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Abstract

This paper presents a novel electrocardiogram (ECG)
processing algorithm design based on a Multiple Model Adapiive
Estimator (MMAE)} for a physiological menitoring system.
Twenty ECG signals from the MIT ECG database were used to
develop system models for the MMAE. The P-wave, QRS
complex, and T-wave segments from the characteristic ECG
waveform were used te develop hypothesis filter banks. The
MMAE robustly locates these key temporal landmarks in the
ECG signal, extracting crucial patient treatment information from
the often distorted or unstable ECG waveform. By adding a
thresheld filter-switching algorithm to the conventional MMAE
implementation, the device mimics the way a human analyzer
searches the complex ECG signal for a useable temporal
landmark and then branches out to find the other key wave
components and their timing.

Using a conditional hypothesis-testing algorithm, the
MMAE correctly identified the ECG signal segments
corresponding to the hypothesis models with a 96.8% accuracy-
rate for the 11539 possible segments tested. The robust MMAE
algorithm also detected any misalignments in the filter
hypotheses and automatically restarted filters within the MMAE
to synchronize the hypotheses with the incoming signal. Finally,
the MMAE selects the optimal filter bank based on incoming
ECG measurements. The algorithm also provides critical heart-
related information such as heart rate, QT, and PR intervals from
the ECG signal.

Introduction

This paper details the software algorithms required to
extract information from an electrocardiogram (ECG), which may
relate an event or a relationship betweern events in the ECG to the
possibility of a dangerous physical condition. The heart’s
electrical activity not only contains information about how
quickly the cardiac muscle is contracting and relaxing, but also
contains information regarding the balance between the
sympathetic nervous system (SNS} and parasympathetic nervous
system (PNS). The SNS generally increases heart rate, and the
PNS decreases heart rate. Other relationships between the events
in the ECG may be found during strenuous situations, including
fires. law enforcement situations, combat, or injury.

The research studied sample ECG signals and analyzed
possible segmentation techniques. Hypothesized system models
were developed based on the insight gained from sample ECG
signal analysis. The hypothesized models were used in the ECG
segmentation algorithm and the performance was tested on
sample signals.

Electrocardiegram

An electrocardiogram (ECG) measures the heart’s
electrical activity. The ECG signal shows the voltage in the heart
muscle as it contracts and relaxes, as measured from a spot on the
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body (different positions for the ECG leads will show different
voltage levels). Figure | shows an ECG signal and the signal
components. In a normal, healthy human, the signal starts at the
sinoatrial {SA) node at the top of the heart, triggeting the atria,
which contract and relax (P-wave), The signal slows
significantly at the atrioventricular (AV) node, allowing the
ventricles to fill. The signal travels down the right and left
bundle branch triggering the ventricle which then contracts
{QRS) and relaxes (T), (U). The heart is then relaxed until the
next “heart beat,” starting with the P- wave. Figure 1 shows the
characteristic waveform with the corresponding heart activity.
The shaded areas in the diagram represent the electrical signal
traveling through the heart.
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Figure 1. ECG Characteristic Waveform Corresponding to
Heart Activity [1]

The ECG waveform should follow the standard “P, Q, R, §, T,
U™ distinct electrical events in the heart [2]. The signal obtained
during an ECG recording depends on several facts: (1) the
location of the leads, {2) how well the leads are placed on the
skin, (3) the quality of the signal amplifiers, and {4} the amount
of measurement noise.

The relationships between segments of the ECG signal
provide significant information as to what events and activities
occur in the body [4, 5]. This research proposes the use of a
multiple model adaptive estimator (MMAE) to identify the ECG
segments. A multiple model filter bank has been used
extensively in guidance, navigation, and control applications to
detect parameter changes in the system [6]. Willsky reported
great success in arrhythmia detection and classification in
electrocardiograms using both a multiple hypothesis model and
the generalized likelihood ratio (GLR) [7, 8]. These systems,
however, already had the different ECG segments decomposed
from the ECG signal;, they merely analyzed and identified
changes in the relationships among the segments. This research,



however, uses the MMAE as the basis for the ECG segmentation
algorithm.

MMAE

When a system has certain characteristics or parameters
that can change, the system model used in the filtering algorithm
may be invalid. The Kalman filter performance is only as good
as the models used in the algorithm. Any characteristics not
included in the model make the Kalman filter a suboptimal
estimator. One way to deal with the uncertainties in the model is
o develop a muitiple model, filtering algorithm. A multiple
model adaptive estimator (MMAE) is a bank of parallel Kalman
filters, each with a different filter model and an algorithm to test
for the adequacy of the assumed model in each filter {9]. One
could create a discretized parameter space from the continuous
parameter space of all possible parameter values. Let a be a
vector of all possible parameter values {a), ay__g} (~=1,2,.../).
The parameter vector in this problem is the different system
models for the QRS complex, T-wave, and P-wave.

A block diagram of the MMAE is shown in Figure 2.
Note the outputs of the hypothesized system models are scaled by
a probability weighting computation.
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Figure 2. Multiple Model Filtering Algerithm Block Diagram

The hypothesis conditional probability computation in
Figure 2 is a conditional probability that the parameter vector a
assumes the true value a; conditioned on the measurement history
Z, defined as

pt)=probla=a |Z(t)=1). (1)

The probability of each filter modeling the true system can be
evaluated as a function of both the vector of parameter values and
the measurement history through a probability density function
and the probability weighting at a sample time earlier:
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The conditional density function of the current measurement
vector z{#;) based on the parameter vector a,and the measurement
history Z,.,can be shown to be [9]:
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and m is the number of measurements. When filter j’s model
matches the true system, the residual vector r{r) will be zero
mean with covariance A,(t). Filter probabilities are started out
such that p;(t;}=1/.J and are then updated after each measurement
incorporation by Equation (3). Note that the denominator is a
scaling factor to ensure that the filter probabilities add up to cne.
In certain cases, the elemental filter residuals can seem good
causing the filter to generate an erronecus probability, especially
if its residual is going through zero at the time of the update.

System Modeling

Based on the visual waveform segmentation, a segment
power spectral density estimate was formed for each segment
type. The ECG segments were found to be well modeled by a
stochastic process whose output power spectral density was a
bandpass filter [10). A bandpass filter’s transfer function can be
described as:

S+Wn

G(s)= )

s 2

+2as+w,
where a is the half power frequency from the center frequency,
@, and oy, is (a2+mc2)0‘5. This filter always gives a peak value of
& (where ¢ is the gain) with the assumption that the driving
function is white Gaussian noise (WGN) and has strength

2qo?, This bandpass filter form allows easy center frequency
and bandpass region width manipulation. The Kalman filter
model is then:
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The input scalar, zero mean, WGN driving term has statistics:
Efw(ryw(t+ 1)} =0(1)d(r)= 2007 8(1) - {6)

These statistics come from the transfer function’s assumption that

the input WGN strength is 2aa? . Measurements were available
discretely as a function of the states and additive WGN:
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In this research, a different approach than the Bayesian
method used by the MMAE blending is used to determine the
correct hypothesis. The maximum a posteriori (MAP) MMAE
design uses the elemental filter containing the highest probability
hypothesis rather than the Bayesian blending as in Figure 2.
Because the assumption was made that ECG segment cannot be a
combination of hypotheses for distinguishability purposes, the
highest probability filter does make logical sense in this
application.

Online Hypothesis Swapping Algorithm

Because the ECG signal is “pseudo-periodic,” more
information is known about the signal than the algorithm is
initially “telling” the MMAE. For example, it is assumed that the
T-wave typically follows the QRS complex. Following the T-



wave is a “rest” period, and following the “rest” period is the P-
wave. The filter takes advantage of this segment order
information to help it determine when the specific segment starts
and ends. Therefore, the MMAE doesn’t need to calculate which
of the four hypotheses is correct. Therefore, this event order
information narrows down which of the MMAE hypotheses are
correct. Once the algorithm is focked onto the QRS complex, it
no longer has to distinguish between the similar T and P-waves.
The algorithm is initialized to choose between two online filters,
one taned for the QRS complex and another tuned for lower
frequency and lower strength sighals. The hypothesis filter
parameters for the initialization bank are shown in Table 1.

Table !. Initialization Hypothesis Filter Bank Parameters

Hypothesis ] Not GRS | QRS Complex
o 25 100
g 50 30000
o 2 2

An offline filter bank containing hypotheses for the
characteristic ECG waveform is also initialized. The online filter
bank waits until the QRS complex hypothesis in filter two is
detected for at least five consecutive samples. This eliminates
much of the possible jitter in the probability calculation and
ensures that the QRS complex hypothesis is consistent for an
extended time. Once the QRS complex is declared, the correct
hypothesis, the first online clemental filter’s state transition
matrix, @, and equivalent discrete-time noise, Qy, are replaced
with the @ and Qq from the offline T-wave hypothesis.” When the
new hypothesis is brought online, the conditional hypothesis
probabilities are reset to the lower bounds for the online T-wave
and the QRS complex hypotheses that were just declared correct.
The online filters continue with the normal MMAE propagate and
update cycle. These two filters remain online until the T-wave
filter is declared correct for five samples in the same manner as
the QRS complex was declared correct. This process continues,
with the two hypotheses in the online filter bank at any one time
being the correct hypothesis and the next expected corrected
hypothesis, Thus, the hypothesis-testing algorithm never has to
distinguish between four hypotheses, only two.

The filter swapping routine can get unsynchronized with
the ECG signal due to irregularities in the waveform or filter
swap incorrect timing, If the filter bank is not synchronized, the
QRS hypothesis will not be online at the correct time. When the
QRS complex measurements are used in the MMAE, high
residuals in the two online hypothesis filters will result in a high
likelihood quotient, L, from Equation (3).

if the hypothesis model matches the true system model,
the likelihood quotient and the number of measurements will be
approximately equal. Thus, if the QRS hypothesis is not online at
the correct time, the filter bank can be declared out of sync if a
likelithood quotient is detected above a threshold. The threshold
value of 10 gives a safety margin to account for signal changes
during the ECG recording, while ensuring that when the filter
bank is not synchronized, a restart is declared as quickly as
possible. When the restart is declared, the filter banks are
reinitialized to the starting values and the swapping routine waits
for the next QRS complex declaration to begin.

A correct hypothesis declaration by the MMAE
effectively provides a sample segment over which the hypothesis
best matches the data. This correct hypothesis restricts the
sample region that an algorithm has to search over to find a
specific segment area of interest. The RR, QT, and PR mtervals
are easily calculated using the P, R, and T-wave peaks and the
correct QRS complex hypothesis start for the Q-wave.
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The animal exsanguination data from Qualia Computing,
Inc. [11] provided a special challenge not seen in the MIT ECG
data files [[2]. The heart rate increased as fime went on, the
signal waveforms change shape, the T-wave changed location,
and the signal strength decreased dramatically. Two additional
MMARE filter banks were created and the ability to switch to a
new bank was created. The new filter banks were very similar to
the original filter banks with the only changes residing in tuning
the filter bank to a particular signal section. Lower input WGN
strengths for each hypothesis and a switch to the new filter banks
at the proper time allowed the MMAE ECG processing algorithm
to continue functioning properly. Table 2 through Table 4 show
the tuning parameters for the ECG segment hypotheses and the
lowering (J values in the alternate filter banks.

Table 2. Hypothesis Filter Bank Parameters

Hypothesis | QRS Complex] T-wave Rest} P-wave
We 100 100,10,100 | 10 100
& 30000 50, 0.50,50] 0.5 30
o 2 2 2 2
Table 3. Alternative Hypothesis Filter Bank Parameters,
Bank 2
Hypothesis | QRS Complex] T-wave ] Rest|P-wave
o 100 100,10,100 | 10 100
a° 15000 20,0.70,20] 0.7 15
o 2 2 2 2
Table 4. Alternative Hypothesis Fitter Bank Parameters,
Bank 3
Hypothesis | QRS Complex] T-wave |Rest]P-wave
@ 100 100,10,100 | 10 100
o2 5000 51,5 0.7 10
o 2 2 2 2

The QRS complex hypothesis WGN input was tuned such
that the likelihood quotient, L{:), was approximately four.
Again, this is tighter tuning than would normally be performed,
remembering that LJs) is approximately the number of
measurements with conservative tuning.  The other filter
hypotheses’ WGN values were also reduced based on the
hypothesis calculation transitions.

The additional offline filter banks allow for an increase in
the algorithm’s robustness because an algorithm can be created to
take advantage of both the restart routine and the offline filter
bank switch routine. If a signal has characteristics that do not fit
the first online filter bank, the algorithm will restart several times.
The filter bank starts with bank one and uses the restart algorithm
to determine when to try the next filter bank. If the difference
between the number of restaris and the detected R-waves is two
or three, the next filter bank is used in the swapping routine.
Thus, if the signal does not initially match the hypotheses in filter
bank one, several restarts will occur. The MMAE was given a
chance to synchronize the filter banks with the signal. When
three restarts happen in a row, filter bank one was switched to
filter bank two. All vanables were reinitialized, including the
number of restarts and the number of R-waves detected.

Overall MMAE ECG Processing Aigorithm Description

The overall MMAE ECG processing algorithm is depicted
in the flow diagram shown in Figure 3. Following the path
through the diagram, first the MMAE 15 initialized as outlined in
the initialization and restart routine. Once the filter banks are



synchronized with the signal, the MMAE begins the overall
propagate and update routine. Every sample is checked by the
restart routine to ensure that the online filters are synchronized
with the signal, :

Iitialization
Restant
Routine

Oifline
Filter Bank
Switch Routine

Restart
Routine

RE,QT. PR
Interval
Determination

Figure 3. MMAE ECG Processing Flow Chart with
Subroutines

If a restart is needed, the restart routine is followed. Next, the
hypothesis swapping routine checks if the online filter hypotheses
need to be swapped with offline hypotheses. If a swap is needed,
the interval calculation routine is tumn; if not, the algorithm
continues processing data. After the intervals are calculated, the
offline filter bank switching routine is used to check if offline
filter banks can better match the signal measurements. The
algorithm continues processing ECG data until the signal end.

Results

The MMAE ECG processing algorithim was used to
analyze 20 ECG signals obtained from the MIT ECG database
used in the system model development. The algorithm’s ability
to detect the R-waves accurately and to determine the heart rate
was first analyzed. The R-wave detection accuracy was defined
a3 follows:

R-wave (9)
R-wave + Restart

where R-wave is the number of R-waves detected correctly and
Restart is number of restarts during the processing. The accuracy
measured how well the algorithm determined the QRS complex
location. It was penalized for restarts and was penalized for
missed R-waves. It was found that even though the MMAE
algorithm restarted when required, it never incorrectly identified
an R-wave and failed to restart. Thus, the R-wave count contains
only true R-wave peaks, not T-wave or P-wave peaks that may be
identified before a restart. Therefore, the heart rate plot contains
no intervals where the R-wave peak may have been incorrectly
identified,

The algorithm hinged on correctly finding the QRS
complex, restarting the algorithm if it did not, and calculating the
QT and the PR intervals when possible. The algotithm scoring is
shown in Table 5. This accuracy score was very important to the
algorithm’s performance analysis. Clearly, the algorithm scored
well when the ECG lead placement measured all events in the
characteristic ECG waveform.  Table 5 clearly shows the
measurement lead effect on the MMAE algorithm’s performance.
In the following sections, three sample signals will be analyzed.
ECG 3 was from modified Lead Ill and Lead V4 (a chest lead
rather than a limb lead). This sample clearly shows the MMAE

Accuracy =

algorithm’s good and bad performance throughout the ECG
sample.

Table 5. MMAE ECG Processing Algorithm Scoring

Sample | Signal | R-Wave Detected | Restarts | Accuracy | Lead
ECG3 1 1 55 2 96.49% V4
2 16 29 35.56% ML
ECG S5 1 52 1] 100.00% V4
2 19 17 52.78% 1 ML
ECG 11 1 53 35 60.23% MUl
2 56 1 98.25% V4
ECG 13 1 9 40 18.37% MLIIH
2 80 0 100.00% V4
ECG 19 1 57 0 100.00% Vd
2 56 8 87.50% Mill
ECG 21 1 72 0 100.00% V4
2 66 [ ME7T% | MW
ECG 23 1 70 4 64.59% V4
2 70 4 94.59% | MLII
ECG 25| 1 68 0 100.00% V4
2 67 0 100.00%_| ML
ECG 27 1 69 4] 100.00% V4
2 66 0 100.00% | ML
ECG 39 1 66 29 69.47% ML
2 74 3 96.10% V4

Signal 1 from lead V4 followed the characteristic ECG
waveform as expected by the MMAE. The processed results are
shown in Figure 4 and Figure 5. Figure 4 shows the ECG signal
with the MAP hypothesis overlaid. The hypotheses are strictly a
one or two, corresponding to the online hypothesis Rlter number.
Note that the hypotheses were correctly brought online according
to the swapping method.
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Figure 4. Maximal Likelihood Filter Hypothesis for Sample 3
Signal 1

The hypothesis swapping, as demonstrated Figure 4,
worked well except for the cases noted where the P-wave
hypothesis was declared correct after the peak of the P-wave.
The restart algorithm’s performance worked well, as shown by
the restart declared at 0.204 minutes and the algorithm accurately
locked onto the next QRS complex. The restart was declared
because the low frequency filter did not martch the positive slope
to negative slope change well and the scalar likelihood quotient
went above the pre-specified restart value of 10. While a higher
restart value would have allowed the MMAE to continue with the
hypothesis swapping without the restart, the filter bank
synchronized itself perfectly with the next QRS complex.

The R-wave was consistently identified, yielding a well-
formed heart rate plot as shown in Figure 5. Note that the region
between 0.15 to 0.20 minutes is caused by the two restarts. The
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ECG Sample 3 Signal 2 characteristics were very different from
those of Signal 1, as shown in Figure 6. The modified Lead III
signal had no QRS complex from the characteristic waveform.
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Figure 5. ECG Sample 3 Signal 1 Heart Rate

The R-wave was not present, slowing the center
frequency of the QRS complex down because there was one
fewer wave, The P-wave was buried in the noise during the rest
section causing severe problems for the hypothesis-swapping
algorithm. Consequently, the accuracy score for signal 2 was the
second lowest compared 10 ail other accuracy scores. The reason
for the problems with the MMAE algorithm was very simple: the
hypothesis banks did not model the signal well. Note the restart
at 0.23 minutes and the poor hypothesis swapping performance in
Figure 6.
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Figure 6. Maximal Likelihood Filter Hypothesis for Sample 3
Signal 2

The ECG 3 signal 2 shown in Figure 6 reveals conditions
in the signal that the algorithm cannot handle, However, the
algorithm could be improved by developing a hypothesis that
recognizes when the P-wave is buried i noise, allowing the
MMAE to continue processing the signal correctly,

The animal exsanguimation ECG data was especially
difficult to process due to the changing heart rate, changing
waveform, and changing signal to noise ratio, Although the
accuracy scores drop during segments of the signal, the heart rate
was still determined very well. As shown in Figure 7, until the
86-minute mark in the data set, the heart rate was tightly packed,
except every 20 minutes from the 16-minute mark onwards. The
results are shown in Figure 7 and Figure 8,
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Figure 7. Animal Heart Rate During Exsanguination

Note the seamless transition between filter bank models at
165 BPM and again at 195 BPM, which were brought online by
simply changing the bank used to select the two online
hypotheses.

The PR interval was also noisy in several signal segments,
as shown in Figure 8.
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Figure 8, Animal Exsanguination PR Interval and PR
Interval Variance

Figure § also shows the PR interval variance which is related to
the RR interval variance and shows the balance between the PNS
and the SNS as previously mentioned. Note that the variance
initially increases dramatically and then decreases. This is the
first known correlation of beat-to-beat variation with severe blood
loss. However, in sections where the signal was noisy and the R-
wave determination was difficult, the P-wave determination was
even more difficult. A correct QRS complex hypothesis did not
guarantee the P-wave peak accuracy due to the other spikes or
peaks in the signal,

Conclusions

The MMAE ECG processing algorithm developed in this
research performed extremely well when the signal of interest
contained the ECG characteristic waveform components. It was
shown that the electrode lead placements measured different heart
events and very clearly affected the MMAE algorithm’s
performance. In 12 out of the 38 signals, 32 minutes of data, the
ECG processing algorithm did not have a restart and perfectly
found the heart rate. Moreover, in 26 out of the 38 signals, the



algorithm had an accuracy score over 0.90, The overall MMAE
ECG processing algorithm accuracy is shown in Table 6.

Table 6. Overall Algorithm Accuracy

Data Set R-wave Restart | Accuracy

MIT-best 633 10 98.44%
Animal-best 10542 354 96.75%

Total-best 11175 364 96.85%

When the data set is reduced to include signals from just
lead V4, the accuracy is 98.4%. The MMAE algorithm processed
the animal ECG data with 87.5% accuracy for the whole data set.
Because the signal strength during the last three signal segments
is very low, these last segments can be removed to form a data set
that generally fits the MMAE models. The accuracy score for the
combined first 15 data sets was 94.7%. Finally, three noisy data
segments where the T-wave or P-wave was indistinguishable
from other extraneous signal peaks can also be removed. The
accuracy score for these “best” fit signal segments was 96.8%.

Finally, the combined total scores are also shown in Table
6. If the data sets are restricted to those containing the
characteristic ECG waveform as the algorithm expects, the
accuracy jumps to 94.8%. In addition, if the animal
exsanguination signals that were very noisy were taken out, the
accuracy would jump to 96.8%. When the algorithm correctly
found the QRS complex, it subsequently could find the T-wave
peak and the P-wave peak with high probability.

The algorithm’s weaknesses were also identified by the
signals that it could not process with high accuracy. The 12
signals where the algorithm did not perform well represent
signals where the algorithm could not identify the T-waves or P-
waves in the signal due to excess noise or the lead placement
choice. However, it is important to note that the hypothesis
models were not developed based on these types of signals. It
was pointed out that additional models could easily be developed
and integrated into the MMAE filter banks to make the MMAE
ECG processing algorithm more robust.

The solutions to the current algorithm’s shortcomings are
being developed. The hypothesis-swapping algorithm is very
similar to a hidden Markov model. The MMAE can readily
incorporate transition probabilities, clearly indicating the
expected transition order such as QRS complex to T-wave, T-
wave to rest, and rest to P-wave. Thus, the probability flow is
contrelled by the transition probabilities rtather than the
hypothesis-swapping algorithm. Additionally, the MMAE can be
implemented in a hierarchical structure when more. This
technique can be applied to the ECG segmentation algorithm to
make the hypothesis swapping a parallel implementation as
opposed to this algorithm’s sequential nature. Finally, when the
MMAE filter banks can be switched in and out automatically,
additional banks can be created with hypothesized arrhythmias,
This bank can run in parallel to the other banks, looking just for
the arthythmias.

Using this unique technique, it has been exhibited for the
first time, the temporal sequence of beat-to-beat time variation
during severe blood loss over a period of several hours. Such
data should make possible the early detection of the cascade of
events that leads to fatal irreversible shock in severe injury
accidents. Such shock is the cause of death in 40% of civilian
accident injury and 66% of wartime injury. This analyzer could
be easily added as a software update to the standard physiological
monitors universally used in emergency vehicles and treatment
facilities.
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Disclaimer

The views expressed in this paper are those of the authors
and do not reflect the official policy or position of the United

States Air Force, Department of Defense, or the U.S.
Government.
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