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Abstract 
Most algebraic calculations which one sees in lin- 
ear systems theory, for example in IEEE TAC, in- 
volve block matrices and so are highly noncommuta- 
tive. Thus conventional commutative computer alge 
bra packages, as in Mathematica and Maple, do not 
address them. 

Here we investigate the usefulness of noncommuta- 
tive computer algebra in a particular area of con- 
trol theory-singularly perturbed dynamic systems- 
where working with the noncommutative polynomi- 
als involved is especially tedious. Our conclusion is 
that they have considerable potential for helping prac- 
titioners with such computations. For example, the 
methods introduced here take the most standard text- 
book singular perturbation calculation, [KK086], one 
step further than had been done previously. 

Commutative Groebner basis algorithms are powerful 
and make up the engines in symbolic algebra pack- 
ages’ Solve commands. Noncommutative Groebner 
basis algorithms are more recent, but we shall see that 
they are useful in manipulating the messy sets of non- 
commutative polynomial equations which arise in sin- 
gular perturbation calculations. We use the noncom- 
mutative algebra package NCAlgebra and the non- 
commutative Groebner basis package NCGB which 
runs under it. 

1 Introduction 
Singular perturbation is a commonly used technique 
in the analysis of systems whose dynamics consist of 
two pieces. One piece might be slow, the other fast, 
or one might be known where the other is somewhat 
uncertain. Extensive analysis has been done of this 
type of plant for the LQR and H ,  control problems, 
for example [KK086] and the works of Pan and Basar. 
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Typically one has an equation where some coefficients 
depend on a parameter f . To solve this equation, one 
postulates an expansion in E for the solutions x6 to 
the equation, then 

(a) substitutes 2, into the equation, 
(b) sorts the equation according to powers of E ,  and 
(c) finds simple equations for successive terms in the 
expansion of zc. 

The sorting in (b) can be tedious and the business of 
solving (c) can be very involved. 

This article concerns methods we are developing for 
doing these steps automatically. The software runs 
under NCAlgebra, [HMS96], the most widely dis- 
tributed Mathematica package for general noncom- 
muting computations. As we shall illustrate, NCAlge 
bra constructions and commands easily handle steps 
(a) and (b), thereby producing the (long) list of equa- 
tions which must be solved. This is straightforward 
and saves considerable calculation time for those en- 
gaged in singular perturbation calculations. Step (c) 
involves solving complicated systems of equations and 
this is always tricky business. Thus there is no way of 
knowing in advance if noncommutative Groebner ba- 
sis methods will be effective for (reducing to a simple 
form) the equations found in large classes of singular 
perturbation problems. This is the focus of experi- 
ments (using the package NCGB which runs under 
NCAlgebra) we have been conducting and on which 
we report here. 

Most of the paper shows how one can treat the most 
classic of all singular perturbation problems using 
computer algebra. Ultimately, we see that Mora’s 
Groebner basis algorithms are very effective on the 
equations which result. Indeed our method carries out 
the expansion one step further than had previously 
been done, see Section 4.2. We also mention another 
newer Ifm estimation problem called the “cheap sen- 
sor” problem (see [HJM98]). On this our computer 
techniques proved effective and a longer paper will 
report these results. 
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1.1 The idea behind Groebner computer al- 
gebra 
We say that a set of equations { q j  = 0 : 1 5 j 5 k} 
eliminates zk if one of the polynomials has the form 

a polynomial which does not depend on zk). 

The noncommutative Groebner basis algorithm 
(GBA), due to F. Mora [Mor86], can be used to sys- 
tematically eliminate variables from a collection (e.g., 
{ p j ( x ! ,  . . . ,tn) = 0 : 1 5 j 5 1 1 ) )  of polynomial 
equations so as to put it in triangular form. One 
specifies an order on the variables ( 2 1  < t 2  < z g  < 
. . . < z,, ) which corresponds to your priorities in 
eliminating them. Here a GBA will try hardest to 
eliminate tn and try the least to eliminate $1. The 
output from it is a list of equations in a “canonical 
form” which is triangular: 

q j  = zk - ?‘(ti,. . . , x k - 1 ,  C k + l , .  . . , Zn); (SO that 7‘ is 

Here, the set of solutions to the collection of poly- 
nomial equations {q, = 0 : 1 5 j 5 k 2 )  equals the 
set of solutions to the collection of polynomial equa- 
tions { p j  = 0 : l 5 j 5 kl}. This canonical form 
greatly simplifies the task of solving the collection of 
polynomial equations by facilitating back-solving for 
xj in terms of 21, . . . , zj-1. The effect of the ordering 
is to specify that variables high in the order will be 
eliminated while variables low in the order will not. 

For noncommutative computation which is the sub- 
ject of this paper, the Groebner basis is usually infi- 
nite and then the GBA fails to halt given finite com- 
putational resources. Nevertheless, the solution set 
of the output of a terminated (say k iteration) GBA, 
{q j  = 0}, is always equivalent to the solution set of 
the input, {p i  = 0}, and this partialGBA often proves 
to be useful in computations as will be shown below. 
Groebner basis computer runs can be (notoriously) 
memory and time consuming. Thus their effectiveness 
on any class of problems can only be determined by 
experiment. Implementations of the GBA include the 

From this ordering on variables, an order on monomials in 
those variables is induced which which is referred to as non- 
commutative lexicogl-aphic ol-der. 

2 / c ~  may be larger than n (i.e., there need not be 5 n equa- 
tions in the list) and there need not be any equation in just l 
or 2 variables. 

NCGB component of NCAlgebra, [HS97], and OPAL, 
[KG98]. 

Our computer computations were performed with 
NCGB on a Sun Ultra I with one 166 Mhz proces- 
sor and 192MB of RAM. 

2 The Standard State Feedback Singular 
Perturbation Problem 

The standard singularly perturbed linear time- 
invariant model consists of a differential state equa- 
tion; which depends on some perturbation parameter 
E ;  and an output equation. The general control prob- 
lem is to design some feedback law which specifies the 
input as a function of the output so that the controlled 
system will satisfy some given performance objective. 
2.1 The System 
Here we study the standard two time scale dynamic 
system analyzed in [KK086]: 

] [ ] + [ i: ] U ( 6 )  
dx 

[ ] = [ Azi Azz 

where 3: E W”, z E R”, U E WP, and y E Rq. Here, 
m, n, p and q are integers, and All ,  and A 1 2 ,  A 2 1 ,  

A Z Z ,  B1, Bz, M I I ,  and Mzz are appropriately sized 
matrices. 
2.2 The Near-Optimal LQR Problem 
The infinite-time optimal linear regulator problem is 
to find a control, u(t),  t E [0, CO] which minimizes the 
cost 

J = Lrn(yTa,  + UTRU)dt (8) 

where R is a positive definite weighting matrix. It is 
well known that the solution to this problem is of the 

where K ( E )  is a solution to the Algebraic Riccati 
Equation (ARE) 

K A  +A% - K B R - ~ B ~ K  + M ~ M  = o (io) 

Notice that K solves equation (10) which is a Ric- 
cati equation of size n + m by n + m. Since the 
structures present in the system (11) are partitioned, 
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it seems likely that we might decompose the prob- 
lem and significantly reduce the sizes of the matrices 
while deriving an only slightly sub-optimal controller. 
Indeed, it is standard to divide the problem of solv- 
ing the n + m dimensional Riccati, ( lo) ,  into solving 
two smaller decoupled Riccatis, one which is n dimen- 
sional, the other which is m dimensional, and then use 
these solutions to obtain a control law which gives 
a performance J nearly equal to the optimal perfor- 
mance. This regulator is known as the near-optimal 
regulator. 

In the next two subsections we review this decomposi- 
tion of the state space into slow and fast parts. This is 
mostly a matter of setting our notation, which in fact 
is the same notation as [KK086]. The noncommuta- 
tive Groebner computer algebra which is the subject 
of our investigations is well suited for manipulating 
polynomials into a triangular or even decoupled form. 
2.3 Decomposing the Problem 
Here, we decompose our two time scale system into 
it's fast parts and slow parts. We will assume 
throughout that A22 is invertible. 

2.3.1 The Slow System : The dynamics of 
the slow system can be found by setting to zero in 
equation (6) obtaining what is often called the quasi- 
steady state of the system. This transforms the equa- 
tion involving in system (6) into an algebraic equa- 
tion rather than a differential equation 

where 

Here the subscript s indicates that the vectors in 
equations (13)-(14) are the slow parts of the vectors 
in (6). 

2.3.2 The Fast System : The fast system 
has dynamics 

Here the subscript f indicates that the vectors in 
equations (15)-(16) are the fast parts of the vectors 
in (6). 

2.4 Decomposing the Measurement 
We may then also decompose (7) into it's slow and 
fast parts 

y = MlZ+M2Z 
= M1[z ,  + O(€)] 
+ M2[-A;;(Azixs + B~u,) + z j  + O(E) ]  
= Y8 ( t )  + Yj (4 + O(f) 

3 Computer algebra vs. the standard 
singular perturbation problem 

The matrix K ( c )  in (12) must be partitioned compat- 
ibly with the states, x and z ,  and is the limit of the 
power series which is conventionally written 

where k ( i , j )  are appropriately sized matrices (see (6)). 
We shall use kjj synonymously with k( j , j ) ,  since this 
saves space and actually corresponds to the TEX out- 
put of NCAlgebra. 

The remainder of this section will be devoted to find- 
ing formulas for the k ( j , i )  for j E {1,2,3}  and i >_ 0. 

3.1 The zero-th order term of the Riccati 
equation (constant (i.e., 6') coefficients) 
We begin our investigations of the perturbed control 
problem by searching for the first term of the series 
(17) consisting of matrices, k(1,0), k(2,0),  and k(3,O)- 

We substitute KO(€)  into (10) and take only the zero- 
th order terms in 6 of the resulting equations. This 
is problem (b) mentioned in the introduction. In the 
next section, Section 3.1.1, we will show how this may 
be done with the assistance of a computer. 

3.1.1 Computer algebra finds the basic 
equations : We begin by using computer algebra 
to assist in finding the zero-th order terms in of the 
equations given in (10). 

First, using NCAlgebra, we define the block matrices 

in (11). The matrix, [ ] , is represented in 

Mathematicaby {{a,b},{c,d}}. The suffix, [ [ i , j ] l ,  
extracts the element in the i-th row and the j-th 
column from a given matrix. In NCAlgebra, MatMult 
performs the matrix multiplication operation, tpMat 
performs the symbolic transpose operation, and ** 
indicates noncommutative multiplication. 
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A = {{All,Al2},{l/ep A2l,l/ep A22)); 
B = {{Bl},{l/ep 82)); H = {{Hl.H2)); 

We also define a KO. 

(18) 

KO = {{klO,ep k20), {ep tpCk20l ,ep k30)); 

The following Mathematica function takes as an 
argument a matrix Ii' and generates the Riccati (10). 

RiccatiCKJ := HatHult [K,A] + HatHult CtpHat [A] ,Kl - 
natnult[K,B,Inv[Rl ,tpHatCB] ,Kl + 
natnult CtpHat CM1 ,HI (19) 

We next use the NCAlgebra command 
NCTermsOfDe ree3. The followin Mathematica 
commands w!l extract the 0-th or8er terms in 6 ,  

creating the polynomials in (21), (22), and (23). 

EplO = ECTermsOfDegreeC RiccatiCKOl[[l,11~, {ep},(O}l 
Ep20 = BCTermsOfDegreeC RiccatiCKO] [[1,211, {ep},{O)l 
Ep30 = BCTermsOfDegreeI: Riccati[KO] cc2.211, {ep).{0)1 

The output 

This input creates three polynomials, the third of 
which is 
k30**A22+tp[A22]**k30+tp[n21 **!I2 
-k30**B2**Inv[R]**tp[B2~**k30. (20) 

Notice that (23), the form of (20), contains 
only one unknown k30 and has the form of a Ric- 
cati equation. Thus k30 is uniquely determined by 
this equation if we assume it is the "stabilizing solu- 
tion". That is, A22 -B2R-'Brk30 has all eigenvalues 
in the strict left half plane and is therefore invertible. 
For computer algebra the key property is invertibility 
of A 2 2  - &R-'B?k30. This invertibility assumption 
could also be motivated by (longer) purely algebraic 
arguments. Our next objective is to find decoupled 
equations which determine the unknown matrices. 

~~ 

3BCTermsOfDegree takes 3 arguments: a (noncommutative) 
polynomial, a list of variables, and a set of indices. The 
command returns an expression such that each term is ho- 
mogeneous with degree given by the indices. For exam- 
ple, the c d  BCTermsOfDegreeC A**B + B**C**C + B**A**C + 
C**D, {C}. {1} 7 returns B**A**C + C**D. 

3.1.2 Analysis of the basic equations : 
We will show how (21),(22), and (23) may be replaced 
by an equation involving only one unknown klo  and 
equation (23) whose only unknown is k30 (so that k30 
and klo  may be computed using two independent Ric- 
cati equations) and by a single equation solving for k20 
and k30. We will use our noncommutative Groebner 
basis machinery here. 

Computer algebra jargon 
There are several terms we will use which, though 
simple conceptually, may not be familiar to the con- 
trol engineer. A product of variables, cy' ex;' . . . xzn 
where cYk E M, is called a monomial. A polynomial, 
f, is a finite Glinear combination of monomials, 

m 
ajx;: . x;i . . . x,"i 

j =1  

where a, E @. We call ak the coeficient of the term 
akx? . ex$. A relation is a polynomial which is 
assumed to be 0. That is, we may write the equation, 
3x2yz = yz + 4z2, as a relation, 3x2yz - yz - 4z2. 
Many NCAlgebra functions will accept either rela- 
tions or equations. We will slip back and forth be- 
tween the two notations and the meaning should be 
clear from the context. 

All algebraic identities which hold 
As described in Section 1.1, the GBA takes as input 
a set of polynomials and an order on the variables in- 
volved. It outputs a (generally) more desirable set of 
equations. It is not necessary to know which polyno- 
mials are needed to derive a certain relation. It is only 
necessary that all needed polynomials are present in 
the input. For this reason one generally gives as input 
to the GBA all polynomial relations known t o  hold. 
There is no harm in having superfluous (but true) 
relations in the input. Now we will list the input to 
our computer algebra program which will generate all 
polynomial relations known to hold. 

First the basic relations we wish to study were pro- 
duced in the previous section, Ep10,EpZO and Ep30; 
equations (21), (22), and (23). 

In light of the slow system terminology introduced 
above in Sections 2.3.1 and 2.4 we make the following 
abbreviations. 

Abbreviations = { BO == - H2**Inv[A22]**B2, 
HO == Hl - H2**Inv[A22]**A21, 
A0 == All - A12 ** InvCA221**A21, 
BO == Bl - A12**Inv[A22]**B2, 
RO == R + tp[BO]**BO } (24) 
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We add the abbreviation Ro for convenience as done 
in [KK086], although it is not essential. 

InvCR] is the NCAlgebra representation of R-l. 
Since = denotes assignment, Mathematica uses == to 
denote equality (for equations). 
Several of the matrices or matrix polynomials are 
assumed to be invertible. It is common to take the 
matrices, Aii, to be of full rank, since otherwise 
a transformation could be applied to the original 
system to reduce the size of the state. The matrix 
A22 - BzR-lBTk30 has already been assumed to 
be invertible. The matrices R and Ro are positive 
definite and so must be invertible. We generate the 
relations which result from these observations with 

Inverses = ICHakeRelations[{Inv, R,RO,AO,Aii,A22, 

(A22 - B2**Inv[R]**tpCB2]**k30) }I (25) 

Several of the matrices are known to be self adjoint, 
and therefore the following relations must hold: 

SelfAdjoints = { klO == tpCkiO], k30 == tpCk301, 
R == tpCR], BO == tpCRO], InvCR] == tpCInvCR]], 
Inv[RO] == tpCInvCRO]] } (26) 

We combine all of our relations with 
Relations = UnionCEpiO.Ep20,Ep30, Abbreviations, 
SelfAdjoints,Inverses] 

If p==O is a true equation, then t p  Cpl ==O is also. We 
add these “transposed” equations: 

AllRelat ions = HCAddTranspose Belat ions] 

Orders 
We shall create a Groebner basis for all polynomial 
relations known to hold under the following order. 

No < MO < Ro < Ao < Bo < klo  < other variables < k2o 

Experimenting with other orders is easy, but this one 
works. This order is specified using the NCAlgebra 
command 

PCAutomat icOrder [{ {BO, HO .RO , A 0  ,BO}, {kiO} , {Bl , B2 ,Hi, H2, 
R,Ali ,Ai2 ,A21 ,A22, InvCA22-B2**InvCR] **tp[B2]**k30] , 
tpCInvCA22- B2**Inv [RI **tpCB2]**k301]}, {k30}, {k20}}, 

AllRelations 1 (27) 

This command scans AllRelat ions for unassigned 
letters and places them in the order compatibly with 
the order given in the first argument. 

Finally, the call to make the Groebner basis is made. 

This call will create a four iteration partial Groebner 
basis from the polynomials included in AllRelat ions 
and the output will be stored in the file, “FindK10”. 

BCProcess [AllRelations .4 ,“FindKiO” ,SBByCat->False 3 

The “option” SBBpCat , which removes “redundant” 
equations, can be ignored by the reader since in fact 
we have turned it off to save run time. 

3.1.3 The output : The output of this com- 
mand is a set of polynomials which make up the 
the partial Groebner basis created from the polyno- 
mials in AllRelations under the order specified in 
(27). The software we use actually does more than 
just create a Groebner basis. NCProcess categorizes 
the output depending on how many and which un- 
knowns lie in each relation. Then it automatically 
sets them in ‘Q$, ‘Q$’s the file, and opens a win- 
dow displaying them using “xdvi”. In this case a 
category was found which consisted of a single re- 
lation in the one unknown IC10 which we will refer 
to as kiOrel. NCProcess automatically performs 
NCCollect CkiOrel,kiO] and displays 

The expressions with unknown variables {klo}  
and knowns {Ao, Bo, MO,  No, AT,  BOT, M:, N:, R;’} 
kio (Ao - Bo R t l  N:Mo) + (A: - MrNoR;’B:) k io  + 

(28) 

This gives us a very desirable decoupled Riccati 
equation for IC10 (see (28)) and IC30 (see (23)). Also 
an equation in the output 

M ~ M o  - kioBo&-’B~klO - M:No&-’N:Mo 

solves for IC20 in terms of IC10 and k30. Moreover it is 
easy to see from the full output of NCProcess that 
no equations coupling klo  and IC30 exist. 

The calculation which computes (28) is no easy feat 
by hand, as the substitutions and non-standard no- 
tation on pages 116-117 of [KK086] will attest. The 
answer we found with Groebner computer algebra is 
the same as derived there by hand. After the com- 
mands were typed into a file, this computation took 
less than 3 minutes. 

3.1.4 The zero-th order term of the con- 
troller : The optimal controller (9) has first term 
(i = 0 )  in c equal to 

and the previous section tells how to compute all of 
the kj,o. 
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4 Higher Order Terms in E 

There are many circumstances when the parameter E ,  

while small, is known. In such a case, even though the 
optimal controller is an infinite power series in E one 
can make an nrh order approximation to G ( E )  in (9) 
and arrive at a controller with enhanced performance. 
A major obstruction to such an improved approach is 
the tedious computation required to generate formu- 
las for the coefficients of higher powers of E .  We did 
not find references where anyone generated formulas 
for coefficients of E higher than 1. The methods in this 
paper do, see Section 4.2. The NCAlgebra/NCGB 
package removes much of the tedium. The next sub- 
section address our computer solution of the standard 
order E term, then we turn to our new results on the 
order term. 

4.1 The order 6 term of the Riccati equation 
Space does not permit a discussion except to say that 
the pattern of the solution is the same as before. 
[KK086] uses clever notation to make his formulas 
elegant, but our automatic procedures of course do 
not do this. However, NCAlgebra and NCGB works 
quite quickly (7 min) to produce an answer equivalent 
to the standard one found in [KK086]. 

4.2 The order c2 term of the Riccati equation 
For the sake of presenting a formula which has not 
appeared before we create a three term approxima- 
tion to K(c) ,  
K2 = {{klO.ep k20}, {ep tpCk201. e p  k30 }} + 
ep {{ k l l .  ep k21 }, {ep tpCk211, ep k31 }) + 
ep-2 {{ k21,  e p  k22 }, {ep tpCk221, e p  k32 }} 

For this problem a three iteration partial Groebner 
basis was created and we arrived at formulas defin- 
ing k ( 1 , 2 ) ,  k ( 2 , 2 ) ,  and k(3,2). Even without running 
NCProcess one sees that k p 2 )  satisfies a Riccati equa- 
tion. This is analogous to the lower order cases. 

We found one equation which expresses k ( 2 , 2 )  in terms 
of k ( 1 , 2 )  and k(3,2).  We found a Lyapunov equation 
in the unknown k ( 1 , 2 )  consisting of 150 lines in Math- 
ematica notation. There were also several equations 
in the unknowns k(1,2) and k(3,2).  In analogy with 
the lower order cases we expect that these "coupled" 
equations are redundant and provided no additional 
information or contraints. The algorithms we use 
to check nonredundancy are more computer intensive 
and did not finish when run on this problem. Note 
that our (Riccati and Lyapunov) formulas could be 
used for numerical calculations to compute k ( 1 , 2 )  and 
k(3,2); then coupling could be checked on a case by 
case basis. 

(31)  

We used a version of NCProcess which was specialized 
to display only equations involving the unknowns; 
k ( 1 , 2 )  and k( ,2 ,2) .  This substantially speeds up run 
times. Still, our rather formidable conclusion took 
21.5 minutes. The formulas can be found at 
http://math.ucsd.edu/-ncalg/SingularPerturbation. 

It is gratifying that our Groebner equation processing 
techniques prevailed on such a large problem. It leads 
us to think that many singular perturbation problems 
are well within the scope of our computer algebra 
techniques. 

5 Perturbing singular solutions of the 
Information State Equation 

We would also like to mention that the techniques il- 
lustrated on the previous problem apply successfully 
to other problems. In particular we mention an on- 
going singular perturbation analysis of an important 
entity in the output feedback H ,  control problem, 
the information state. 
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