
Proceeding of the 38*
Conference on Decision & Control
Phoenix, Arizona USA December 1999

FrA04 09:tO

Noncommutative computer algebra in the control of
singularly perturbed dynamical systems

J.W. Helton’ F. Dell Kronewitterl Mark Stankus2

Abstract
Most algebraic calculations which one sees in lin-
ear systems theory, for example in IEEE TAC, in-
volve block matrices and so are highly noncommuta-
tive. Thus conventional commutative computer alge
bra packages, as in Mathematica and Maple, do not
address them.

Here we investigate the usefulness of noncommuta-
tive computer algebra in a particular area of con-
trol theory-singularly perturbed dynamic systems-
where working with the noncommutative polynomi-
als involved is especially tedious. Our conclusion is
that they have considerable potential for helping prac-
titioners with such computations. For example, the
methods introduced here take the most standard text-
book singular perturbation calculation, [KK086], one
step further than had been done previously.

Commutative Groebner basis algorithms are powerful
and make up the engines in symbolic algebra pack-
ages’ Solve commands. Noncommutative Groebner
basis algorithms are more recent, but we shall see that
they are useful in manipulating the messy sets of non-
commutative polynomial equations which arise in sin-
gular perturbation calculations. We use the noncom-
mutative algebra package NCAlgebra and the non-
commutative Groebner basis package NCGB which
runs under it.

1 Introduction
Singular perturbation is a commonly used technique
in the analysis of systems whose dynamics consist of
two pieces. One piece might be slow, the other fast,
or one might be known where the other is somewhat
uncertain. Extensive analysis has been done of this
type of plant for the LQR and H , control problems,
for example [KK086] and the works of Pan and Basar.

‘University of California, San Diego, Math Dept.,
9500 Gilman Dr., San Diego, CA 92093-0112,
Email:heltonOmath.ucsd.edu, dellOieee.org, Partially sup
ported by the AFOSR and the NSF

lDepartment of Mathematics, California State University.
San Luis Obispo,CA 93407

Typically one has an equation where some coefficients
depend on a parameter f . To solve this equation, one
postulates an expansion in E for the solutions x6 to
the equation, then

(a) substitutes 2, into the equation,
(b) sorts the equation according to powers of E , and
(c) finds simple equations for successive terms in the
expansion of zc.

The sorting in (b) can be tedious and the business of
solving (c) can be very involved.

This article concerns methods we are developing for
doing these steps automatically. The software runs
under NCAlgebra, [HMS96], the most widely dis-
tributed Mathematica package for general noncom-
muting computations. As we shall illustrate, NCAlge
bra constructions and commands easily handle steps
(a) and (b), thereby producing the (long) list of equa-
tions which must be solved. This is straightforward
and saves considerable calculation time for those en-
gaged in singular perturbation calculations. Step (c)
involves solving complicated systems of equations and
this is always tricky business. Thus there is no way of
knowing in advance if noncommutative Groebner ba-
sis methods will be effective for (reducing to a simple
form) the equations found in large classes of singular
perturbation problems. This is the focus of experi-
ments (using the package NCGB which runs under
NCAlgebra) we have been conducting and on which
we report here.

Most of the paper shows how one can treat the most
classic of all singular perturbation problems using
computer algebra. Ultimately, we see that Mora’s
Groebner basis algorithms are very effective on the
equations which result. Indeed our method carries out
the expansion one step further than had previously
been done, see Section 4.2. We also mention another
newer Ifm estimation problem called the “cheap sen-
sor” problem (see [HJM98]). On this our computer
techniques proved effective and a longer paper will
report these results.

U.S. Government work not protected by U.S. copyright. 4086

http://Email:heltonOmath.ucsd.edu
http://dellOieee.org

1.1 The idea behind Groebner computer al-
gebra
We say that a set of equations { q j = 0 : 1 5 j 5 k}
eliminates zk if one of the polynomials has the form

a polynomial which does not depend on zk).

The noncommutative Groebner basis algorithm
(GBA), due to F. Mora [Mor86], can be used to sys-
tematically eliminate variables from a collection (e.g.,
{ p j (x ! , . . . ,tn) = 0 : 1 5 j 5 1 1)) of polynomial
equations so as to put it in triangular form. One
specifies an order on the variables (2 1 < t 2 < z g <
. . . < z,,) which corresponds to your priorities in
eliminating them. Here a GBA will try hardest to
eliminate tn and try the least to eliminate $1. The
output from it is a list of equations in a “canonical
form” which is triangular:

q j = zk - ?‘(ti,. . . , x k - 1 , C k + l , . . . , Zn); (SO that 7‘ is

Here, the set of solutions to the collection of poly-
nomial equations {q, = 0 : 1 5 j 5 k 2) equals the
set of solutions to the collection of polynomial equa-
tions { p j = 0 : l 5 j 5 kl}. This canonical form
greatly simplifies the task of solving the collection of
polynomial equations by facilitating back-solving for
xj in terms of 21, . . . , zj-1. The effect of the ordering
is to specify that variables high in the order will be
eliminated while variables low in the order will not.

For noncommutative computation which is the sub-
ject of this paper, the Groebner basis is usually infi-
nite and then the GBA fails to halt given finite com-
putational resources. Nevertheless, the solution set
of the output of a terminated (say k iteration) GBA,
{q j = 0}, is always equivalent to the solution set of
the input, {p i = 0}, and this partialGBA often proves
to be useful in computations as will be shown below.
Groebner basis computer runs can be (notoriously)
memory and time consuming. Thus their effectiveness
on any class of problems can only be determined by
experiment. Implementations of the GBA include the

From this ordering on variables, an order on monomials in
those variables is induced which which is referred to as non-
commutative lexicogl-aphic ol-der.

2 / c ~ may be larger than n (i.e., there need not be 5 n equa-
tions in the list) and there need not be any equation in just l
or 2 variables.

NCGB component of NCAlgebra, [HS97], and OPAL,
[KG98].

Our computer computations were performed with
NCGB on a Sun Ultra I with one 166 Mhz proces-
sor and 192MB of RAM.

2 The Standard State Feedback Singular
Perturbation Problem

The standard singularly perturbed linear time-
invariant model consists of a differential state equa-
tion; which depends on some perturbation parameter
E ; and an output equation. The general control prob-
lem is to design some feedback law which specifies the
input as a function of the output so that the controlled
system will satisfy some given performance objective.
2.1 The System
Here we study the standard two time scale dynamic
system analyzed in [KK086]:

] [] + [i:] U (6)
dx

[] = [Azi Azz

where 3: E W”, z E R”, U E WP, and y E Rq. Here,
m, n, p and q are integers, and All , and A 1 2 , A 2 1 ,

A Z Z , B1, Bz, M I I , and Mzz are appropriately sized
matrices.
2.2 The Near-Optimal LQR Problem
The infinite-time optimal linear regulator problem is
to find a control, u(t), t E [0, CO] which minimizes the
cost

J = Lrn(yTa, + UTRU)dt (8)

where R is a positive definite weighting matrix. It is
well known that the solution to this problem is of the

where K (E) is a solution to the Algebraic Riccati
Equation (ARE)

K A +A% - K B R - ~ B ~ K + M ~ M = o (io)

Notice that K solves equation (10) which is a Ric-
cati equation of size n + m by n + m. Since the
structures present in the system (11) are partitioned,

4087

it seems likely that we might decompose the prob-
lem and significantly reduce the sizes of the matrices
while deriving an only slightly sub-optimal controller.
Indeed, it is standard to divide the problem of solv-
ing the n + m dimensional Riccati, (lo) , into solving
two smaller decoupled Riccatis, one which is n dimen-
sional, the other which is m dimensional, and then use
these solutions to obtain a control law which gives
a performance J nearly equal to the optimal perfor-
mance. This regulator is known as the near-optimal
regulator.

In the next two subsections we review this decomposi-
tion of the state space into slow and fast parts. This is
mostly a matter of setting our notation, which in fact
is the same notation as [KK086]. The noncommuta-
tive Groebner computer algebra which is the subject
of our investigations is well suited for manipulating
polynomials into a triangular or even decoupled form.
2.3 Decomposing the Problem
Here, we decompose our two time scale system into
it's fast parts and slow parts. We will assume
throughout that A22 is invertible.

2.3.1 The Slow System : The dynamics of
the slow system can be found by setting to zero in
equation (6) obtaining what is often called the quasi-
steady state of the system. This transforms the equa-
tion involving in system (6) into an algebraic equa-
tion rather than a differential equation

where

Here the subscript s indicates that the vectors in
equations (13)-(14) are the slow parts of the vectors
in (6).

2.3.2 The Fast System : The fast system
has dynamics

Here the subscript f indicates that the vectors in
equations (15)-(16) are the fast parts of the vectors
in (6).

2.4 Decomposing the Measurement
We may then also decompose (7) into it's slow and
fast parts

y = MlZ+M2Z
= M1[z , + O(€)]
+ M2[-A;;(Azixs + B~u,) + z j + O(E)]
= Y8 (t) + Yj (4 + O(f)

3 Computer algebra vs. the standard
singular perturbation problem

The matrix K (c) in (12) must be partitioned compat-
ibly with the states, x and z , and is the limit of the
power series which is conventionally written

where k (i , j) are appropriately sized matrices (see (6)).
We shall use kjj synonymously with k(j , j) , since this
saves space and actually corresponds to the TEX out-
put of NCAlgebra.

The remainder of this section will be devoted to find-
ing formulas for the k (j , i) for j E {1,2,3} and i >_ 0.

3.1 The zero-th order term of the Riccati
equation (constant (i.e., 6') coefficients)
We begin our investigations of the perturbed control
problem by searching for the first term of the series
(17) consisting of matrices, k(1,0), k(2,0), and k(3,O)-

We substitute KO(€) into (10) and take only the zero-
th order terms in 6 of the resulting equations. This
is problem (b) mentioned in the introduction. In the
next section, Section 3.1.1, we will show how this may
be done with the assistance of a computer.

3.1.1 Computer algebra finds the basic
equations : We begin by using computer algebra
to assist in finding the zero-th order terms in of the
equations given in (10).

First, using NCAlgebra, we define the block matrices

in (11). The matrix, [] , is represented in

Mathematicaby {{a,b},{c,d}}. The suffix, [[i , j] l ,
extracts the element in the i-th row and the j-th
column from a given matrix. In NCAlgebra, MatMult
performs the matrix multiplication operation, tpMat
performs the symbolic transpose operation, and **
indicates noncommutative multiplication.

4088

A = {{All,Al2},{l/ep A2l,l/ep A22));
B = {{Bl},{l/ep 82)); H = {{Hl.H2));

We also define a KO.

(18)

KO = {{klO,ep k20), {ep tpCk20l ,ep k30));

The following Mathematica function takes as an
argument a matrix Ii' and generates the Riccati (10).

RiccatiCKJ := HatHult [K,A] + HatHult CtpHat [A] ,Kl -
natnult[K,B,Inv[Rl ,tpHatCB] ,Kl +
natnult CtpHat CM1 ,HI (19)

We next use the NCAlgebra command
NCTermsOfDe ree3. The followin Mathematica
commands w!l extract the 0-th or8er terms in 6 ,

creating the polynomials in (21), (22), and (23).

EplO = ECTermsOfDegreeC RiccatiCKOl[[l,11~, {ep},(O}l
Ep20 = BCTermsOfDegreeC RiccatiCKO] [[1,211, {ep},{O)l
Ep30 = BCTermsOfDegreeI: Riccati[KO] cc2.211, {ep).{0)1

The output

This input creates three polynomials, the third of
which is
k30**A22+tp[A22]**k30+tp[n21 **!I2
-k30**B2**Inv[R]**tp[B2~**k30. (20)

Notice that (23), the form of (20), contains
only one unknown k30 and has the form of a Ric-
cati equation. Thus k30 is uniquely determined by
this equation if we assume it is the "stabilizing solu-
tion". That is, A22 -B2R-'Brk30 has all eigenvalues
in the strict left half plane and is therefore invertible.
For computer algebra the key property is invertibility
of A 2 2 - &R-'B?k30. This invertibility assumption
could also be motivated by (longer) purely algebraic
arguments. Our next objective is to find decoupled
equations which determine the unknown matrices.

~~

3BCTermsOfDegree takes 3 arguments: a (noncommutative)
polynomial, a list of variables, and a set of indices. The
command returns an expression such that each term is ho-
mogeneous with degree given by the indices. For exam-
ple, the c d BCTermsOfDegreeC A**B + B**C**C + B**A**C +
C**D, {C}. {1} 7 returns B**A**C + C**D.

3.1.2 Analysis of the basic equations :
We will show how (21),(22), and (23) may be replaced
by an equation involving only one unknown klo and
equation (23) whose only unknown is k30 (so that k30
and klo may be computed using two independent Ric-
cati equations) and by a single equation solving for k20
and k30. We will use our noncommutative Groebner
basis machinery here.

Computer algebra jargon
There are several terms we will use which, though
simple conceptually, may not be familiar to the con-
trol engineer. A product of variables, cy' ex;' . . . xzn
where cYk E M, is called a monomial. A polynomial,
f, is a finite Glinear combination of monomials,

m
ajx;: . x;i . . . x,"i

j =1

where a, E @. We call ak the coeficient of the term
akx? . ex$. A relation is a polynomial which is
assumed to be 0. That is, we may write the equation,
3x2yz = yz + 4z2, as a relation, 3x2yz - yz - 4z2.
Many NCAlgebra functions will accept either rela-
tions or equations. We will slip back and forth be-
tween the two notations and the meaning should be
clear from the context.

All algebraic identities which hold
As described in Section 1.1, the GBA takes as input
a set of polynomials and an order on the variables in-
volved. It outputs a (generally) more desirable set of
equations. It is not necessary to know which polyno-
mials are needed to derive a certain relation. It is only
necessary that all needed polynomials are present in
the input. For this reason one generally gives as input
to the GBA all polynomial relations known t o hold.
There is no harm in having superfluous (but true)
relations in the input. Now we will list the input to
our computer algebra program which will generate all
polynomial relations known to hold.

First the basic relations we wish to study were pro-
duced in the previous section, Ep10,EpZO and Ep30;
equations (21), (22), and (23).

In light of the slow system terminology introduced
above in Sections 2.3.1 and 2.4 we make the following
abbreviations.

Abbreviations = { BO == - H2**Inv[A22]**B2,
HO == Hl - H2**Inv[A22]**A21,
A0 == All - A12 ** InvCA221**A21,
BO == Bl - A12**Inv[A22]**B2,
RO == R + tp[BO]**BO } (24)

4089

We add the abbreviation Ro for convenience as done
in [KK086], although it is not essential.

InvCR] is the NCAlgebra representation of R-l.
Since = denotes assignment, Mathematica uses == to
denote equality (for equations).
Several of the matrices or matrix polynomials are
assumed to be invertible. It is common to take the
matrices, Aii, to be of full rank, since otherwise
a transformation could be applied to the original
system to reduce the size of the state. The matrix
A22 - BzR-lBTk30 has already been assumed to
be invertible. The matrices R and Ro are positive
definite and so must be invertible. We generate the
relations which result from these observations with

Inverses = ICHakeRelations[{Inv, R,RO,AO,Aii,A22,

(A22 - B2**Inv[R]**tpCB2]**k30) }I (25)

Several of the matrices are known to be self adjoint,
and therefore the following relations must hold:

SelfAdjoints = { klO == tpCkiO], k30 == tpCk301,
R == tpCR], BO == tpCRO], InvCR] == tpCInvCR]],
Inv[RO] == tpCInvCRO]] } (26)

We combine all of our relations with
Relations = UnionCEpiO.Ep20,Ep30, Abbreviations,
SelfAdjoints,Inverses]

If p==O is a true equation, then t p Cpl ==O is also. We
add these “transposed” equations:

AllRelat ions = HCAddTranspose Belat ions]

Orders
We shall create a Groebner basis for all polynomial
relations known to hold under the following order.

No < MO < Ro < Ao < Bo < klo < other variables < k2o

Experimenting with other orders is easy, but this one
works. This order is specified using the NCAlgebra
command

PCAutomat icOrder [{ {BO, HO .RO , A 0 ,BO}, {kiO} , {Bl , B2 ,Hi, H2,
R,Ali ,Ai2 ,A21 ,A22, InvCA22-B2**InvCR] **tp[B2]**k30] ,
tpCInvCA22- B2**Inv [RI **tpCB2]**k301]}, {k30}, {k20}},

AllRelations 1 (27)

This command scans AllRelat ions for unassigned
letters and places them in the order compatibly with
the order given in the first argument.

Finally, the call to make the Groebner basis is made.

This call will create a four iteration partial Groebner
basis from the polynomials included in AllRelat ions
and the output will be stored in the file, “FindK10”.

BCProcess [AllRelations .4 ,“FindKiO” ,SBByCat->False 3

The “option” SBBpCat , which removes “redundant”
equations, can be ignored by the reader since in fact
we have turned it off to save run time.

3.1.3 The output : The output of this com-
mand is a set of polynomials which make up the
the partial Groebner basis created from the polyno-
mials in AllRelations under the order specified in
(27). The software we use actually does more than
just create a Groebner basis. NCProcess categorizes
the output depending on how many and which un-
knowns lie in each relation. Then it automatically
sets them in ‘Q$, ‘Q$’s the file, and opens a win-
dow displaying them using “xdvi”. In this case a
category was found which consisted of a single re-
lation in the one unknown IC10 which we will refer
to as kiOrel. NCProcess automatically performs
NCCollect CkiOrel,kiO] and displays

The expressions with unknown variables {klo}
and knowns {Ao, Bo, MO, No, AT, BOT, M:, N:, R;’}
kio (Ao - Bo R t l N:Mo) + (A: - MrNoR;’B:) k io +

(28)

This gives us a very desirable decoupled Riccati
equation for IC10 (see (28)) and IC30 (see (23)). Also
an equation in the output

M ~ M o - kioBo&-’B~klO - M:No&-’N:Mo

solves for IC20 in terms of IC10 and k30. Moreover it is
easy to see from the full output of NCProcess that
no equations coupling klo and IC30 exist.

The calculation which computes (28) is no easy feat
by hand, as the substitutions and non-standard no-
tation on pages 116-117 of [KK086] will attest. The
answer we found with Groebner computer algebra is
the same as derived there by hand. After the com-
mands were typed into a file, this computation took
less than 3 minutes.

3.1.4 The zero-th order term of the con-
troller : The optimal controller (9) has first term
(i = 0) in c equal to

and the previous section tells how to compute all of
the kj,o.

4090

4 Higher Order Terms in E

There are many circumstances when the parameter E ,

while small, is known. In such a case, even though the
optimal controller is an infinite power series in E one
can make an nrh order approximation to G (E) in (9)
and arrive at a controller with enhanced performance.
A major obstruction to such an improved approach is
the tedious computation required to generate formu-
las for the coefficients of higher powers of E . We did
not find references where anyone generated formulas
for coefficients of E higher than 1. The methods in this
paper do, see Section 4.2. The NCAlgebra/NCGB
package removes much of the tedium. The next sub-
section address our computer solution of the standard
order E term, then we turn to our new results on the
order term.

4.1 The order 6 term of the Riccati equation
Space does not permit a discussion except to say that
the pattern of the solution is the same as before.
[KK086] uses clever notation to make his formulas
elegant, but our automatic procedures of course do
not do this. However, NCAlgebra and NCGB works
quite quickly (7 min) to produce an answer equivalent
to the standard one found in [KK086].

4.2 The order c2 term of the Riccati equation
For the sake of presenting a formula which has not
appeared before we create a three term approxima-
tion to K(c) ,
K2 = {{klO.ep k20}, {ep tpCk201. e p k30 }} +
ep {{ k l l . ep k21 }, {ep tpCk211, ep k31 }) +
ep-2 {{ k21, e p k22 }, {ep tpCk221, e p k32 }}

For this problem a three iteration partial Groebner
basis was created and we arrived at formulas defin-
ing k (1 , 2) , k (2 , 2) , and k(3,2). Even without running
NCProcess one sees that k p 2) satisfies a Riccati equa-
tion. This is analogous to the lower order cases.

We found one equation which expresses k (2 , 2) in terms
of k (1 , 2) and k(3,2). We found a Lyapunov equation
in the unknown k (1 , 2) consisting of 150 lines in Math-
ematica notation. There were also several equations
in the unknowns k(1,2) and k(3,2). In analogy with
the lower order cases we expect that these "coupled"
equations are redundant and provided no additional
information or contraints. The algorithms we use
to check nonredundancy are more computer intensive
and did not finish when run on this problem. Note
that our (Riccati and Lyapunov) formulas could be
used for numerical calculations to compute k (1 , 2) and
k(3,2); then coupling could be checked on a case by
case basis.

(31)

We used a version of NCProcess which was specialized
to display only equations involving the unknowns;
k (1 , 2) and k(,2 ,2) . This substantially speeds up run
times. Still, our rather formidable conclusion took
21.5 minutes. The formulas can be found at
http://math.ucsd.edu/-ncalg/SingularPerturbation.

It is gratifying that our Groebner equation processing
techniques prevailed on such a large problem. It leads
us to think that many singular perturbation problems
are well within the scope of our computer algebra
techniques.

5 Perturbing singular solutions of the
Information State Equation

We would also like to mention that the techniques il-
lustrated on the previous problem apply successfully
to other problems. In particular we mention an on-
going singular perturbation analysis of an important
entity in the output feedback H , control problem,
the information state.

References
[CLS92] D. Cox, J. Little, and D. 0' Shea. Springer,
Undergraduate Texts in Mathematics, 1992.
[GHK97] E.L. Green, L.S. Heath, and B.J. Keller.
Opal: A system for computing noncommutative
groner bases. In H. Comon, editor, Eigth Inter-
national Coni on Rewriting Techniques and Ap-
plications (RTA-97), LNCS# 1232, pages 331-334.
Springer, 1997.
[HJM98] J. W. Helton, M. R. James, and W. M.
McEneaney. Proceedings of the 97th IEEE
CDC, Tampa, Florida, USA, Dec 16-18, 4:3609-13,
1998.
[HMS96] J.W. Helton, R.L. Miller, and M. Stankus.
NCAlgebra: A Mathematica Package for do-
ing noncommuting Algebra. available from
http://math.ucsd.edu/"ncalg, 1996. To perform the
computations in this paper you need NCGB,([HS97]).
[HS97] J.W. Helton and M. Stankus. NCGB:
Noncommutative Groebner bases. available from
http://math.ucsd.edu/'ncalg, 1997.
[KG981 B. Keller and E. Green. The OPAL System.
available from ht t p : // ha1 . cs. v t .edu/opal , 1998.
[KK086] Petar V. Kokotovic, Hassan K. Khalil, and
John O'Reilly. Singular Perturbation Methods in Con-
trol: Analysis and Design. Academic Press, 1986.
[Mor861 F. Mora. Groebner bases for non-
commutative polynomial rings. Lecture Notes in
Computer Science, 229:353-362, 1986.

4091

http://math.ucsd.edu/-ncalg/SingularPerturbation
http://math.ucsd.edu/"ncalg
http://math.ucsd.edu/'ncalg

