition
(II.2), as shown in [AR03], is given by:

dGn (ξxυ(t), ξx′υ(t)) ≤ e−λ2 tdGn(x, x′), (III.11)

where dGn(x, x′) is the distance induced by the metric Gn
between the points x and x′.

Remark 3.2: The contraction metric for the control system
(III.1), equipped with the state feedback control law (III.2),
is given by (III.12), where yl = [x1, · · · , xl−1]T , for l =
2, · · · , n, and the contraction rate is λ.

Remark 3.3: It can be checked that the function

V (x) =
1

2

n−1∑
l=0

(xl+1 − φl(x))
2
,

is a GAS Lyapunov function [Kha96] for the control system
(III.1), equipped with the state feedback control law (III.2).
Moreover, the hessian of V (x) is equal to the contraction
metric Gn, defined in (III.12).

Control law (III.2) can be modified to enforce also δ-ISS.
Theorem 3.4: For any control system Σ = (Rn,R,U , f)

with f of the form (III.1) and for any λ ∈ R+, the state
feedback control law:

k(x, û) =
1

g(x)

[
kn(x)− hn(x)

]
+

1

g(x)
û, (III.13)

where

kl(x) = −bl−1 (xl−1 − φl−2(x))− λ

2
(xl − φl−1(x))

+
∂φl−1
∂x

f(x, k(x, û)), for l = 1, · · · , n, (III.14)

φl(x) =
1

bl

[
kl(x)− hl(x)

]
, for l = 1, · · · , n− 1,

φ−1(x) = φ0(x) = 0 ∀x ∈ Rn, b0 = 0, and x0 = 0,

renders the control system Σ δ-ISS with respect to the input
υ̂ and with contraction rate λ.

Proof: The proof of this result is similar to the proof
of Theorem 3.1. The interested reader can find a complete
proof in [ZT10].

The δ-ISS condition (II.3), as shown in [ZPJT10], is given
by:

dGn (ξxυ̂(t), ξx′υ̂′(t)) ≤ e−
λ
2 tdGn(x, x′) +

2

λ
‖υ̂ − υ̂′‖∞,

(III.15)
where dGn(x, x′) is the distance induced by the metric Gn
between the points x and x′.

Remark 3.5: The contraction metric for the control system
of the form (III.1), equipped with the state feedback control
law (III.13), is given by (III.12).

Remark 3.6: It can be shown that the function

V (x) =
1

2

n−1∑
l=0

(xl+1 − φl(x))
2
, (III.16)

is an ISS Lyapunov function [Kha96] with respect to υ̂ for
the control system of the form (III.1), equipped with the state
feedback control law (III.13). Moreover, the hessian of V (x)
is equal to the contraction metric Gn, defined in (III.12).

As described in [ZT10], Theorems 3.1 and 3.4 can also
be generalized to systems in strict-feedback form:

f1(x, u) = h1(x1) + g1(x1)x2,
f2(x, u) = h2(x1, x2) + g2(x1, x2)x3,

...
fn−1(x, u) = hn−1(x1, · · · , xn−1)

+gn−1(x1, · · · , xn−1)xn,
fn(x, u) = hn(x) + gn(x)u,

(III.17)

where x ∈ Rn is the state and u ∈ R is the control input. The
functions hi : Ri → R, and gi : Ri → R, for i = 1, . . . , n,
are smooth, and gi(x1, · · · , xi) 6= 0 over the domain of
interest.
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——————————————————————————————————————————————————-[
Y T X

](( ∂[FTk +BTk xk kk(x)]
T

∂zk

)T
Gk(yk) +Gk(yk)

∂[FTk +BTk xk kk(x)]
T

∂zk
+ Ġk(yk)

)[
Y
X

]
= (III.9)

[
Y T X

]([ ∂Fk
∂yk

Bk

(Fk +Bkxk)
T ∂2φk−1

∂yk
2 +

∂φk−1

∂yk

∂Fk
∂yk

+ λ
2

∂φk−1

∂yk
−BTk Gk−1(yk−1) −λ

2
+

∂φk−1

∂yk
Bk

]T
· Gk−1(yk−1) +

(
∂φk−1

∂yk

)T ∂φk−1

∂yk
−
(
∂φk−1

∂yk

)T
− ∂φk−1

∂yk
1

+

 Gk−1(yk−1) +
(
∂φk−1

∂yk

)T ∂φk−1

∂yk
−
(
∂φk−1

∂yk

)T
− ∂φk−1

∂yk
1

 ·
[

∂Fk
∂yk

Bk

(Fk +Bkxk)
T ∂2φk−1

∂yk
2 +

∂φk−1

∂yk

∂Fk
∂yk

+ λ
2

∂φk−1

∂yk
−BTk Gk−1(yk−1) −λ

2
+

∂φk−1

∂yk
Bk

]
+ ∂Gk−1

∂yk
(Fk +Bkxk) +

∂2φk−1

∂yk
2 (Fk +Bkxk)

∂φk−1

∂yk
+
(
∂φk−1

∂yk

)T
(Fk +Bkxk)

T ∂
2φk−1

∂yk
2 − ∂

2φk−1

∂yk
2 (Fk +Bkxk)

−(Fk +Bkxk)
T ∂

2φk−1

∂yk
2 0

) ·
[
Y
X

]
=
[
Y T X

]
·

((
∂(Fk+Bkφk−1)

∂yk

)T
Gk−1(yk−1) +Gk−1(yk−1)

∂(Fk+Bkφk−1)

∂yk
+

∂Gk−1

∂yk
Fk

)
− λ

(
∂φk−1

∂yk

)T ∂φk−1

∂yk
λ
(
∂φk−1

∂yk

)T
λ
∂φk−1

∂yk
−λ

 ·
[
Y
X

]
≤ −λ

[
Y T X

]
Gk(yk)

[
Y
X

]
.

——————————————————————————————————————————————————-
——————————————————————————————————————————————————-

Gn(yn) = (III.12)




 [1] +

(
∂φ1
∂y2

)T
∂φ1
∂y2

−
(
∂φ1
∂y2

)T
− ∂φ1
∂y2

1

+
(
∂φ2
∂y3

)T
∂φ2
∂y3

−
(
∂φ2
∂y3

)T
− ∂φ2
∂y3

1

+ · · ·

...

+
(
∂φn−1

∂yn

)T ∂φn−1

∂yn
−
(
∂φn−1

∂yn

)T

− ∂φn−1

∂yn
1


,

——————————————————————————————————————————————————-

u

x3

M
1

x1

g

Fig. 1. A magnetic levitator.

IV. BACKSTEPPING CONTROLLER DESIGN FOR A
MAGNETIC LEVITATOR

We illustrate the results in this paper on a magnetic
levitator [JS09] shown in Figure 1.

We have the following model for the levitator:

Σ :


ξ̇1 = ξ2

M ,

ξ̇2 = ξ3
2α −Mg,

ξ̇3 = − 2R
α (1− ξ1)ξ3 + 2

√
ξ3υ,

(IV.2)

where x = [x1 x2 x3]T is the state of Σ, x1 is the
ball displacement, x2 is its momentum, x3 is the square
of the flux linkage associated with the electromagnet, u
is the voltage applied to the electromagnet, g is gravity’s
acceleration, M is the mass of the ball, R is the coil
resistance, and α is a positive constant that depends on the
number of coil turns. By using the results in Theorem 3.4
for the control system (IV.2) and for λ = 2, we have:

k1(x) = −x1,
φ1(x) = −Mx1,

k2(x) = −
(
M +

1

M

)
x1 − 2x2,

φ2(x) = −2α

(
M +

1

M

)
x1 − 4αx2 + 2αMg,

k3(x) = −
(
M

2α
+ 2α

(
M +

1

M

))
x1

−
(

1

2α
+ 4α+

2α

M

(
M +

1

M

))
x2

−3x3 + 6αMg.
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——————————————————————————————————————————————————-

G(x) =


 1 +

(
∂φ1
∂y1

)T
∂φ1
∂y1

−
(
∂φ1
∂y1

)T
− ∂φ1
∂y1

1

+
(
∂φ2
∂z2

)T
∂φ2
∂z2

−
(
∂φ2
∂z2

)T
− ∂φ2
∂z2

1

 (IV.1)

=

 1 +M2 + 4α2
(
M + 1

M

)2
M + 8α2

(
M + 1

M

)
2α
(
M + 1

M

)
M + 8α2

(
M + 1

M

)
1 + 16α2 4α

2α
(
M + 1

M

)
4α 1

 ,
——————————————————————————————————————————————————-

Therefore, the state feedback control law:

k(x, û) =
1

g(x)
[k3(x)− h3(x)] +

1

g(x)
û (IV.3)

=
1

2
√
x3

[
−
(
M

2α
+ 2α

(
M +

1

M

))
x1

−
(

1

2α
+ 4α+

2α

M

(
M +

1

M

))
x2

−3x3 + 6αMg +
2R

α
(1− x1)x3

]
+

1

2
√
x3
û,

makes the control system (IV.2) δ-ISS with respect to the
input υ̂. The corresponding contraction metric for the control
system (IV.2) is given by (IV.1), where zT2 = [x1 x2]T .

The δ-ISS condition in (II.3) is as follows:

‖ξxυ̂(t)− ξx′υ̂′(t)‖ ≤
√
λmax√
λmin

e−t‖x− x′‖+ 1√
λmin

‖υ̂ − υ̂′‖∞,

where λmax and λmin are maximum and minimum eigen-
values of the metric G, respectively.

V. DISCUSSION

In this paper we extended the backstepping procedure to
the design of controllers enforcing incremental stability. The
proposed backstepping procedure provides a recursive way
of constructing controllers as well as contraction metrics. An
example was provided to illustrate the proposed technique.
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