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Abstract 

This paper presents a novel electrocardiogram (ECG) 
processing algorithm design based on a Multiple Model Adaptive 
Estimator (MMAE) for a physiological monitoring system. 
Twenty ECG signals from the MIT ECG database were used to 
develop system models for the MMAE. The P-wave, QRS 
complex, and T-wave segments from the characteristic ECG 
waveform were used to develop hypothesis filter banks. The 
MMAE robustly locates these key temporal landmarks in the 
ECG signal, extracting crucial patient treatment information from 
the oflen distorted or unstable ECG waveform. By adding a 
threshold filter-switching algorithm to the conventional MMAE 
implementation, the device mimics the way a human analyzer 
searches the complex ECG signal for a useable temporal 
landmark and then branches out to find the other key wave 
components and their timing. 

Using a conditional hypothesis-testing algorithm, the 
MMAE correctly identified the ECG signal segments 
corresponding to the hypothesis models with a 96.8% accuracy- 
rate for the I1539 possible segments tested. The robust MMAE 
algorithm also detected any misalignments in the filter 
hypotheses and automatically restarted filters within the MMAE 
to synchronize the hypotheses with the incoming signal. Finally, 
the MMAE selects the optimal filter bank based on incoming 
ECG measurementS. The algorithm also provides critical heart- 
related information such as heart rate, QT, and PR intervals from 
the ECG signal. 

Inlrodttnion 

This paper details the software algorithms required to 
extract information from an electrocardiogram (ECG), which may 
relate an event or a relationship between events in the ECG to the 
possibility of a dangerous physical condition. The heart’s 
elecmcal activity not only contains information about how 
quickly the cardiac muscle is contracting and relaxing, but also 
contains information regarding the balance between the 
sympathetic nervous system (SNS) and parasympathetic nervous 
system (PNS). The SNS generally increases heart rate, and the 
PNS decreases heart rate. Other relationships between the events 
in the ECG may be found during strenuous situations, including 
fires. law enforcement situations, combat, or injury. 

The research studied sample ECG signals and analyzed 
possible segmentation techniques. Hypothesized system models 
were developed based on the insight gained from sample ECG 
signal analysis. The hypothesized models were used in the ECG 
segmentation algorithm and the performance was tested on 
sample signals. 

Electrocardiogram 

An electrocardiogram (ECG) measures the heart’s 
electrical activity. The ECG signal shows the voltage in the heart 
muscle as it contracts and relaxes, as measured from a spot on the 

body (different positions for the ECG leads will show different 
voltage levels). Figure 1 shows an ECG signal and the signal 
components. In a normal, healthy human, the signal starts at the 
sinoatrial (SA) node at the top of the heart, triggering the atria, 
which contract and relax (P-wave). The signal slows 
significantly at the atrioventricular (AV) node, allowing the 
ventricles to fill. The signal travels down the right and lefl 
bundle branch triggering the ventricle which then contracts 
(QRS) and relaxes (T), (U). The heart is then relaxed until the 
next “heart beat,” starting with the P- wave. Figure 1 shows the 
characteristic waveform with the corresponding heart activity. 
The shaded areas in the diagram represent the electrical signal 
traveling through the heart. 

QT Intmal 

Figure 1. ECG Characteristic Waveform Corresponding to 
Heart Activity 111 

The ECG waveform should follow the standard “P, Q, R, S, T, 
U” distinct electrical events in the heart [Z]. The signal obtained 
during an ECG recording depends on several facts: (1) the 
location of the leads, (2) how well the leads are placed on the 
skin, (3) the quality of the s iga l  amplifiers, and (4) the amount 
of measurement noise. 

The relationships between segments of the ECG signal 
provide significant information as to what events and activities 
occur in the body [4, 51. This research proposes the use of a 
multiple model adaptive estimator (MMAE) to identify the ECG 
segments. A multiple model filter bank has been used 
extensively in guidance, navigation, and control applications to 
detect parameter changes in the system [6]. Willsky reported 
great success in arrhythmia detection and classification in 
electrocardiograms using both a multiple hypothesis model and 
the generalized likelihood ratio (GLR) [7, 81. These systems, 
however, already had the different ECG segments decomposed 
from the ECG signal; they merely analyzed and identified 
changes in the relationships among the segments. This research, 
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however, uses the MMAE as the basis for the ECG segmentation 
algorithm. 

MMAE 

When a system has certain characteristics or parameters 
that can change, the system model used in the filtering algorithm 
may be invalid. The Kalman filter performance is only as good 
as the models used in the algorithm. Any characteristics not 
included in the model make the Kalman filter a suboptimal 
estimator. One way to deal with the uncertainties in the model is 
to develop a multiple model, filtering algorithm. A multiple 
model adaptive estimator (MMAE) is a bank of parallel Kalman 
filters, each with a different filter model and an algorithm to test 
for the adequacy of the assumed model in each filter [9]. One 
could create a discretized parameter space from the continuous 
parameter space of all possible parameter values. Let a be a 
vector of all possible parameter values (a , ,  a1 .,... a,) (i=1,2 ,... 4. 
The parameter vector in this pmblem is the different system 
models for the QRS complex, T-wave, and P-wave. 

A block diagram of the MMAE is shown in Figure 2. 
Note the outputs of the hypothesized system models are scaled by 
a probability weighting computation. 

Figure 2. Multiple Model Filtering Algorithm Block Diagram 

The hypothesis conditional probability computation in 
Figure 2 is a conditional probability that the parameter vector a 
assumes the me value ai conditioned on the measurement history 
Z,, defined as 

p j ( t , ) =  prob{a =a,  lZ ( t , )  = Z,]. (1) 

The probability of each filter modeling the true system can be 
evaluated as a function of both the vector of parameter values and 
the measurement history through a probability density function 
and the probability weighting at a sample time earlier: 

p,( fJ= . fZ l< , , . .Z I ,~ , l (~ ,  I a;, Z,.I)Pj(f,.J (2) 
C:;,r,,,,,,,~,,,.,,(zi Ian.Zi-oP“(5.,) 

The conditional density function of the current measurement 
vector z(tJ based on the parameter vector a, and the measurement 
history Z,.,can be shown to be [9]: 

where 

and m is the number of measurements. When filter j’s model 
matches the true system, the residual vector r,(f,) will be zero 
mean with covariance A;(t,). Filter probabilities are started out 
such that m(:,)=l/J and are then updated after each measurement 
incorporation by Equation (3). Note that the denominator is a 
scaling factor to ensure that the filter probabilities add up to one. 
In certain cases, the elemental filter residuals can seem good 
causing the filter to generate an erroneous probability, especially 
if its residual is going through zero at the time of the update. 

system Modeling 

Based on the visual waveform segmentation, a segment 
power spectral density estimate was formed for each segment 
type. The ECG segments were found to be well modeled by a 
stochastic process whose output power spectral density was a 
bandpass filter [IO]. A bandpass filter’s transfer function can be 
described as: 

G(s)= s + w n  
s2 + 2as + wn2 

(4) 

where a is the half power frequency from the center frequency, 
o,, and o. is (az+o?)o.5. This filter always gives a peak value of 
da- (where d is the gain) with the assumption that the driving 
function is white Gaussian noise (WGN) and has strength 
2au2 , This bandpass filter form allows easy center frequency 
and bandpass region width manipulation. The Kalman filter 
model is then: 

The input scalar, zero mean, WGN driving term has statistics: 

E(w(t)w(t+ r ) )  = Q(r)s(r) = Zau’d(r) 

These statistics come from the transfer function’s assumption that 
the input WGN strength is 2au2 . Measurements were available 
discretely as a function of the states and additive WGN: 

. ( 6 )  

:(<,)=[I 0 o ] x ( r j ) + ” ( t , )  (7) 

The zem mean v statistics were as follows: 

In this research, a different approach than the Bayesian 
method used by the MMAE blending is used to determine the 
correct hypothesis. The rnnxirnurn o posteriori (MAP) MMAE 
design uses the elemental filter containing the highest probability 
hypothesis rather than the Bayesian blending as in Figure 2. 
Because the assumption was made that ECG segment cannot be a 
combination of hypotheses for distinguishability purposes, the 
highest probability filter does make logical sense in this 
application. 

Oiiliiie Hypothesis Swopping Algorilltm 

3ecause the ECG signal is “pseudo-periodic,” more 
information is known about the signal than the algorithm is 
initially ‘Yelling”the MMAE. For example, it i s  assumed that the 
T-wave typically follows the QRS complex. Following the T- 
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wave is a “rest” period, and following the ‘Yest” period is the P- 
wave. The filter takes advantage of this segment order 
information to help it determine when the specific segment starts 
and ends. Therefore, the MMAE doesn’t need to calculate which 
of the four hypotheses is correct. Therefore, this event order 
information narrows down which of the MMAE hypotheses are 
correct. Once the algorithm is locked onto the QRS complex, it 
no longer has to distinguish between the similar T and P-waves. 
The algorithm is initialized to choose between two online filters, 
one Nned for the QRS complex and another Nned for lower 
frequency and lower strength signals. The hypothesis filter 
parameters for the initialization bank are shown in Table I .  

Table 1. Initialization Hypothesis Filter Bank Parameters 

Hypothesis I Not QRS I QRS Complex 
I 75 I inn 

I ”  
..... 

An offline filter bank containing hypotheses for the 
characteristic ECG waveform is also initialized. The online filter 
bank waits until the QRS complex hypothesis in filter two is 
detected for at least five consecutive samples. This eliminates 
much of c the possible jitter in the probability calculation and 
ensures that the QRS complex hypothesis is consistent for an 
extended time. Once the QRS complex is declared, the correct 
hypothesis. the first online elemental filter’s state transition 
matrix, 0, and equivalent discrete-time noise, Qd, are replaced 
with the 0 and Qa from the offline T-wave hypothesis.’ When the 
new hypothesis is brought online, the conditional hypothesis 
probabilities are reset to the lower bounds for the online T-wave 
and the QRS complex hypotheses that were just declared correct. 
The online filters continue with the normal MMAE propagate and 
update cycle. These two filters remain online until the T-wave 
filter is declared correct for five samples in the same manner as 
the QRS complex was declared correct. This process continues, 
with the two hypotheses in the online filter bank at any one time 
being the correct hypothesis and the next expected corrected 
hypothesis. Thus, the hypothesis-testing algorithm never has to 
distinguish between four hypotheses, only two. 

The filter swapping routine can get unsynchronized with 
the ECG signal due to irregulcties in the waveform or filter 
swap incorrect timing. If the filter bank is not synchronized, the 
QRS hypothesis will not be online at the correct time. When the 
QRS complex measurements are used in the MMAE, high 
residuals in the two online hypothesis filters will result in a high 
likelihood quotient, L .  from Equation (3). 

If the hypothesis model matches the true system model, 
the likelihood quotient and the number of measurements will be 
approximately equal. Thus. ifthe QRS hypothesis is not online at 
the correct time, the filter bank can be declared out of sync if a 
likelihood quotient is detected above a threshold. The threshold 
value of 10 gives a safety margin to account for signal changes 
during the ECG recording, while ensuring that when the filter 
bank is not synchronized, a restart is declared as quickly as 
possible. When the restart is declared, the filter banks are 
reinitialized to the starting values and the swapping routine waits 
for the next QRS complex declaration to begin. 

A correct hypothesis declaration by the MMAE 
effectively provides a sample segment over which the hypothesis 
best matches the data. This correct hypothesis restricts the 
sample region that an algorithm has to search over to find a 
specific segment area of interest. The RR, QT, and PR intervals 
are easily calculated using the P, R, and T-wave peaks and the 
correct QRS complex hypothesis start for the Q-wave. 

The animal exsanguination data from Qualia Computing, 
Inc. [ I  I ]  provided a special challenge not seen in the MIT ECG 
data files [12]. The heart rate increased as time went on, the 
signal waveforms change shape, the T-wave changed location, 
and the signal strength decreased dramatically. Two additional 
MMAE filter banks were created and the ability to switch to a 
new bank was created. The new filter banks were very similar to 
the original filter banks with the only changes residing in tuning 
the filter bank to a particular signal section. Lower input WGN 
strengths for each hypothesis and a switch to the new filter banks 
at the proper time allowed the MMAE ECG processing algorithm 
to continue functioning properly. Table 2 through Table 4 show 
the tuning parameters for the ECG segment hypotheses and the 
lowering Q values in the alternate filter banks. 

Table 2. Hypothesis Filter Bank Parameters 

2 

Table 3. Alternative Hypothesis Filter Bank Parameters, 
Bank 2 

Table 4. Alternative Hypothesis Filter Bank Parameters, 
Bank 3 

H athesis QRSCom lex T-wave Rest P-wave 

The QRS complex hypothesis WGN input was Nned such 
that the likelihood quotient, L,(f,), was approximately four. 
Again, this is tighter Nning than would normally be performed, 
remembering that L,(I,) is approximately the number of 
measurements with conservative hming. The other filter 
hypotheses’ WGN values were also reduced based on the 
hypothesis calculation transitions. 

n i e  additional offline filter banks allow for an increase in 
the algorithm’s robustness because an algorithm can be created to 
take advantage of both the restart routine and the omine filter 
bank switch routine. If a signal has characteristics that do not fit 
the first online filter bank, the algorithm will restart several times. 
The filter bank starts with bank one and uses the restart algorithm 
to determine when to try the next filter bank. If the difference 
between the number of restarts and the detected R-waves is two 
or three, the next filter bank is used in the swapping routine. 
Thus, if the signal does not initially match the hypotheses in filter 
bank one. several restarts will occur. The MMAE was given a 
chance to synchronize the filter banks with the signal. When 
three restarts happen in a row, filter bank one was switched to 
filter bank two. All variables were reinitialized. including the 
number of restarts and the number of R-waves detected. 

Overall MMAE ECG Processing Algorithm Description 

The overall MMAE ECG processing algorithm is depicted 
in the flow diagram shown in Figure 3. Following the path 
through the diagram, first the MMAE is initialized as outlined in 
the initialization and restart routine. Once the filter banks are 
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synchronized with the signal, the MMAE begins the overall 
Drovaeate and uDdate routine. Everv samvle is checked bv the 

algorithm's g o d  and bad performance throughout the ECG 
Sam& . . I  I .  

restart routine Io ensure that the'online filters are synchronized 
with the signal. 

Figure 3. MMAE ECG Processing Flow Chart with 
Subroutines 

If a restart is needed, the restart routine is followed. Next, the 
hypothesis swapping routine checks if the online filter hypotheses 
need to be swapped with offline hypotheses. Ma swap is needed, 
the interval calculation routine is run; if not, the algorithm 
continues processing data After the intervals are calculated, the 
oftline filter bank switching routine is used to check if offline 
filter banks can better match the signal measurements. The 
algorithm continues processing ECG data until the signal end. 

Results 

The MMAE ECG processing algorithm was used to 
analyze 20 ECG signals obtained from the MIT ECG database 
used in the system model development. The algorithm's ability 
to detect the R-waves accurately and to determine the heatt rate 
was first analyzed. The R-wave detection ~ C C U T ~ C Y  was defined 
as follows: 

R-wave 
R-wave + Restart 

Accuracy = ( 9 )  

where R-wave is the number of R-waves detected correctly and 
Restart is number of restarts during the processing. The accuracy 
measured how well the algorithm determined the QRS complex 
location. It was penalized for restarts and was penalized for 
missed R-waves. It was found that even though the MMAE 
algorithm restarted when required, it never incorrectly identified 
an R-wave and failed to restart. Thus, the R-wave count contains 
only true R-wave peaks, not T-wave or P-wave peaks that may be 
identified before a restart. Therefore, the heart rate plot contains 
no intervals where the R-wave peak may have been incorrectly 
identified. 

The algorithm hinged on correctly finding the QRS 
complex, restarting the algorithm if it did not, and calculating the 
QT and the PR intervals when possible. The algorithm scoring is 
shown in Table 5.  This accuracy score was very important to the 
algorithm's performance analysis. Clearly, the algorithm scored 
well when the ECG lead placement measured all events in the 
characteristic ECG waveform. Table 5 clearly shows the 
measurement lead effect an the MMAE algorithm's performance. 
In the following sections, three sample signals will be analyzed. 
ECG 3 was from modified Lead 111 and Lead V4 (a chest lead 
rather than a limb lead). This sample clearly shows the MMAE 

r~~ 

Table 5. MMAE ECG Processing Algorithm Scoring 

Signal I from lead V4 followed the characteristic ECG 
waveform as expected by the MMAE. The Drocessed resuits are 
shown in Fig& 4 and Cgure 5 .  Figure 4 shows the ECG signal 
with the MAP hypothesis overlaid. The hypotheses are strictly a 
one or two, corresponding to the online hypothesis filter number. 
Note that the hypotheses were correctly brought online according 
to the swapping method. 

- L . - r " " x m " ~ , s ~ >  

%; 

Figure 4. Maximal Likelihood Filter Hypothesis for Sample 3 
Signal 1 

The hypothesis swapping, as demonstrated Figure 4, 
worked well except for the cases noted where the P-wave 
hypothesis was declared correct afler the peak of the P-wave. 
The restart algorithm's performance worked well, as shown by 
the restart declared at 0.204 minutes and the algorithm accurately 
locked onto the next QRS complex. The restart was declared 
because the low frequency filter did not match the positive slope 
to negative slope change well and the scalar likelihood quotient 
went above the pre-specified restart value of IO. While a higher 
restart value would have allowed the MMAE to continue with the 
hypothesis swapping without the restart, the filter bank 
synchronized itself perfectly with the next QRS complex. 

The R-wave was consistently identified, yielding a well- 
formed heart rate plot as shown in Figure 5 .  Note that the region 
between 0.15 to 0.20 minutes is caused by the two restarts. The 
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ECG Sample 3 Signal 2 characteristics were very different from 
those of Signal 1, as shown in Figure 6. The modified Lead 111 
signal had no QRS complex from the characteristic waveform. 

Figure 5. ECG Sample 3 Signal 1 Heart Rate 

The R-wave was not present, slowing the center 
frequency of the QRS complex down because there was one 
fewer wave. The P-wave was buried in the noise during the rest 
section causing severe problems for the hypothesis-swapping 
algorithm. Consequently, the accuracy score for signal 2 was the 
second lowest compared to all other accuracy scores. The reason 
for the problems with the MMAE algorithm was very simple: the 
hypothesis banks did not model the signal well. Note the restart 
at 0.23 minutes and the poor hypothesis swapping performance in 
Figure 6. 

- ;urmarr*on* . t rmpl~*  

NOR-Wave i 

Figure 6. Maximal Likelihood Filter Hypothesis for Sample 3 
Signal 2 

The ECG 3 signal 2 shown in Figure 6 reveals conditions 
in the signal that the algorithm cannot handle. However, the 
algorithm could be improved by developing a hypothesis that 
recognizes when the P-wave is buried in noise, allowing the 
MMAE to continue processing the signal correctly. 

The animal exsanguination ECG data was especially 
difficult to process due to the changing heart rate, changing 
waveform, and changing signal to noise ratio. Although the 
accuracy scores drop during segments of the signal, the heart rate 
was still determined very well. As shown in Figure 7, until the 
86-minute mark in the data set, the heart rate was tightly packed, 
except every 20 minutes from the 16-minute mark onwards. The 
results are shown in Figure 7 and Figure 8. 

--r* 
_: .................................. ~.~ ~~~.~ ...................... ~ .................. " 

i 
Declining Signal Quality 
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Filter Bank Change I 

Figure 7. Animal Heart Rate During Exsanguination 

Note the seamless transition between filter bank models at 
165 BPM and again at 195 BPM, which were brought online by 
simply changing the bank used to select the two online 
hypotheses. 

The PR interval was also noisy in several signal segments, 
as s h o w  in Figure 8. 

Figure 8. Animal Exsanguination PR Interval and PR 
lnterval Variance 

Figure 8 also shows the PR interval variance which is related to 
the RR interval variance and shows the balance behveen the PNS 
and the SNS as previously mentioned. Note that the variance 
initially increases dramatically and then decreases. This is the 
first known Correlation of beat-to-beat variation with severe blood 
loss. However, in sections where the signal was noisy and the R- 
wave determination was difficult, the P-wave determination was 
even more difficult. A correct QRS complex hypothesis did not 
guarantee the P-wave peak accuracy due to the other spikes or 
peaks in the signal. 

Concinrioris 

The MMAE ECG processing algorithm developed in this 
research performed extremely well when the signal of interest 
contained the ECG characteristic waveform components. It was 
shown that the electrode lead placements measured different heart 
events and very clearly affected the MMAE algorithm's 
performance. In 12 out of the 38 signals, 32 minutes of data, the 
ECG processing algorithm did not have a restart and perfectly 
found the heart rate. Moreover, in 26 out of the 38 signals, the 
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algorithm had an accuracy score over 0.90. The overall MMAE 
ECG processing algorithm accuracy is shown in Table 6. 

Table 6. Overall Algorithm Accuracy 

Data Set 
MIT-best 

Animal-best 
Total-best 

R-wave Restart Accuracy 
633 10 98.44% 

10542 354 96.75% 
1 1  175 364 96.85% 

Disclaimer 

The views expressed in this paper are those of the authors 
and do not reflect the official policy or position of the United 
Slates Air Force, Department of Defense, or the US. 
Government. 
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