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Abstract  

This paper presents some preliminary results on com- 
bining two new ideas from nonlinear control theory 
aild dynamic optimization. We show that the compu- 
tational framework facilitated by pseudospectral (PS) 
methods applies quite naturally and easily to the Lie- 
Backlund equivalence of nonlinear controlled dynam- 
ical systems. The optimal motion planning problem 
for differentially flat systems is equivalent to a clas- 
sic Bolza problem of t,he calculus-of-variations. In this 
paper, we exploit the notion that derivative of Rat out- 
puts given in terms of Lagrange interpolating functions 
can he quickly and easily computed using PS differen- 
tiation matrices. The application of this method to 
the crane control problem demonstrates how flatness 
may he readily exploited. In the case of partial dy- 
namic inversion, or systems with non-zero defects, dif- 
ferential constraints aresatisfied at  optimal node points 
whose optimality criterion is some error norm. Integral 
cost functionals are handled by Gauss-type quadrature 
rules. Numerical experiments suggest that PS methods 
are superior to other methods that exploit full or par- 
tial dynamic inversion; however, a number of problems 
inherent to utilizing Rat outputs to real-time trajectory 
optimization remain open. 

Keywords: Differential flatness, optimal control t h e  
ory, pseudospectral methods 

1 Introduction 

A significant number of future military syst,ems are 
based on aut.onomous operation of multiple agents 
working in a cooperative and non-cooperative manner 
to achieve optimal mission performance. The design of 
these proposed new systems demand peak performance 
and autonomy over a wide range of operating condi- 
tions. Examples of these range from the formation- 
keeping and reconfiguration of satellite swarms to abort 
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guidance of a reusable launch vehicle t o  the design of 
minimum-time maneuvers for unmanned combat air 
vehicles. In all of these problems, the systems are non- 
linear in both the state and control variables. Lineariz- 
ing or simplifying the system dynamics often leads to 
substandard performance. The proper framework for 
addressing many of these problems is nonlinear o p  
timal control theory. Despite significant progress in 
this field over the last 40 years, " .__ solving optimal 
control problems of scientific or engineering interest is 
often extremely difficult."[17] In recent years, a new 
family of pseudospectral (PS) methods have emerged 
as a viable option for real-time trajectory optimiza- 
tion [3, 4, 5 ,  131. PS methods are quite unique in the 
sense that they treat the approximation of the tangent 
bundle separately from the approximation of the vec- 
tor field. Thus, they can readily exploit new ideas and 
concepts that rely on differential-geometric properties 
of control system. In this paper, uze explore harnessing 
t,he concept of differential flatness [7, 81 towards solv- 
ing the problem of real-time trajectory generation for 
nonlinear systems. 

Differential flatness of nonlinear control systems was. 
introduced by Fliess et  al. [7] as part of a notion that 
certain differential algebraic representation of dynam- 
ical systems are equivalent [81. Roughly speaking, a 
dynamical system is differentially flat if it is equivalent 
to a system without dynamics, i.e. a static system. 
Although it is difficult to determine whether a system 
is differentially Rat, a growing number of problems in 
engineering have been shown to he flat, (see Ref. [8] 
and the references contained therein). For a flat sys- 
tem, the motion planning problem simply reduces to 
finding a sufficiently smooth output, t Y y( t ) ,  that 
satisfies the boundary conditions in output space. In 
principle, finding such smooth functions is not diffi- 
cult, since the output can be represented in terms of 
polynomials with unknown coefficients. These coeffi- 
cients can then be determined by imposing the condi- 
tion that the polynomials and their derivatives should 
automatically satisfy the boundary conditions in out- 
put space 16, 7, 81. However, when differentiating poly- 
nomials, it is extremely important to be cognizant of in- 
stabilities like the Runge phenomenon [16]. Further, as 
noted earlier, in many high-performance systems, i t  is 
not enough to find feasible trajectories hut trajectories 
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that  optimize a Bolza cost functional. For differentially 
flat systems, the optimal control problem is equivalent 
t o  a classic unconstrained calculus-of-variations prob- 
lem [l]. Note that this equivalence facilitated by the 
Lie-Bicklund transformation[8] is quite different from 
the neoclassical approach where the controls are elim- 
inated by a passage through a differential inclusion to 
a generalized Bolza problem [Z]. 

The states 'and controls of flat systems can 
be represented by 2 = a(y,y,  . . _ ,  y ( o ) ) , ~  = 
b(y,y, .  . . ,y(p+l)), where ~ ( ~ 1  is the r th  derivative of 
y.  PS methods are particularly suited for such rep- 
resentations since the derivatives of y can he quickly 
and easily obtained by the repeated use of differentia- 
tion matrices. In the case of optimal motion planning, 
approximations may arise if the cost function is given 
in an integral form (since an integral cost is equivalent 
to adding dynamics). However, since PS methods are 
based on Gauss-type quadrature rules, exact perfor- 
mance representation is possible for certain families of 
integrands (e.g. polynomials). hIuch of our attention in 
this paper is based on t.he use of orthogonal polyuomi- 
als and their applications towards fully invertible (i.e. 
flat) systems. Our methods easily extend t o  partial 
inversion and flat systems with inequality constraints 
(see for example, Refs. [4, 151). 

Our work is similar in spirit to that of Milam et al. 
[ll] and Petit et al. [l2] but we will show that our 
technique is markedly different yet simpler to imple- 
ment than their B-spline approach. Further, since dif- 
ferentially flat systems are sufficiently smooth, PS ap- 
proximations for functions and their derivatives provide 
exponential convergence (accuracy) rates for analytic 
functions (outputs, states and inputs) and O(N-"') for 
every m for Cm functions [E]. This property (known 
as spectral accuracy) is particularly important for sys- 
t e m  where flat outputs cannot be obtained but an out- 
put that partially inverts the dynamics can be found 
and exploited. In this case, the dynamical constraints 
can be reduced but not eliminated while maintaining 
spectral accuracy [14]. Potential convergence problems 
resulting from discretizing the transformed dynamics 
are handled well by PS methods. 

2 Problem Formulations 

A classic smooth optimal control problem can be stated 
as: 

Problem C 
Determine the trajectory-control pair, [a, r f ]  3 r c) 
{I E WN*,u E RN"} and possibly the clock times TO 

"r, 

For simplicity in presentation, we assume all functions 
to he Cm-smooth. The dynamical system described by 
E4.(2) is differentially flat[7] if there exists a variable 
y and a function c(.), 

y = c ( 2 ,  u,zi,. . . ,U(*)) (4) 

cc = a(y,y, .  ..,y(o') (5) 
U = b(y,y, . . . ,y (#+' ) )  (6) 

such that 

where a and P are finiae positive integers that denote 
the number of derivatives of the respective variables. 
The variable, y is called a flat or linearizing output. For 
ease of notation, we let s = + 1 and denote the flat 
output and its derivatives by the composite variable, 
z E R(S+'P", 

z =  1y.y , . . . , y ( S ) ] T  (7) 

so that a(.) : z i I and b(-) : z -t U. For a differ- 
ent,ially flat system, Problem C can now he replaced 
by, 

Problem DF 
Determine the smooth function, [r~ ,r f l  3 r Y y E 
RN", and possibly the clock times, TO and r f ,  that min- 
imize the classic Bolza cost functional [l], 

j [y( , j , rO,q~= ~ ( z ( ~ o ) , + f ) , m , r f j  + /" p ( z ( T ) ) d T  
10 

(8) 

(9) 

subject to the end point constraints, 

Gl 5 6(z(Too),Z(Tf),To,'if) 5 6" 

where fi(,), p ( . )  and e( . )  denote functions obtained 
from E(.), F( . )  and e(.) respectively by an appropriate 
substitution of Eqs.(S) and (6) in Eqs.(l) and (3). Of 
course, by the definition of differential flatness, Eq.(Z) 
is automatically satisfied and hence is not a constraint. 
Thus, Problems C and DF are equivalent although their 
trajectories live on different manifolds with different 
dimensions. 
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Now suppose that y is not a linearizing output (for 
example, if the system is not flat), then Problem DF 
includes additional dynamic constraints of the form, 

i(z(7)) = 0 (10) 

PS methods for solving such problems are discussed in 
1151; in this paper, we focus on using the Legendre PS 
method that explicitly utilizes flat outputs. 

3 The Legendre Pseudospectral  (PS) Method 

For the purpose of clarity and brevity, we discuss only 
the Legendre PS method. The basic underlying prin- 
ciples for other PS methods (e.g. Chebyshev 151) are 
same; however, their numerical properties are different. 

Let L N ( t )  be the Legendre polynomial of degree N. 
The LegendreGauss-Lobatto (LGL) points, tr,  1 = 
0, .  . . N  are given by to = - 1 , .  t N  = 1, and for 
1 5 1 _< N - 1, tr are the zeros of LN, t,he derivative of 
L,v(t). The choice of these points provides us with opti- 
mal results (in the L2-sense) for interpolation of fnnc- 
tions and prevents the Runge phenomenon 116). For 
Problem C, the Legendre PS method offers an approx- 
imation for evaluating the integral by Gauss quadra- 
tures while the differential constraint is approximated 
by driving the residuals to aero at the LGL points. In 
this manner, the Legendre PS method unifies the dis- 
cretization of both the integrals and t,he derivatives, 
and in both cases the discretizations are highly accu: 
rate. Further details on the approximation method for 
Problem C is described in (3, 5, 131. Here, we focus 
our attention to Problem DF and the transformations 
necessary to cast Problem C to this format. 

Since the LGL node points lie in the computational 
interval [-l,ll, the linear transformation, 2r = (rf - 
ro)t + (rf + ro) is used to scale the domain, [ T O , T ~ ] .  

Next, the vector-valued function, t U y(t), is written 
as some Nth degree vector-valued polynomial of the 
form 

N 

Y(t) = CYl4dt) (11) 
l=O 

where, y~ := y(t1) are the unknown coefficients, and 
for 1 = 0 , 1 , .  . .  , N 

is then obtained simply by differentiating Eq.(ll), 

N 

Y ' W  = C Y l i j " ) ( t )  (13) 
1=0 

where as before the superscript s denotes the sth 
derivative. It is apparent that we must choose N 2 
s + 1. Evaluat,ing the derivatives at t k  results in a ma- 
trix multiplication of the following form: 

N 

Y(td = CDl,klYI (14) 
1=0 

where Di, t l ,  i = 1,. . . ,s are the entries of ( N  + 1) x 
( N  + 1) differentiation matrices D,. The matrix, D1 is 
given by (41 

-1 k # 1  
L N ( 4 )  .tr--t< 

- No k = 1 = 0  I 0 otherwise 

(16) 
4 

"+1) k = l = N  
4 

DI := [Di,ri] := 

It can be shown that D, = D' where the superscript 
denotes matrix powers. Thus, DZ is obtained by sim- 
ply squaring D1, while Da = D3 and so on. Since 
Y = [yo,y1,. . . , Y N ]  E R N - x ( N + l )  is an equivalent 
representation of the vector-valued polynomial given 
by Eq.(ll), it follows that, 

Yt =[yo,yi , .  . . , ~ i v l [ D ' l ~  (17) 

is an equivalent representation of the vector-valued 
polynomials, yo), i = I . .  . ,s given by Q.(Iz). In 
other words, the derivatives of the Rat outputs at  the 
LGL points are obtained by a simple matrix multipli- 
cation of the flat output with the appropriate order 
of the differentiation matrix. This is better illustrated 
as follows: Let Z = [ zo ,a l , .  . . ,zN] E ~ % ( ~ + ' ) ~ ~ ~ ( ~ + l )  
(see Eq.(7)). Then, 

are the Lagrange polynomials of order N that satisfy 
the Kronecker identity, &(ti;) = 61k, where 61r = 1 for 
1 = k and is zero otherwise. The composite variable z 
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where E is a (s + 1) x 1 vector of ones, LS denotes the 
Kronecker product and D is a (s + 1)(N + 1) x (s + 
1)(N + 1) block diagonal matrix where each block is 
( N +  1) x ( N +  1) and the (s+ 1) block diagonal entries 
are given by i = 0,1,. . . ,s. An interesting situ- 
ation arises when the clock times are fixed and the end 
point constraints in output space are given by linear 
inequalities of the form, (Cf. Eq.(9)) 

6 5 AI4.o) Z(Tf)] 5 6, (19) 

where A is a matrix of appropriate dimension. The 
motion planning problem is now reduced to solving a 
linear matrix inequality of finding the Nu x ( N  + 1) 
parameters [yo, y1 , . . . , Y N ]  such that 

_< B[Yo,Yi , .  . . , Y N ]  5 6, (20) 

where B is obtained from Eqs.(lS) and (19). Recall 
that N is a design parameter and must be chosen such 
that N 2 s + 1. For a point-to-point motion planning 
problem in output space, Eq.(20) reduces to  simply 
solving a full-rank linear matrix equation for N = s+l ,  
which can obviously be done in real-time. However, a 
better alternative might be to  choose N >> s and de- 
termine the extra degrees of freedom by minimizing 
some cost functional. In any case, the optimal motion 
planning problem requires that the integral given in 
Eq.(8) be evaluated in terms of the values of the Rat 
outputs and its derivatives at the LGL points. While 
other polynomial approximations [ll] can only use low- 
order quadrature schemes, in PS methods, high-order 
quadrature rules such as the Gauss-Lobatto integration 
rule can be naturally employed. The integral given by 
Eq.(S) is approximated by a finite sum which is exact 
for integrands which are polynomials of degree 2N - 1 : 

N 

J [y ,TO,Tf ]  Zz EN(ZO,ZN,TO,Tf)  + x F N ( Z k ) U r l ,  (21) 
k=O 

where Wk are the LGL weights, 

1 
k = 0,1,. . ., N (22) 

2 
wy := 

N ( N  + 1) [ L N ( t k ) ] ’  

Thus, Problem DF is discretized to the following math- 
ematical programming problem: 

Problem DFN 
Find the Nu x (N + 1) vector Y = [yo ,y~ ,  . . . , Y N )  and 
possibly TO and rf that minimize 

N 

j N I Y , r O , T f l  c f i ( Z k ) W k  + G(ZO,ZN,TO,Tf) (23) 
k=O 

subject to 

c 5 qzo, ZN, 70, Tf) 5 6” (24) 

If 9 and E are linear in zt, then the problem reduces to 
a linear programming problem for linear conditions in 
output space. In general, this is a nonlinear program- 
ming problem which can be solved using commercial 
off-the-shelf packages like SNOPT 191. It is worth not- 
ing that in our method, the original state and control 
variables can be easily recovered by using the differen- 
tiation matrix and the functions a(.) and c( . ) .  

4 Example: The Crane Problem 

We first illustrate our approach by way of the crane 
example from 171. A twedimensional state model of a 
trolley-load of a crane is given by, 

mx = -TsinO (25) 
mi = -TcosO+mg (26) 

z = RcosO (2s) 
x ,= RsinO+D (27) 

where (x, z )  are the coordinates of the load, m, which is 
connected to  a trolley by a rope of length Rand tension 
7’. The trolley is at some distance D along the z-axis 
while the load is at an angle 0 away from the vertical. 
As shown in Ref. (71, the system is differentially flat 
with a linearizing output given by y = [z, zIT. 

The basic control problem is to carry the load m from 
(RI, 01) to (R2, 0 2 )  while minimizing oscillations at  
the end of the transport. Although the oscillations pro- 
vide a natural way to  formulate a cost functional, we 
use a slightly modified “indirect” approach suggested 
by Fliess et al. to facilitate a quick comparison. That 
is, instead of finding a smooth curve [ro,Tf] 3 r H 

y(T)  such that d*y/dr‘(~,)  = d‘y/dT‘(rf) = 0 for 
T = 1,2,3,4,  we choose to  minimize, 

J = Y T ( ~ o ) Y ( ~ o )  + Y T ( ~ j ) Y ( ~ f )  + Y T ( ~ d Y ( ~ o )  

+YT(Tf)Y(Tf) (29) 

subject to the endpoint constraints, 

The “high-level” control is obtained by 171 

Recall that in our method, the derivatives are obtained 
by a simple matrix multiplication of the data at the 
LGL points. Figure 1 displays plots in a form suit- 
able for comparison with Ref. 171. The number of LGL 
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Figure 1: Results for the crane problem 

points were arbitrarily chosen to be N = 11. Although 
the shape of our plots is similar to that of Fliess et al., 
notice that our curves are different. This is because we 
have chosen to solve the optimal motion planning prob- 
k m  rather than settle for feasible trajectories. Thus, 
our method generates fewer oscillations (compare the 
plot of the vertical deviation angle, 0, with that of Ref. 
171). In principle, we can get better results by reformu- 
lating the problem as that of either minimizing the os- 
cillations while driving all four derivatives of the output 
to zero at  the boundary points or by keeping the cur- 
rent formulation and impose the additional constraints 
that the derivatives of B vanish at  the end points. We 
postpone these ideas for future work. 

5 Issues in Using Flat Outputs 

While the notion of flatness is a promising idea, it is un- 
clear at  this stage whether optimal trajectories should 
be computed in (the Rat) output space. The major 
property of flatness is the elimination of t.he system dy- 
namics by endogenous feedback. This comes at  some 
cost. In statespace, the boundary conditions are t y p  
ically stated simply (e.g. linear boundary conditions) 
and have physical meaning. The flat output transforms 
these conditions to a possibly complex (e.g. nonlinear) 
set of end point conditions (compare Eq.(3) to (9)). 
The same arguments hold for the transformation of 
the cost functional. Thus, it is possible that flat.ness 
parameterization might actually worsen real-time tra- 
jectory optimization. In such situations, a (traditional) 
change in coordinates might offer faster run timesjl5). 
However, flatness parameterization would still enjoy 
closed-loop stabilization by endogenous equivalence to 
linear controllable systems 171. 

Method I Intervals I Variables 1 Cost 
NTG‘ I 1 I 5 1 1.9127 

1.6859 
1.7081 
1.6857 

PS (standard) 1.8903 
PS (standard) 1.6857 

P S  (flat) 1.8903 
PS (flat) 10 11 1.6857 

* from Ref.[ll] 

Table I: Comparison of cost functions from different nu- 
merical methods 

We demonstrate these issues by considering the forced 
van der Pol oscillator discussed in [Ill. Although this 
system is static feedback linearizable it illustrates the 
issues and facilitates aquick comparison to other meth- 
ods discussed in ill). The dynamics of this system is 
given hy 

i I ( T )  = 22(7) (34) 
&(T)  -Si(.) + (1 - 2 : ( 1 ) ) 5 2 ( T )  +U(.) (35) 

The output y(7) = q ( r )  is flat since, 

21(.) = Y(.) (36) 
52(T) = Y(.) (37) 

= ji(4 + Y(T) - (1 - y2(7))2i(.) (38) 

The optimal control problem is to minimize the 
quadratic cost function, 

subject to the dynamics given above and the endpoint 
constraints, 

z1(0)=1, zz(O)=O, 4 5 ) - 2 * ( 5 ) = 1  

Note that the output transforms a numerically well- 
behaved quadratic integrand to  a significantly more 
complicated function. 

Table 1 compares “accuracy” (i.e. value of cost func- 
tion) to the methods discussed in [ll]. PS (standard) 
implies flatness was not exploited. As in Ref. Ill] 
each test case was run for 100 random initial guesses 
and the results averaged. R o m  this table it is a p  
parent that both formulations using the PS method 
yield comparable results in terms of accuracy. Un- 
like the speed advantage detected in 1111 using flat 
outputs, both PS methods surprisingly yielded cnm- 
parable run times. However, when we used NPSOL 
(101, the NLP solver used in [ll] (instead of SNOPT 
[9]), then the flat PS method does run about 10 times 
faster than the standard PS method. This is at least 
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in part due to  the threefold difference in the number 
of variables between the standard and flat PS methods 
(see Table 1). Apparently, the decrease in the num- 
ber of optimization variables (and consequent increase 
in computational speed) offered by flatness parameter- 
ization can be overcome. In our experiments, SNOPT 
was used in dense mode (i.e. the sparsity of the Jaco- 
bians was not exploited). Thus, the speed differences 
are attributable to differences in the implementation 
of sequential quadratic programming between the two 
NLP algorithms (such as the use of elastic variables 
[9]). There are a number of other issues in using flat 
outputs, some of which are discussed below. 

6 Conclusions and Further Work 

Pseudospectral methods offer a natural way to solve 
nonlinear control problems where the dynamics is de- 
scribed in t.erms of a differential-algebraic state space 
model. For flat systems, the optimal motion planning 
problem can be readily solved using PS methods. It 
is not clear a t  this stage whether flatness should be 
exploited in every instance. A change in coordinates 
or parrial inversion might provide faster results. In 
such situations, it may be advantages to generate tra- 
jectories without full inversion and use the flatness pa- 
rameterization for stabilization. In all these situations, 
it is necessary to perform rapid and accurate differen- 
tiations. PS methods offer these operations in terms 
of elementary linear algebra (matrix times vector’op 
erations). Much work remains to be done in investi- 
gating the interplay between theory and computation. 
It is possible that a Chebyshev PS method might be 
better than a Legendre PS method for flat systems 
since Chebyshev PS methods, are based on optimal 
max-norm interpolation strategy while the Legendre 
PS method is only L*-optimaL Further, higher accu- 
racy for higher-order derivatives are possible by nonlin- 
ear time-transformations. Much of these ideas will be 
explored in future papers, but it is evident that a com- 
bination of PS methods with recent advances in nonlin- 
ear cont.ro1 theory and optimization can be combined 
to effectively explore a new way of solving nonlinear 
control problems. 
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