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Abstract— We propose and analyze the Persistent Patrol
Problem (PPP). An unmanned aerial vehicle (UAV) moving
with constant speed and unbounded acceleration patrols a
bounded region of the plane where localized incidents occur
according to a renewal process with known time intensity and
spatial distribution. The UAV can detect incidents using on-
board sensors with a limited visibility radius. We want to
minimize the expected waiting time between the occurrence
of an incident, and the time that it is detected. First, we
provide a lower bound on the achievable expected detection
time of any patrol policy in the limit as the visibility radius
goes to zero. Second, we present the Biased Tile Sweep policy
whose upper bound shows i) the lower bound’s tightness, ii) the
policy’s asymptotic optimality, and iii) that the desired spatial
distribution of the searching vehicle’s position is proportional
to the square root of the underlying spatial distribution of
incidents it must find. Third, we present two online policies:
i) a policy whose performance is provably within a constant
factor of the optimal called TSP Sampling, ii) and the TSP
Sampling with Receding Horizon heuristically yielding better
performance than the former in practice. Fourth, we present
a decision-theoretic approach to the PPP that attempts to
solve for optimal policies offline. In addition, we use numerical
experiments to compare performance of the four approaches
and suggest suitable operational scenarios for each one.

I. INTRODUCTION

Persistent patrol missions arise in many contexts such as
crime prevention, search and rescue, post-conflict stability
operations, and peace keeping. In these situations, military
or police units are not only effective deterrents to would-be
adversaries but also a speedy task force to intercept any tres-
passers or provide swift security and assistance. With recent
advances in technology, unmanned aerial vehicles (UAVs)
are well-suited for these tasks because they possess a large
bird’s-eye view and are unhindered by ground obstacles. The
path planning algorithms used in such missions play a critical
role in minimizing the required resources, and maximizing
the quality of service provided.

In this work, we propose and analyze the persistent patrol
problem (PPP), a generic mathematical model for UAVs
with limited sensors to perform such a mission in stochastic
environments. Incidents occur dynamically and stochastically
according to a general renewal process with known time
intensity and spatial distribution in the environment A ⊂
R

2. The UAV is modeled as a point mass traveling at
a constant speed with unbounded acceleration. The UAV
detects incidents within the footprint of its on-board sensors,
i.e., within its visibility range σ. We want to minimize the
expected waiting time between the occurrence of an incident,
and its detection epoch.

Related research focuses on search and rescue missions
in which the number of searched objects is known at the
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beginning of the missions [1]–[3]. In other words, these
works present problems in which the set of objects to
be found is static. In the PPP, by contrast, incidents of
interest arrive continuously with unknown arrival times, and
therefore the search effort must be persistent and preventive
over an infinite-time horizon.

A closely related problem is the Dynamic Traveling Re-
pairman Problem (DTRP), see, e.g., [4]–[7]. Both the PPP
and the DTRP have queuing phenomena in which demands
or incidents arrive in the system and wait for service. How-
ever, unlike the PPP, the DTRP assumes that all demands are
known upon their arrival epochs. Thus, few works have been
devoted to analyzing policies for the PPP other than our own
[8]–[10]. Other studies such as [11] investigate the use of
approximate dynamic programming to construct policies for
a team of vehicles to perform persistent patrol or monitoring.
However, the work does not provide a connection with the
queuing nature of the system. In our work, we highlight
this connection by using Little’s theorem to convert the
minimization of the expected waiting time into a dynamic
programming formulation. Song, Kim and Yi considered the
problem of searching for a static object emitting intermittent
stochastic signals under a limited sensing range, and analyze
the performance of standard algorithms such as systematic
sweep and random walks [12]. Due to the intermittent signals
from the object, searching robots need to perform a persistent
search, thus making the work relevant to our problem.
However, the authors assumed no prior information about
the location of the target object is available; hence, their
setting is equivalent to the assumption of a uniform spatial
distribution. In our work, we explicitly consider non-uniform
spatial distributions, which lead to different kinds of optimal
policies. Mathew and Mezic presented an algorithm named
Spectral Multiscale Coverage (SMC) to devise trajectories
such that the spatial distribution of the patrol vehicle’s
position asymptotically matches a given function [13]. We
show that when attempting to minimize discovery time, the
desired spatial distribution of the patrol vehicle’s position is
dependent on, but not equivalent to the underlying spatial
distribution of incidents it must find.

In this paper, we introduce the mathematical model of the
problem, prove bounds on achievable performance of any
algorithm for the PPP, and propose a variety of policies.
The approaches discussed include periodic path coverage
sweeps of subregions of the environment, sampling the
known spatial distribution of the incident generation process
and performing Traveling Salesman Problem (TSP) tours
over them, and an application of approximate dynamic
programming (ADP) [14]. The contribution of this paper is
fourfold. First, we provide a lower bound on the achievable
expected detection time of any patrol policy in the limit
as the visibility radius goes to zero. Second, we present
the Biased Tile Sweep policy whose upper bound shows
i) the lower bound’s tightness, ii) the policy’s asymptotic
optimality, and iii) that the desired spatial distribution of the
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searching vehicle’s position is porportional to the square root
of the underlying spatial distribution of incidents it must find.
Third, we present two online and easy-to-implement policies:
i) a policy whose performance is provably within a constant
factor of the optimal called TSP Sampling (TSP-S), ii) and
the TSP Sampling with Receding Horizon (TSP-SRH(η))
heuristically yielding better performance than the former in
practice. All three are adaptive to time intensity of the inci-
dent process. While the TS policy is deterministic, TSP-S and
TSP-SRH(η) policies are stochastically driven. Fourth, we
present a decision-theoretic model using a Markov Decision
Process (MDP) that attempts to solve for optimal policies
offline using ADP. In addition, we use numerical experiments
to compare performance of the four approaches and suggest
suitable conditions for each one.

The organization of this paper is as follows. In Section II,
we formally state the problem. We prove a lower bound for
the class of policies of interest in Section III and present our
policies in Section IV. In Section V, we present an alternative
MDP model of the problem. We discuss results in Section
VI and conclude with final remarks in Section VII.

II. PROBLEM STATEMENT

Consider a planar region A ⊂ R
2 of unit area. Incidents

arrive according to a renewal process with time intensity λ,
and upon arrival are independently and identically assigned
a location, according to an absolutely continuous distribution
supported on A, with spatial density ϕ. For simplicity, we
model ϕ as a piecewise constant function, over K subregions
(such a model can approximate any spatial density of interest
arbitrarily well):

ϕ(x) = ϕk, for x ∈ Ak, k = 1, 2, . . . ,K, (1)

with
∑K

k=1 ϕkAk = 1, where Ak > 0 is the area of the
subregion Ak. Let ϕ = maxx∈A ϕ(x) be the maximum value
attained by ϕ over the entire region A.

A single UAV, moving at a constant speed v, has on-board
sensors that detect incidents within a distance σ of the vehi-
cle. The motion of the UAV is determined by a search policy,
i.e., an algorithm that determines the flight direction based on
the vehicle’s position and on the available information about
the locations of the incidents (e.g., an estimate of the spatial
distribution of the currently outstanding incidents or prior
statistics on the incident generation process). The detection
time Ti of the ith incident is defined as the elapsed time
from its arrival to the moment the incident is detected by
the UAV. Given a search policy π, the system detection time
is thus defined as

Tπ = lim
i→∞

E[Ti : the UAV executes policy π], (2)

where we assume the limits exits.
A policy is called stable if the expected number of unde-

tected incidents is uniformly bounded at all times. Let P be a
set of all causal, stable, and stationary policies. The optimal

detection time is denoted as T
∗

= inf
π∈P

Tπ. The objective

of this work is to find a policy that provably achieves either
the optimal detection time, or an approximation thereof. In
particular, we say that a search policy π achieves a constant

factor approximation κ if Tπ ≤ κT
∗
.

In addition to the problem statement, we require the
following classic result throughout our own proofs. For a

set of n points independently sampled from an absolutely
continuous distribution with spatial density ϕ with compact
support A ⊂ R

2, there exists a constant β ∈ R such that the
length of the Euclidean Traveling Salesman Problem (ETSP)
tour through all n points satisfies the following limit, almost
surely [15]:

lim
n→+∞

ETSP(n)√
n

= β

∫

A

√

ϕ(x) dx, a.s. (3)

The current best estimate of the constant is β = 0.7120 ±
0.0002 [16], [17].

III. LOWER BOUND

We now investigate the performance limits of any stabiliz-
ing policy for the PPDP. The following result can be directly
extended to the multi-vehicle case. However, for the scope
of this paper, we reduce it to the single-vehicle case.

Theorem 1: The optimal detection time for the PPDP
satisfies

lim
σ→0+

T
∗
σ ≥ 1

4v

(∫

A

√

ϕ(x) dx

)2

. (4)

We will refer to the RHS of Eq. 4 divided by σ as TLB .
Proof: In the following, we denote the sensor footprint

of a vehicle at position p as Sσ(p). The probability that an
incident’s location is within the sensor footprint at the time
of arrival is bounded by Pr[x ∈ Sσ(p)] ≤ ϕπσ2. In this
case, the detection time for the incident is zero. However,
for any given distribution ϕ,

lim
σ→0+

Pr[x ∈ Sσ(p)] ≤ lim
σ→0+

ϕπσ2 = 0, ∀x ∈ A

and therefore, limσ→0+ Pr[x /∈ Sσ(p)] = 1. We note that
in this limit, from the perspective of a point x ∈ A, the
actions of any stabilizing policy π can be described by the
following (possibly nondeterministic) sequence of variables:
the lengths of the time intervals during which the point is
not contained in the sensor footprint, Yj(x). To denote the
mean of the sequence under the actions of a given policy,
we use

E [Yπ(x)] = lim
j→∞

E [Yj(x) : the UAV executes policy π] ,

and similarly to denote the variance and second moment of
such a sequence, we use var [Yπ(x)] and E

[

Y 2
π (x)

]

, respec-
tively. Due to random incidences [18], [19], an incident’s
detection time, conditioned upon its location, is written as

lim
σ→0+

E [Ti|xi = x] = lim
σ→0+

Pr[x /∈ Sσ(p)] · E

[

Y 2
π (x)

]

2 E [Yπ(x)]

=
E [Yπ(x)]

2
+ var [Yπ(x)]

2 E [Yπ(x)]
≥ 1

2
E [Yπ(x)] .

In other words, for fixed E [Yπ(x)], the detection time is
minimized if var [Yπ(x)] is zero.

The remainder of the proof assumes the limit as σ → 0+.
Let us define f(x) as the frequency at which point x is
searched, i.e., f(x) = 1/ E [Yπ(x)], and so

T =

∫

A

ϕ(x) E [Ti|xi = x] dx ≥ 1

2

∫

A

ϕ(x)

f(x)
dx.
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The vehicle is capable of searching at a maximum rate of 2vσ
(area per unit time), and so the average searching frequency
is bounded by

∫

A
f(x)/A dx ≤ 2vσ/A.

Thus, we have: T
∗ ≥ 1

2T f , where

T f = min
f

∫

A

ϕ(x)

f(x)
dx

subject to

∫

A

f(x) dx ≤ 2vσ and f(x) > 0.

Since the objective function is convex in f(x) and the
constraints are linear, the above is an infinite-dimensional
convex program. Relaxing the constraint with a multiplier,
we arrive at the Lagrange dual:

min
f(x)>0

[∫

A

ϕ(x)

f(x)
dx + Γ

(∫

A

f(x) dx − 2vσ

)]

=

∫

A

min
f(x)>0

[

ϕ(x)

f(x)
+ Γf(x)

]

dx − 2vσΓ.

Differentiating the integrand with respect to f(x) and setting
it equal to zero, we find the pair

f∗(x) =

√

ϕ(x)

Γ∗
, Γ∗ =

(

1

2vσ

∫

A

√

ϕ(x) dx

)2

(5)

satisfy the Kuhn-Tucker necessary conditions for optimal-
ity [20], [21]. Since it is a convex program, these conditions
are sufficient to insure global optimality. Upon substitution,
(4) is proved.

Oftentimes, a tight lower bound offers insight into the
optimal solution of a problem. Assuming that this lower
bound is tight, Eq. (5) suggests that the optimal policy
searches the neighborhood of a point x at identical intervals

at a relative frequency proportional to
√

ϕ(x). In fact, this
lower bound is shown to be asymptotically tight through a
constructive proof using one of the policies presented in this
paper.

IV. ONLINE POLICIES

A. Biased Tile Sweep (BTS)

We begin with a description of a subroutine used by the
BTS policy.

SWEEP-SERVICE

Given a subregion, S, partition it into strips of width 2σ
and execute a path running along the longitudinal bisector of
each strip, visiting all strips from top-to-bottom, connecting
adjacent strip bisectors by their endpoints. We now state
a bound on the length Lss(S) of the path planned by the
algorithm.

Proposition 2: The length Lss(S) of the path planned by
SWEEP-SERVICE for region S satisfies

lim
σ→0+

Lss(S)σ ≤ AS

2
.

Although the full proof is omitted for brevity, it is a simple
extension of the following fact: given a grid of squares whose
side-lengths are 2σ, the number of squares with nonzero
intersection with S satisfies [22]: lim

σ→0+
Nsq(S)σ2 = AS /4.

This policy requires a tiling of the environment A with the
following properties. For some chosen positive integer Nc ∈
N, partition each subset Ak into Nk = Nc/

√
ϕk tiles, each of

Algorithm 1 Biased Tile Sweep Policy

1: procedure BTS
2: Initialize ℓk ← 1 for k = 1, 2, . . . , K
3: for i← 1, 2, ...,∞ do
4: for k ← 1, 2, ..., K do
5: Execute SWEEP-SERVICE on tile Sk,ℓk
6: if ℓk < Nk then
7: ℓk ← (ℓk + 1)
8: else
9: ℓk ← 1

10: end if
11: end for
12: end for

13: end procedure

area Ak /Nk = Ak
√

ϕk/Nc. We assume Nc is chosen large
enough that an integer Nk can be found such that Nc/Nk is
sufficiently close to

√
ϕk. For example, one way of achieving

such a tiling is to partition Ak into strip-like tiles of equal
measure with Nk − 1 parallel lines. Let us give the tiles of
Ak an ordered labeling Sk,1,Sk,2, . . . ,Sk,Nk

.

The BTS policy is defined in Algorithm 1, where the index
i is a label for the current phase of the policy. The aim of the
algorithm is to perform a periodic sweep of every point in
the domain with the following two properties. The intervals
between sweeps are identical in length, i.e., they have zero
variance. The frequency with which a point is searched is
proportional to the square root of its density. During each
phase, the UAV sweeps one tile from each constant-density
subregion. Since all the tiles of a given subregion are equal
in area, each phase is equal in duration (asymptotically as
σ → 0+). The number of phases a point must wait between
sweeps is equal to the number of tiles in its subregion (Nk),
which is chosen to be inversely proportional to the square
root of that regions density. This causes the frequency with
which a point is searched to be proportional to the square
root of its density. Since the phase durations are identical,
the intervals between sweeping any given tile are identical.
To ensure that each point is searched at identical intervals,
SWEEP-SERVICE should always execute the same path on
a given tile.

Theorem 3: The system detection time of an agent oper-

ating on A under the BTS policy satisfies lim
σ→0+

TBTS

T
∗ = 1.

Proof: The total distance traveled between tiles during a
phase is no more than K diam(A). The duration of a single

phase T phase satisfies T phase ≤
∑ K

k=1
Lss(Sk,ℓk

)+K diam(A)

v .
Applying Proposition 2, limσ→0+ T phaseσ is smaller than:

lim
σ→0+

∑K
k=1 Lss(Sk,ℓk

)σ

v
+ lim

σ→0+

K diam(A)σ

v

=

∑K
k=1 Ak /Nk

2v
=

∑K
k=1 Ak

√
ϕk

2Ncv
.

Conditioned upon its location x ∈ Ak, a target waits one
half of Nk phases to be serviced,

E

[

TBTS|x ∈ Ak

]

=
1

2
NkT phase =

1

2

Nc√
ϕk

T phase.
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Algorithm 2 Distribution Sampling TSP Policy

1: procedure TSP-S(λs
1, λs

2, ..., λs
K , v, σ)

2: Initialize TSP constant β := 0.712.
3: while true do
4: for k ← 1, 2, ..., K do

5: nk := λs
kβ2(

∑K
j=1

√

λs
jAj)

2.

6: Sample nk virtual targets uniformly in Ak .
7: end for
8: Compute N := n1 + ... + nK .
9: Compute the TSP tour through N virtual targets.

10: Traverse the TSP tour with random direction with speed v.
11: Detect real incidents within sensor radius σ along the tour.
12: end while
13: end procedure

Noting that Pr[x ∈ Ak] = ϕk Ak and unconditioning on
x ∈ Ak to find the system time,

TBTS =
K
∑

k=1

Pr[x ∈ Ak] · E
[

TBTS|x ∈ Ak

]

=
K
∑

k=1

(Ak ϕk) ·
(

1

2

Nc√
ϕk

T phase

)

=
NcT

phase

2

K
∑

k=1

Ak
√

ϕk.

Thus,

lim
σ→0+

TBTSσ =

(

Nc

2

K
∑

k=1

Ak
√

ϕk

)

lim
σ→0+

T phaseσ

=
1

4v

(

K
∑

k=1

Ak
√

ϕk

)2

.

Combining with the lower bound on the optimal system time
in Theorem 1, the claim is proved.

Theorem 3 shows that the optimal policy for small sensor-
range searches a point x in the environment at identical

intervals at a relative frequency proportional to
√

ϕ(x), as
suggested by Eq. (5) in the proof of the corresponding lower
bound in Theorem 1.

B. TSP-Sampling (TSP-S)

The key idea of the TSP-S policy, shown in Algorithm 2,
is to simulate an arrival process for incidents, by sampling a
distribution in the environment to create virtual targets. We

sample virtual targets in A with a rate λs =
∑K

k=1 λs
k and a

spatial distribution

φ(x) =
λs

k

λsAk
, for x ∈ Ak. (6)

In each sampling iteration, let us sample nk =
λs

kβ2(
∑K

j=1

√

λs
jAj)

2 virtual targets in the subregion Ak pa-
rameterized by the sampling rate λs

k, and up on their arrivals,
virtual targets are distributed independently uniformly in the
subregion Ak. The path is constructed by computing a series
of TSP solutions through sampled virtual targets. An incident
is detected when the UAV visits a virtual target whose
distance to the incident is less than the radius of sensor range
σ. Although solving an exact TSP tour through n points is an
NP-hard problem, efficient solvers such as Linkern [23], [24]
can obtain approximate TSP tours of length within a constant
factor of optimal tours for n in the order of 10,000 in real
time. We note that in Subsections IV-B and IV-C, positions
of virtual targets are additional information to estimate the
spatial distribution of the currently outstanding incidents.

Optimal sampling rates and upper bound

In the TSP-S policy, we can compute detection time
as a function of the sampling rates λs

1,...,λs
K , which are

design parameters. Thus, we can optimize the sampling
rate parameters to minimize the system detection time. We
represent the sampling rates as a function of the visibility
radius:

λs
k =

lk√
πβσ

, where lk ∈ R
+ k = 1, 2, ...,K. (7)

In each iteration, the number of sampled virtual targets is

N =
∑K

k=1 nk = λsβ2(
∑K

j=1

√

λs
jAj)

2. We note that

(∫

A

φ(x)1/2dx

)2

=
1

λs





K
∑

j=1

√

λs
jAj





2

=
1

(λs)2β2
N .

When N is large, the length of a TSP tour can be approxi-
mated by

ETSP(N ) =
√
Nβ

∫

A

φ(x)1/2
dx = β

2

( K
∑

j=1

√

λs
jAj

)2

. (8)

Now, let us consider the ith incident. If the UAV does not
discover the incident in the current TSP tour, the vehicle
needs to complete the current tour, sample new virtual
targets, and traverse a new TSP tour. This process is repeated
until there is a nearby sampled virtual target whose distance
to the ith incident is no more than σ. Thus, the ith detection
time can be bounded by the sum of three components: (i)
waiting time di between arrival of the actual target and the
first virtual target sampling iteration to occur after its arrival
epoch, (ii) waiting time fi from the first sampling iteration
after its arrival epoch until a virtual target appears within the
circular neighborhood of radius σ, and (iii) waiting time wi

for the vehicle to visit the virtual target. We have:

Ti ≤ di + fi + wi. (9)

Since virtual targets are identically and independently sam-
pled according to the spatial distribution φ(x) in each sam-
pling iteration, we have

E[di] ≤
ETSP(N )

2v
, E[wi] ≤

ETSP(N )

2v
. (10)

In addition, let Vi,k be the event that the ith incident
appears in the subregion Ak. Conditioned on Vi,k, the
incident needs to wait for the next sampling iteration if
no virtual target appears in its neighborhood in the current
sampling iteration, which occurs with probability

p(Ak, nk) =

(

1 − πσ2

Ak

)nk

. (11)

We have:

E[fi|Vi,k] = p(Ak, nk)

(

ETSP(N )

v
+ E[fi|Vi,k]

)

, (12)

E[fi|Vi,k] =
p(Ak, nk)

1 − p(Ak, nk)

ETSP(N )

v
. (13)
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Algorithm 3 TSP Sampling with Receding Horizon

1: procedure TSP-SRH(η)(λs
1, λs

2, ..., λs
K , η, v, σ)

2: Initialize TSP constant β := 0.712.
3: for k ← 1, 2, ..., K do

4: nk :=
λs

kβ2

2v2

(
∑K

j=1

√

λs
jAj

)2
.

5: Initialize nk virtual targets uniformly in Ak .
6: end for
7: Compute N := n1 + ... + nK .
8: while true do
9: Compute the TSP tour through N virtual targets.

10: Traverse the η portion of TSP tour with speed v.
11: Choose the direction that visits more virtual targets.
12: Count the number of cleared virtual targets Nclear .
13: Detect real incidents with sensor of radius σ along the tour.
14: for k ← 1, 2, ..., K do
15: ∆Nk := λs

kη ETSP(N ).
16: Sample additional ∆Nk virtual targets in subregion Ak .
17: end for
18: Compute N := N −Nclear + ∆N1 + ... + ∆NK .
19: end while

20: end procedure

Thus, using the iterative expectation rule and upon substitut-
ing Eqs. 10, 13 into Eq. 9, we have

E[Ti] ≤
( K
∑

k=1

ϕkAk

1 − p(Ak, nk)

)

ETSP(N )

v
. (14)

Using Eq. 7, we can express nk and TSP (N ) in terms of
lk:

nk =
lk

πσ2
S(l), ETSP(N ) =

β√
πσ

S(l), (15)

where S(l) =

(

∑K
j=1

√

ljAj

)2

, l = (l1, ..., lK).

We also note that limσ→0+ p(Ak, nk) = e
−

lk
Ak

S(l)
, and

from Eq. 14, we obtain an upper bound for detection time
of TSP-S policy in terms of l1, ..., lK :

lim
σ→0+

TSσ ≤
( K
∑

k=1

ϕkAk

1 − e
−

lk
Ak

S(l)

)

βS(l)√
πv

. (16)

Considering the RHS of Eq. 16, which is named the TSP-S
upper bound, as a function of l1, ..., lK , we recognize that
though this function is not convex, it has a local minimum
that is also the global minimum. Therefore, we can use
well-known numerical methods such as Newton’s method
to minimize the RHS of Eq. 16 and solve for the optimal
parameters l∗k, and hence the optimal sampling rates (λs

k)∗.
For a given incident spatial distribution ϕ(x), the optimal
sampling rates (λs

k)∗ yield a constant bound factor of the
optimal performance. We will evaluate these constant bound
factors experimentally in Section VI.

C. TSP Sampling with Receding Horizon (TSP-SRH(η))

The TSP-SRH(η) policy, shown in Algorithm 3, modifies
the TSP-S policy by reducing the waiting time to the next
sampling iteration. We have observed that in the TSP-S
policy, the vehicle needs to wait for a duration of di until the
next sampling iteration, thus we can reduce this time if the
UAV follows only a fraction η of a TSP tour from the current
position before computing the next TSP tour. In particular,
we choose the fraction of the TSP tour which contains as
many virtual targets as possible. In other words, we generate

the sampling process as a Poisson process and then apply
the receding horizon policy to them, much like the standard
DTRP. In [7], the authors heuristically argue that the receding
horizon policy is optimal for the DTRP when the parameter
η is small. The experimental value of η is within [0.1, 0.2].
We conjecture that the receding horizon policy is optimal for
the DTRP, and at steady state, the variance of outstanding
virtual targets is small. Thus, the optimal waiting time of any
virtual target for suitably small parameter η is conjectured
to be:

lim
i→∞

E[wi] =
β2λs

2v2

(∫

A

φ1/2(x)dx

)2

=
β2

2v2

( K
∑

k=1

√

λs
kAk

)2

.

Using Little’s theorem, we can obtain the steady expected
number of outstanding virtual targets

n = λs lim
i→∞

E[wi] =
λsβ2

2v2

( K
∑

k=1

√

λs
kAk

)2

, (17)

nk =
λs

k

λs
n =

λs
kβ2

2v2

( K
∑

k=1

√

λs
kAk

)2

. (18)

Therefore, in Algorithm 3, we initialize the system at steady
state at Line 5 and sample additional virtual targets as
expected values of Poisson random variables at Line 16.

Similar to the TSP-S policy, we consider sampling rates

as a function of the visibility radius: λs
k = lk

√

2
π

v
βσ . When

parameter η is small, we can approximately bound E[di +
fi|Vi,k] from above by Ak

λs
k
πσ2 , which is the expected value

of the first arrival time of the sub-Poisson process in the
subregion Ak. We can carry out a similar procedure as in
the TSP-S policy to obtain an upper bound for TSP-SRH(η):

lim
σ→0+

T SRHσ ≤
[ K

∑

k=1

(

ϕkA2
k

lk
e
−

lk
Ak

S(l)
)

+ S(l)

]

β

v
√

2π
. (19)

We refer to the RHS of Eq. 19 as the TSP-SRH(η) upper
bound. Now, we can find optimal sampling rates (λs

k)∗ to
minimize the above upper bound by numerical methods,
which in turn yields a constant bound factor compared to the
optimal performance given an incident spatial distribution. In
Section VI, we will carry out extensive simulation to support
the above conjecture. Furthermore, similar to the BTS policy,
both TSP-S and TSP-SRH(η) with the optimal sampling rates
(λs

k)∗ also patrol regions with higher spatial density more
often.

V. MDP MODEL

In this section, we attempt to solve the PPP optimally by
solving an MDP model offline. To enable a tractable model,
we further assume that the incident process is Poisson.
This assumption is reasonable for the purpose of comparing
computational cost with the above policies. We partition the
region A into C square cells of side

√
2σ such that each

cell can be covered within the sensor visibility range so that
when the UAV enters a cell, it can detect all outstanding
incidents in that cell.

Let Ti be the detection time of the ith incident and let
N (t) be number of outstanding incidents at time instant t.
From Little’s Theorem, we have the following relation when
considering the class of stable policies:

lim
t→∞

E[N (t)] = λ lim
i→∞

E[Ti], (20)
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assuming that the two limits exist. Thus, minimizing sys-
tem detection time, lim

i→∞
E[Ti], is equivalent to minimizing

lim
t→∞

E[N (t)], the steady state number of outstanding inci-

dents. If we further discretize the time axis with discrete time
index k, we can arrive at:

inf
π∈P

lim
i→∞

E[Ti] =
1

λ
inf
π∈P

lim
N→∞

E

[

N
∑

k=0

nk

]

, (21)

where nk is the number of outstanding incidents added (pos-
sibly negative if more are serviced than generated) during the
k-th interval.

In this section, we define λj as the arrival rate of the sub-
Poisson process characterizing real incidents in the j-th cell:

λj = λ

∫

Cj

ϕ(x)dx. (22)

The components of the MDP are defined as below:

• State: xk = (p, r)k, where p is the current position
index of the vehicle with value from 1 to C, and r ∈
R

C is a vector contained the elapsed times since the
previous visit to each cell. Because the number of new
incidents in the j-th cell generated since the previous
visit is Poisson(λjrj), rj is a sufficient statistic for the
j-th cell.

• Control: uk is one of the neighboring cells (at most four
in our case) that share edges with the current cell.

• State transition:

xk+1 = fk(xk, uk) = (p, r)k+1, (23)

pk+1 = uk, ∆T =

√
2σ

v
, (24)

ri,k+1 = ri,k + ∆T if i 6= pk+1, rpk+1,k+1 = 0. (25)

• Stage cost/reward:

hk(xk, uk) = E[
nk

λ
] = ∆T − gk(xk, uk), (26)

gk(xk, uk) =
λuk

λ
(ruk,k + ∆T ), (27)

where hk(xk, uk), gk(xk, uk) are the normalized (di-
vided by λ) expected number of additional outstand-
ing incidents, and the normalized expected number of
detected incidents. While hk(xk, uk) is considered as
stage cost, gk(xk, uk) is considered as stage reward.

• Objective function:
We introduce a discount factor α ∈ (0, 1) to approxi-
mate the original problem as an infinite discounted sum.
When α → 1, we have the original problem, and when
α → 0, the model prefers large stage reward or small
stage cost:

E

[ ∞
∑

k=0

αk nk

λ

∣

∣

∣

∣

x0 = x

]

=
∆T

1 − α
− Jπ(x), (28)

Jπ(x) = E

[ ∞
∑

k=0

αkgk(xk, uk)

∣

∣

∣

∣

x0 = x

]

. (29)

Thus, we have converted the original problem of min-
imizing the system detection time to maximizing an
infinite sum of discounted number of detected incidents.

The objective is to find an optimal stable stationary pol-
icy π∗ that maximize Jπ(x): π∗ = argmaxπ∈P Jπ(x).

The advantage of this approach is the MDP model can be
extended for more general objective functions that considers
trade-off among factors. However, the model has an infinite
space dimension, and thus solving it exactly is impossible.
To solve this MDP, we use policy iteration with linear
approximate cost structure. From [11], under a stationary
policy π, at state x = (p, r), the cost Jπ(x) is approximated

by J̃π(x):

J̃π(x = (p, r)) = γp + ξ′pr, (30)

where γp ∈ R, ξp ∈ R
C . We start the policy iteration

process with a greedy algorithm that visits the neighbor cell
with the largest expected number of incidents. The value
of discount factor α is set to be in the range of [0.4 0.6]
experimentally to obtain solutions that converge. Because the
objective function is an approximation of detection time, we
need to simulate a policy to compute actual detection time.

VI. RESULTS

In the following experiments, we assume that the UAV
travels at a unit speed, v = 1 (unit length per second). In
Fig. 1, we show examples of a path generated by different
policies. Incidents arrives with temporal intensity λ = 1 and
a uniform spatial distribution. We assume that the vehicle
has visibility radius σ = 0.05. As we can see in Fig. 1.a and
Fig. 1.b, both TSP-S and TSP-SRH(η = 0.2) are stochastic
by following TSP tours induced by sampled virtual targets.
While the TSP-S policy follows a complete tour before a new
tour, the TSP-SRH(η = 0.2) policy travels 20 percent of a
tour before sampling new targets and considering outstanding
targets in the next TSP computation. In Fig. 1.c, the MDP
policy with α = 0.6 and 10 policy iterations generates a
deterministic path and constrains the vehicle to travel in a
grid pattern. When the vehicle enters a cell, it goes to the
center of the cell.

A. Optimal sampling rates in TSP-SRH(η)

In the first experiment, we supported our conjecture on
the theoretical upper bound of the TSP-SRH(η) policy in
Section IV-C by comparing the TSP-SRH(η) upper bound
(RHS of Eq. 19) and extensively simulated detection time.
Fig. 2 illustrates the performance of the sampling TSP-like
policy in a two-region piecewise uniform environment where
60 percent of incidents arrive in the 20-percent subregion on
the left hand side of the unit square. The visibility radius
σ is set to 0.05. The TSP-SRH(η) upper bound from the
conjecture is a function of the sampling rates λs

1 and λs
2

for the two subregions. The optimal sampling rates (λs
1)

∗

and (λs
2)

∗ can be computed accordingly. We observed that
the optimal experimental sampling rates (λs

1)
∗ and (λs

2)
∗ are

close to the conjectured optimal values.

B. Performance of policies as the radius σ approaches zero

To evaluate the performance of the policies in the regime
of small visibility range, we compared BTS, TSP-S, TSP-
SRH(η) and MDP for various values of σ from 0.1 to 1/1280
as shown in Fig. 3. The spatial distribution is uniform. As
we can see, the MDP policy can obtain detection time that
is almost identical to the lower bound for σ ≥ 0.0125. For
smaller values of σ, the gap between the MDP policy and
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(a) TSP-S policy.
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(b) TSP-SRH(η) policy.
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(c) MDP policy.

Fig. 1. Examples of policy behavior in a unit square with arrival time intensity λ = 1 and a uniform spatial distribution. In (a) and (b), dots are virtual
targets, and the star is a tagged incident. The incident will be detected when the UAV visits a virtual target whose distance to the incident is less than the
radius of sensor visibility σ = 0.05. In the TSP-S policy, the vehicle travels a complete a TSP tour before beginning a new iteration. In the TSP-SRH(η)
policy, the vehicle only travels a fraction η of a TSP tour before computing a new tour. In (c), an example of a path generated by the MDP policy, α = 0.6
and 10 policy iterations. When the vehicle enters a cell, it goes to the center of the cell. Lines are drawn with some random offsets around cell centers to
depict multiple paths. As we can see, because MDP policy is deterministic, the path possesses a regular pattern, as compared to the randomness of paths
produced by TSP-S and TSP-SRH(η).

TABLE I

PROPERTIES OF POLICIES

Properties BTS TSP-S TSP-
SRH(η)

MDP

Adaptive to λ Yes Yes Yes Yes
Quality of
policy as
σ → 0

Optimal Within con-
stant bound
factor

Within con-
stant bound
factor

Optimal

Online Yes Yes Yes No
Stochastic No Yes Yes No

the lower bound is larger. This is due to the approximation
of the cost function in the MDP model via discount factor
α. In terms of computational requirement, the MDP policy
requires offline computation via extensive sampling to ensure
approximation quality. Thus, for small values of σ, the MDP
policy provides poor performance with early termination. In
contrast, the BTS policy almost achieves the lower bound
for very small values of σ while keeping the online com-
putation cost small. This observed performance agrees with
our analysis. Moreover, we observe that the TSP-SRH(η)
policy consistently outperforms the TSP-S policy. In practice,
the TSP-SRH(η) policy has good performance in situations
where we prefer stochastic trajectories.

C. Performance of policies in non-uniform distributions

In this experiment, we tested the performance of the
policies in an environment made up of a unit square with the
following spatial distribution: the leftmost 10% of the square
has density value 1 + 10ǫ, and the other 90% has density
value 1−10ǫ/9, where ǫ ∈ [0, 0.89]. This environment varies
from uniform to nonuniform as ǫ increases from zero. The
sensing radius is σ= 0.00625. In Fig. 4, we plot the lower
bound, upper bounds and experimental detection times for
different values of ǫ. As we can see, the simulated system
detection time curves are bounded between the theoretical
lower bound and the upper bound curves. The result indicates
that for a given spatial distribution, optimal sampling rates
ensure that the TSP-S and TSP-SRH(η) policies are within a
constant bound factor compared to the optimal performance.
Moreover, the performance of BTS is very close to the lower
bound and is better than TSP-S and TSP-SRH(η) as we
expected. Table I summarizes the above discussion.
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(a) Conjectured constant bound factor.
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(b) Simulated ratio of system detection time to the
lower bound.

Fig. 2. Performance of the TSP-SRH(η) policy in a two-region piecewise
uniform environment (60% density in 20% of the area on the left hand
side). In (a), the conjectured constant bound factor is plotted with respect
to sampling rates λs

1 and λs
2 (σ = 0.05). The optimal sampling rates (λs

1)∗

and (λs
2)∗ can be computed accordingly. In (b), the ratio of detection time

to the lower bound (for this distribution) is plotted under the same settings
as in (a). The optimal experimental sampling rates (λs

1)∗ and (λs
2)∗ are

close to the optimal conjectured values.

VII. CONCLUSIONS

In this paper, we have introduced, analyzed and compared
four approaches to the PPP. We consider a UAV with limited
sensing capability on a search mission to detect incidents
that arrive continuously. We have proved a lower bound for
the class of stable policies in the limit as the sensor range
shrinks infinitesimally small. We presented the BTS policy
and showed an upper bound on its performance that is tight
with our proven lower bound. This tightness has shed light
on the following fact: in a persistent search scenario, the
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Fig. 3. Detection time of the policies compared to the lower bound as radius
σ approaches zero on a log-log plot. The spatial distribution is uniform.
MDP has good performance for large values of σ while BTS provides
excellent performance for very small values of σ. The TSP-SRH(η) policy
consistently outperforms the TSP-S policy.
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Fig. 4. Performance of the policies in comparison with the theoretical
lower bound and upper bounds for varying spatial distribution on a semi-
log plot. The sensing radius is σ = 0.00625. The spatial distribution varies
from uniform to 99% of the incidents occuring in a subregion with 10% of
the area.

desired spatial distribution of the searching vehicle’s position
is porportional to the square root of the underlying spatial
distribution of incidents it must find.

In particular, the BTS policy scans subregions at identical,
predictable intervals. While this is necessary to achieve the
lower bound, it could be a weakness in a more complex
problem setting in which the incidents have the ability to
evade the searching vehicle. With that vision in mind, we
present two stochastic policies whose executed paths less
unpredictable, called TSP-S and TSP-SRH(η). Both policies
work based on solving consecutive TSP tours of sampled
virtual targets. We have proved an upper bound for the
TS-S policy and presented guidelines for choosing optimal
sampling rates to minimize the upper bound. In connection to
the DTRP, we have provided a conjecture on an upper bound
of the TSP-SRH(η) policy, and through simulation we have
verified that the TSP-RH(η) policy has a good performance
in practice.

Moreover, we have presented a general MDP formulation
for the system detection time, which can be extended to
general objective functions. Since the size of the state space
is infinite, we use ADP methods to find near-optimal so-
lutions. We have verified that in the limit as the visibility
radius goes to zero, the performance of the TSP-SRH(η)
policy and the MDP policy are comparable, but the former
is more computationally efficient. This result has suggested
that online sampling policies are preferred when the visibility
radius is small compared to the area of supervised regions.
In future work, we would like to extend and analyze sam-
pling methods for more complex situations such as multiple

vehicles with imperfect sensors, uncertain movement, and
imperfect knowledge of their locations.
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