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Abstract— This paper develops a neuro-dynamic program-
ming (NDP) based near optimal boundary control of distributed
parameter systems (DPS) governed by linear one-dimensional
parabolic partial differential equations (PDE) under Dirichlet
boundary control condition. The structure of the optimal cost
functional is defined as an extension of its definition from
lumped parameter systems (LPS) but for the infinite dimen-
sional state space. Subsequently, the Hamilton-Jacobi-Bellman
(HJB) equation is formulated in the infinite dimensional domain
without using any model reduction. Since solving the HJB
equation for the exact optimal value functional is burdensome,
a radial basis function network (RBF) is subsequently proposed
to achieve a computationally feasible solution online and in a
forward-in time manner. The optimal value functional is tuned
by using conventional adaptive laws such that the HJB equation
error is minimized and accordingly the optimal control policy is
derived. Ultimate boundedness (UB) of the closed-loop system
is verified by using the Lyapunov theory. The performance
of proposed controller is successfully verified on an unstable
diffusion reaction process.

I. INTRODUCTION

Distributed parameter systems (DPS) are a major part of

dynamical systems with wide range of applications [1]–[2].

As the name suggests, DPS arise in environments where

system behavior changes continuously throughout the space.

Similar to case of lumped parameter systems (LPS), the

common attributes of a controller design for DPS should

include: 1. a simple and reliable design; 2. feasible real-

time implementation; 3. being robust to disturbances and

modeling errors; and 4. closed-loop stability. However, the

major challenge in the control of DPS when compared to a

LPS is the infinite dimensional nature of state space modeled

by partial differential equations (PDE). This characteristic

makes control design qualities difficult to reach in contrast

to finite set of ordinary differential equations (ODE) in LPS.

The successful results of linear optimal control of LPS

motivated researchers to develop the operator theory for

optimal control of DPS. The work was then extended to

boundary control [3] where the design is performed in

the infinite dimensional setting. However, a closed-form

solution requires solving the operator Riccati equations

which is significantly more time consuming in the infinite

dimensional domain for DPS. Subsequently, various other

approaches under the general category of optimize-then-
discretize control were proposed. In particular, boundary
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actuation received special attention in the previous decade

due to backstepping approach [4] wherein the controller is

developed through conventional calculus instead of operator

theory. The backstepping approach further enhances the

stability study through conventional calculus in the original

PDE domain.

The advances in neuro-dynamic programming (NDP) on

the other hand, and its successful forward-in-time imple-

mentation of optimal control policy for LPS [5], encouraged

researchers to investigate application of this method to DPS

[6]-[7]. However, due to the difficulty of designing the

controller in infinite dimensional domain and with PDE dy-

namics, the DPS system was discretized into an approximate

finite dimensional state space and subsequently the well-

developed NDP algorithms [8] were utilized for this reduced

order model. Design of a controller using a reduced order

model is broadly categorized as discretize-then-optimize [9]

method. The benefit of this design approach is the possibility

of using either the state of the art NDP or other feedback

suboptimal control designs. However, its primary limitation

is the degraded performance due to a reduced order finite

dimensional model of the system.

In contrast, in this paper, a new NDP based boundary

control of DPS governed by linear parabolic PDE under

Dirichlet boundary condition is introduced. Unlike previous

NDP based control methods for DPS [6]-[7], no model re-

duction is utilized prior to the control design. The controller

development is based on obtaining the Hamilton Jacobi

Bellman (HJB) equation and the optimal boundary control

policy in the infinite dimensional domain through calculus.

The value functional is then approximated in order to design

a suboptimal controller. The proposed suboptimal controller

is the first to be designed according to the NDP for a DPS

without any model reduction.

The development of the controller is as follows. First, the

HJB equation is formulated in the infinite dimensional setting

based on a novel definition of value functional. Subsequently,

the optimal control policy is derived by using necessary con-

ditions of optimality. Consequently, the value functional is

estimated in a forward-in-time manner and the approximated

optimal control policy is derived by using the estimation

of value functional. Computationally efficient adaptive laws

are proposed for online tuning of value functional weights.

Eventually, Lyapunov analysis is utilized to demonstrate

the closed-loop stability of the feedback system. Simulation

results confirm the effectiveness of the proposed scheme on

a diffusion-reaction process.

Throughout the paper, ‖.‖ stands for Euclidean norm
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for vectors or Frobenius norm for matrices. We recall the

inequality ‖.‖2 ≤ ‖.‖F where ‖.‖2 and ‖.‖F represent the

induced 2 norm and the Frobenius norm, respectively. The

L2 norm is also defined as ‖.‖L2
= (

l∫
0

‖.‖2dz)
1
2 .

The rest of the paper is organized as follows. In Section

II the class of DPS under consideration is described and

the state feedback optimal control approach is explained.

Section III demonstrates the simulation results and Section

IV provides the conclusion of the paper.

II. ADAPTIVE OPTIMAL CONTROL OF DPS MODELED

BY PARABOLIC PDE

In this paper, a DPS governed by a linear one-dimensional

parabolic PDE dynamics expressed as

∂x(z, t)
∂ t

=
∂ 2x(z, t)

∂ z2
+λ (z)x(z, t), (1)

is considered, where x(z, t) ∈ H2[0, l] is the system state

with z ∈ [0, l] being the spatial variable, l > 0, t representing

time and H2 being the Sobolev space of second order;
∂x
∂ t

is the time derivative of x,
∂ 2x
∂ z2

is its second spatial

derivative and λ (.) ∈ C1([0, l]) with C1 being the space of

continuously differentiable functions. Considering the above

PDE dynamics, in the following, the NDP controller is

designed under Dirichlet boundary actuation condition.

Consider the linear DPS (1) with Dirichlet boundary

control at z = l and general Robin boundary condition at

z = 0 as

x(l) = gu,
∂x
∂ z

|z=0 =−hx(0). (2)

where u is the control input and g,h∈ℜ are known constants.

The objective is to design a controller to minimize the

following infinite horizon cost functional V̄ given by

V̄ (x,u) =
∞∫

t0

{
Q(x)+ ru2

}
dt, (3)

where r is a positive constant and Q(x) is a positive definite

function. If the system state is a finite dimensional n× 1

vector x f , it is well-known that Q(x f ) could be defined in

quadratic form as

QL(x f ) = xT
f Qlx f =

n

∑
i=1

n

∑
j=1

x fiQli j x f j (4)

where Ql is a positive definite n × n kernel matrix, x fi
is the ith element of vector x f and Qli j is the entry of

matrix Ql at the ith row and jth column. However, in

the case of DPS, since there are infinitely many states

[x(z0),x(z1), ...,x(zk), ...]
T zi ∈ [0, l] [12] that are continuous

in the spatial domain, the finite dimensional summations in

(4) should be substituted by integrals. Therefore, intuitively,

taking s,z∈ [0, l] as continuous spatial variables for a surface

kernel function q(s,z) which correspond to discrete variables

i, j as rows and columns of matrix Ql in (4), Q(x) for DPS

can be specified equivalent to (4) in the following surface

integral form as

Q(x) =
l∫

0

l∫
0

x(s)q(s,z)x(z)dsdz, (5)

where q(., .) ∈ C2([0, l], [0, l]). Note that q(., .) is a two

dimensional continuous kernel function that has the same

role of the kernel matrix Ql in finite dimensional definition

(4).

Remark 1: In order to further clarify the definition of

Q(x) in (5) as extension of finite dimensional definition (4),

take 0 = z0 ≤ z1 ≤ ... ≤ zn−1 ≤ zn = l and 0 = s0 ≤ s1 ≤
...≤ sn−1 ≤ sn = l as two partitions for [0, l]. Assigning x f =
[x(z1), ...,x(zi), ...,x(zn)]

T as a n×1 finite dimensional subset

of x and defining Δzi = zi − zi−1 and Δsi = si − si−1 for 1 ≤
i ≤ n, one can express Q(x) in (5) as

Q(x) =
l∫

0

l∫
0

x(s)q(s,z)x(z)dsdz

≈
n

∑
i=1

n

∑
j=1

x fiq(si,z j)x f j ΔsiΔz j

(6)

where the Riemann approximated definition of integrals is

used. By defining Qli j = q(si,z j)ΔsiΔz j, equation (6) can be

viewed analogous to definition of QL in (4). This implies that

definition of Q(x) in (5) reduces to (4) for conventional finite

dimensional state spaces. In order to proceed, the following

assumption is necessary:

Assumption 1: The function q(., .) is symmetric, i.e.

q(s,z) = q(z,s), and Q(x) is positive definite, i.e. Q(x) ≥
qmin‖x‖2

L2
with qmin ≥ bq where bq is a positive constant

that will be defined later in the paper. Note that Q(x) can be

designed arbitrarily.

The optimal cost functional is represented by V̄ ∗(x, t).
Similar to NDP control design of linear LPS with quadratic

cost function [10], if p(s,z) ∈C1([0, l], [0, l]) is a symmetric

kernel function, V̄ ∗(x, t) can be represented by a surface

integral as

V̄ ∗(x, t) =
1

2

l∫
0

V ∗(x(z, t),z)dz. (7)

where V ∗(x(z, t),z) =
l∫

0

x(s, t)p(s,z)x(z, t)ds. By taking the

current time interval [t, t + δ t), V̄ in (3) can be represented

in the recursive form as

V̄ (x,u, t) =
t+δ t∫
t

{
Q(x)+ ru2

}
dt +V̄ (x,u, t +δ t), (8)

where V̄ (x,u, t +δ t) is the cost to go from time t +δ t to ∞.

Hence, the optimal value functional can be represented as

V̄ ∗(x, t) = min
u
{

t+δ t∫
t

{
Q(x)+ ru2

}
dt +V̄ (x,u, t +δ t)}. (9)
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Now invoking the principle of optimality, Equation (9)

becomes

V̄ ∗(x, t) = min
u
{

t+δ t∫
t

{
Q(x)+ ru2

}
dt +V̄ ∗(x, t +δ t)}. (10)

It is assumed that V̄ ∗(x, t) is Gáteaux analytic [13], i.e. its

differential with respect to infinitesimal change of state x ex-

ists in the direction of system trajectory in the neighborhood

of (x(z, t), t). If an integral functional Y (x) =
l∫

0

y(x)dz with

y(x) being a function of x is Gáteaux analytic, according

to calculus of variations [13], Y (x+ δx) with δx being an

infinitesimal change in x can be represented by its first order

approximation as

Y (x+δx)≈ Y (x)+
l∫

0

yxδxdz (11)

where yx =
∂y
∂x

. Moreover, according to (7)

1

2

l∫
0

V ∗
x(s,t)δx(s, t)ds =

1

2

l∫
0

V ∗
x(z,t)δx(z, t)dz. (12)

Therefore, revisiting (10), V̄ ∗(x, t +δ t) can be expressed in

its first order approximation form as

V̄ ∗(x, t +δ t)≈ V̄ ∗(x, t)+
1

2

l∫
0

V ∗
x(s,t)δx(s, t)ds

+
1

2

l∫
0

V ∗
x(z,t)δx(z, t)dz+

∂V̄ ∗

∂ t
δ t = V̄ ∗(x, t)

+

l∫
0

V ∗
x(z,t)δx(z, t)dz+

∂V̄ ∗

∂ t
δ t,

(13)

where δx is an infinitesimal variation in x as a consequence

of δ t change in time, V ∗
x(s,t) =

∂V ∗

∂x(s, t)
and V ∗

x(z,t) =
∂V ∗

∂x(z, t)
are partial derivatives of V ∗ with respect to x(s, t) and x(z, t),

respectively and
∂V̄ ∗

∂ t
is partial derivative of V̄ ∗ with respect

to t. Substituting approximation (13) into equation (10) and

canceling V̄ ∗(x, t) on both sides yields

0 = min
u
{Q(x)+ru2 +

l∫
0

V ∗
x(z,t)δx(z, t)dz+

∂V̄ ∗

∂ t
δ t}. (14)

Dividing through by δ t, letting δ t → 0 and substituting

dynamics (1) yield

min
u
{Q(x)+ru2 +

l∫
0

V ∗
x(z,t)

∂x
∂ t

dz}= min
u
{Q(x)

+ ru2 +

l∫
0

V ∗
x(z,t)[

∂ 2x
∂ z2

+λ (z)x(z, t)]dz+
∂V̄ ∗

∂ t
}= 0.

(15)

Since due to infinite time horizon, the cost functional V̄ ∗
as defined in (7) is only state dependent and not explicitly

dependent on time,
∂V̄ ∗

∂ t
= 0 [10]. Therefore the Hamilton

Jacobi Bellman (HJB) equation can be represented by

0 = min
u
{Q(x)+ru2 +

l∫
0

V ∗
x(z,t)[

∂ 2x
∂ z2

+λ (z)x(z, t)]dz}. (16)

In [11] a similar result but with using a different approach

is derived for parabolic semi-linear PDE. Subsequently, the

Hamiltonian is defined as

H = Q(x)+ru2 +

l∫
0

V ∗
x(z,t)[

∂ 2x
∂ z2

+λ (z)x(z, t)]dz. (17)

Accordingly, using integration by parts twice, Hamiltonian

can be represented as

H = Q(x)+ru2 +
l∫

0

V ∗
x [λ (z)x]dz+V ∗

x (l)
∂x
∂ z

|z=l −V ∗
x (0)

∂x
∂ z

|z=0 −{∂V ∗
x

∂ z
|z=lgu− ∂V ∗

x

∂ z
|z=0x(0)−

l∫
0

∂ 2V ∗
x

∂ z2
xdz},

(18)

where
∂V ∗

x

∂ z
and

∂ 2V ∗
x

∂ z2
are the first and second spatial

derivative of V ∗
x with respect to z. Moreover, x(z, t) and

V ∗
x(z)(x,z) are represented by x(z) and Vx

∗(z) for brevity.

This convention will be used throughout the paper. Based on

necessary conditions of optimality, in order for the control

input to be minimizing for Hamiltonian (18), the Fréchet

derivative of this equation with respect to u should be zero

[13]. Therefore,

∂H
∂u

=−g
∂V ∗

x

∂ z
|z=l +2ru = 0 ⇒ u∗ =

1

2r
g

∂V ∗
x

∂ z
|z=l . (19)

Substituting the optimal control in equation (18), the HJB

equation for DPS (1) under Dirichlet boundary condition (2)

can be represented in the form,

H∗ = 0 = Q(x)+
l∫

0

V ∗
x [λ (z)x(z)]dz+V ∗

x (l)
∂x
∂ z

|z=l

−V ∗
x (0)

∂x
∂ z

|z=0 +
l∫

0

∂ 2V ∗
x

∂ z2
xdz

+
∂V ∗

x

∂ z
|z=0x(0)− 1

4r
g2 ∂V ∗

x

∂ z

2

|z=l .

(20)

Since solving partial integro-differential equation (PIDE)

(20) for the exact V ∗(z) is too difficult and time consuming,

the objective is to find a suitable structure for estimation

of V ∗(z). The continuous kernel function p(s,z) in (7) can

be interpreted as an infinite dimensional array of unknown

parameters to be approximated. It is well-known that radial

basis function networks (RBF) can estimate an unknown

continuous multi-variable function with a large enough yet

finite set of basis functions [14]. The function p(s,z) in (7)

can be represented in RBF approximated form as

p(s,z) =W T
V φ(s,z)+ εp(s,z), (21)
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where φ(s,z) : [0, l]× [0, l]→ [C2]
np is a vector of np radial

basis functions ϕ j((s,z)− (s0 j,z0 j)),1 ≤ j ≤ np, WV ∈ ℜnp

and εp(s,z) is the estimation error. It is assumed that the

uniform norm of estimation error and its first and second

spatial derivatives, i.e.
∂εp

∂ z
,

∂ 2εp

∂ z2
are bounded with the

bounds εpM , εpzM and εpzzM , respectively. Note that the

estimation error εp can be reduced by increasing the number

of neurons.

Hence, V ∗(x,z) can be represented in approximated form

of

V ∗(x,z) =
l∫

0

x(s)W T
V φ(s,z)x(z)ds+ εV (x,z)

=W T
V Φ(x,z)+ εV (x,z),

(22)

where Φ(x,z) is a np ×1 vector defined as

Φ(x,z) =
l∫

0

x(s)φ(s,z)x(z)ds, (23)

and εV (x,z) =
l∫

0

x(s)εp(s,z)x(z)ds. Subsequently, the optimal

value functional can be expressed as

V̄ ∗(x) =W T
V

l∫
0

Φ(x,z)dz+ εV̄ , (24)

with εV̄ =
l∫

0

εV dz. Consequently, the optimal control can be

rewritten as

u∗ =
1

2r
g

∂ΦT
x

∂ z
|z=lWV + εu, (25)

with εu =
1

2r
gεVxz |z=l . The HJB equation becomes

H∗ = 0 = Q(x)+
l∫

0

W T
V Φx[λ (z)x(z)]dz+W T

V Φx(l)

∂x
∂ z

|z=l −W T
V Φx(0)

∂x
∂ z

|z=0 +
l∫

0

W T
V

∂ 2Φx

∂ z2
xdz+

∂ΦT
x

∂ z
|z=0

WV x(0)− 1

4r
W T

V
∂Φx

∂ z
|z=lg2 ∂ΦT

x

∂ z
|z=lWV + εH ,

(26)

where Φx(z) denotes Φx(x,z) for brevity and εH is derived

as

εH =
l∫

0

εVx(z)[λ (z)x(z)]dz+ εVx(l)
∂x
∂ z

|z=l

−εVx(0)
∂x
∂ z

|z=0 +
l∫

0

∂ 2εVx

∂ z2
xdz+

∂εVx

∂ z
|z=0x(0)

− 1

4r
g2(

∂εVx

∂ z
|z=l)

2 − 1

2r
W T

V
∂Φx

∂ z
|z=lg2 ∂εVx

∂ z
|z=l .

(27)

If the value functional is estimated as

ˆ̄V ∗(x) =
l∫

0

V̂ ∗(z)dz = Ŵ T
V

l∫
0

Φ(x,z)dz, (28)

the approximated HJB becomes

Ĥ = Q(x)+
l∫

0

Ŵ T
V Φx[λ (z)x(z)]dz+Ŵ T

V Φx(l)
∂x
∂ z

|z=l

−Ŵ T
V Φx(0)

∂x
∂ z

|z=0 +
l∫

0

Ŵ T
V

∂ 2Φx

∂ z2
xdz

+
∂ΦT

x

∂ z
|z=0Ŵx(0)− 1

4r
Ŵ T

V
∂Φx

∂ z
|z=lg2 ∂ΦT

x

∂ z
|z=lŴV ,

(29)

and therefore, the control input can be represented by

û =
1

2r
g

∂ΦT
x

∂ z
|z=lŴV . (30)

The value functional weight tuning law for Dirichlet

boundary control is defined as

˙̂WV =−α1
ωD

ζ 2
D

Ĥ −α2ŴV −α3ŴV‖ŴV‖2 −α4‖x‖2
L2

ŴV ,

(31)

where

ωD =

l∫
0

Φx[λ (z)x(z)]dz+
l∫

0

∂ 2Φx

∂ z2
xdz

+Φx(l)
∂x
∂ z

|z=l −Φx(0)
∂x
∂ z

|z=0 +
∂Φx

∂ z
|z=0x(0)

− 1

2r
∂Φx

∂ z
|z=lg2 ∂Φx

∂ z

T

|z=lŴV ,

(32)

and ζD = c1‖x‖2
L2

+ c2x(0)2 + c3(
∂x
∂ z

|z=l)
2 + c4 with

c1, ...,c4 and α1, ...,α4 being appropriate positive design

parameters.

Remark 2: The first term in update law (31) reduces

the approximated Hamiltonian whereas the other terms are

necessary to insure the closed loop stability as will be

explained in the proof. Note that the convergence rate to

the optimal control input depends on α1, ωD and parameters

c1, ...,c4. Under the update law (31), and control input (30),

it will be shown that system state vector x and the weights

estimation error W̃V will be ultimately bounded (UB).

In the next theorem, the authors will illustrate the ul-

timately boundedness of the closed-loop system with the

boundary control input (30) and under the value functional

weight update law (31). Before proceeding, the following

lemma is necessary:

Lemma 1: The following inequality holds

|εH |� cH1‖x‖2
L2

+ cH2x(0)2 + cH3(
∂x
∂ z

|z=l)
2, (33)

where cH1, ..., cH3 are positive constants. Moreover |εH | ≤
ξDMζD with ζD defined as in update law (31) and ξDM being

a positive constant dependent on reconstruction error.

Proof: Omitted because of space constraints.

Theorem: Consider the DPS system with PDE dynamics

(1) and boundary conditions (2). Under Assumption 1 with

the boundary control input (30) and the infinite-horizon cost

functional (3), the DPS system state x and estimation error

W̃V will remain UB under the update law (31) where 0 <
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Fig. 1. Closed loop state evolution under Dirichlet boundary condition

α1 < 1, α2 > α3 and α3 > θ D
α3

with θ D
α3

being a positive

constant. Moreover, the actual control input will be bounded.

Proof: Refer to Appendix.

Remark 3: The presented control design is also applicable

to more general linear PDE dynamics such as [4]

∂x
∂ t

(z, t) =
∂ 2x
∂ z2

(z, t)+λ (z)x(z, t)+ c(z)x(0, t)

+
ρ∫
0

f (z,w)x(w, t)dw,
(34)

where c(.)∈C1([0, l]), f (., .)∈C1([0, l], [0, l]), 0 ≤ ρ ≤ l and

w ∈ [0,ρ] is the integral variable. The basic PDE dynamics

(1) are primarily chosen in this paper in order to avoid

complicating illustrations. Moreover, it has been shown [4]

that most widely applied DPS modeled by linear parabolic

PDE are either in the form of or can be transformed into (1).

In the following section, numerical implementation of the

controller will be illustrated through simulation on a reaction-

diffusion process.

III. SIMULATIONS

In this section, in order to verify the performance of

proposed controller, a simulation example is provided. A

typical linear reaction-diffusion system [4] with following

linear parabolic PDE dynamics is considered:

∂x
∂ t

=
∂ 2x
∂ z2

+βα x (35)

where βα > 0, z ∈ [0,1] and control input is only present at

z= 1. The MATLAB pdepe function was used for simulation

of dynamics in a real-time control setting with dz= 0.05. The

boundary and initial conditions are expressed as

x(0) = 0, x(1) = gu, x(z,0) = sin(πz). (36)

When u = 0, the open loop response of system can be

obtained as

x(z, t) = 2
∞

∑
n=1

e(βα−π2n2)t sin(πnz)
1∫

0

sin(πnz)x(z,0)dz, (37)

which is unstable for βα > π2. For this example, βα was

chosen to be 17 and g = 1. The sampling time for updating

control input was ts = 2msec. The chosen q(s,z) in cost

functional (5) can be expressed as

q(s,z) = Ln(distance(s0 + z0 −1 = 0,(s,z))) (38)

with Ln(.) being the Landau kernel, which is a continuous

approximation for Dirac delta function, with n = 500, and

the function distance(., .) calculates the distance between the

diameter s0 + z0 −1 = 0 and point (s,z) ∈ [0,1]× [0,1]. The

motivation behind choosing this q(s,z) is that it acts as an

extension of the identity matrix for infinite dimensional cost

functional (5). Thirty six radial basis functions were chosen

as φis to approximate p(s,z) with the structure expressed as

φi(s,z) =
k

1+ν‖(s,z)− (si,z j)‖2
(39)

where ν = 40,k = 0.2 and sis and z js 1 ≤ i, j ≤ 6 were cho-

sen from the set S = {0.1,0.25,0.4,0.55,0.7,1}. However,

since p(s,z) is symmetric, only 21 weights were needed

to be updated and other weights could be found based on

symmetry. The update law parameters were expressed as

α1 = 0.1,α2 = 0.2,α3 = 0.1,α4 = 0.01,c4 = 0.02, c1 = 2,

c2 = c3 = 0.01 and Ŵ0 was a random vector with positive

entries. It can be easily verified that the necessary design

conditions, i.e. α2 > α3 and α3 > θ D
α3


 0.08 are satisfied

for these parameters. Fig. 1 shows the good performance of

controller in regulation of the DPS state. The smoothness

of control input and fast convergence of HJB error are

also shown in Fig. 2. In addition, as depicted in Fig. 2,

increasing the update law parameter α1 would speed up HJB

error convergence rate. Fig. 3 shows the estimated p̂(s,z)
at the end of simulation. As shown, kernel p̂(s,z) can be

interpreted as a continuous two dimensional array which

resembles a kernel matrix with infinitely many entries in

LPS optimal control. Finally, Fig. 4 depicts the control input

gain kernel Ku(s) = Ŵ T
V

∂φ(s,z)
∂ z

|z=l , 0 ≤ s ≤ l corresponding

to estimated p̂(s,z) in Fig 3. Qualitatively, Fig. 4 shows that

feedback from the middle of spatial domain is significantly

more important for system stabilization than places near the

boundaries.

Fig. 2. Control input and HJB error for Dirichlet boundary controller
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Fig. 3. Estimated p̂(s,z) for Dirichlet boundary controller

IV. CONCLUSIONS

This paper developed an NDP-based near optimal bound-

ary control scheme for DPS governed by one-dimensional

PDE under Dirichlet actuation condition without any finite

dimensional model approximation prior to control design. By

defining the value functional as the extension of its definition

in linear LPS optimal control design, the HJB equation was

derived in original infinite dimensional state space. Based on

defined structure for the value functional as a surface integral,

a RBF was proposed to estimate its unknown parameters as

a continuous two-variable kernel function. The update law

for RBF unknown weights was defined to reduce the HJB

error while insuring system stability. Ultimate boundedness

of the closed-loop system was verified by using the standard

Lyapunov theory. Since model reduction was not utilized in

control development, the design is more reliable and can be

applied to achieve accurate control and closed loop stability

of the original infinite dimensional system. The performance

of proposed control method was successfully verified on a

diffusion reaction process.

Fig. 4. Feedback gain kernel Ku(s) for Dirichlet boundary condition

V. APPENDIX

Proof of Theorem: Consider the following Lyapunov

function

L =
1

2
μaW̃ T

V W̃V︸ ︷︷ ︸
La

+

l∫
0

V ∗(x)dz

︸ ︷︷ ︸
Lb

, (40)

where μa is a positive tuning constant and W̃V = ŴV −WV .

If α2 > α3 and α3 > θ D
α3

=
‖φlz‖4

L2
g4

8c2
1r2 define η = 1

2 (α2 −α3).

Therefore, if 0 < α1 < 1

L̇ ≤− qmin
2 ‖x‖2

L2
−μaη‖W̃V‖2 + ε. (41)

where ε = μa
2 ξ 2

DM + μaα2
2 W 2

V M + 81μaα3
4 W 4

V M + μaα3
2 W 6

V M with

WV M the bound for ‖WV‖. Therefore L̇ is always less than

zero if ‖x‖L2
>
√

2ε
qmin

or ‖W̃V‖>
√

ε
μaη . Consequently, the

closed-loop system is UB.

Note that ε can be made small by reducing ξDM in Lemma

1 through increasing number of neurons and reducing α3

through increasing the update parameter c1. Moreover, the

bound ‖x‖L2
∈
√

2ε
qmin

can be made smaller by increasing the

design parameter qmin and ‖W̃V‖ ∈
√

ε
μaη can be reduced by

increasing η through the update parameter α2.

REFERENCES

[1] A. A. Paranjape, J. Guan, S. J. Chung and Miroslav Krstic, “PDE
boundary control for flexible articulated wings on a robotic aircraft,”
IEEE Transactions on Robotics, no. 3, pp. 625-640, 2013.

[2] B. Talaei, H. Xu and S. Jagannathan, “Neural Network-based Near
Optimal Constrained Control of Distributed Parameter Systems with
Application to Diffusion-Reaction Processes,” IEEE MSC, 2014.

[3] I. Lasiecka, “Unified theory for abstract parabolic boundary problems-
a semigroup approach,” Applied Mathematics and Optimization, vol.
6, no. 1, pp. 287-333, 1980.

[4] M. Krstic, and A. Smyshlyaev, “Boundary control of PDEs: A course
on backstepping designs,” SIAM, vol. 16, 2008.

[5] D. Bertsekas, Dimitri P., “Dynamic programming and optimal control,”
Athena Scientific, vol. 1, no. 2, 1995.

[6] Y. Luo, Q. Sun, H. Zhang and Lili Cui, “Adaptive critic design-
based robust neural network control for nonlinear distributed parameter
systems with unknown dynamics,” Neurocomputing vol. 148, pp. 200-
208, 2015.

[7] B. Talaei, H. Xu and S. Jagannathan, “Near optimal boundary control
of distributed parameter systems modeled as parabolic PDE by using
finite difference neural network approximation,” IEEE Conference on
Decision and Control, 2014.

[8] F. L. Lewis and D. Liu, editors, “Reinforcement Learning and Approx-
imate Dynamic Programming for Feedback Control,” John Wiley/IEEE
Press, Computational Intelligence Series, 2012.

[9] A. Alessandri, M. Gaggero and R. Zoppoli, “Feedback optimal control
of distributed parameter systems by using finite-dimensional approxi-
mation schemes,” IEEE Transaction on Neural Networks and Learning
Systems, vol. 23, no. 6, pp. 984-996, 2012.

[10] F. L. Lewis, D. Vrabie and V. L. Syrmos, “Optimal control,” John
Wiley & Sons, 2012.

[11] X. Li and J. Yong, Optimal control theory for infinite dimensional
systems, Springer, 1995.

[12] E. Kreyszig, “Introductory functional analysis with applications,” Vol.
81, New York: Wiley, 1989.

[13] D. R. Smith, “Variational methods in optimization,” Courier Dover
Publications, 1998.

[14] M. D. Buhmann, “Radial basis functions: theory and implementa-
tions,” Cambridge university press, vol. 5, 2003.

582



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


