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Abstract 
This paper examines techniques for the efficient use of high dimensional feature sets in the detec- 
tion of micro-calcifications in mammograms. The paper focuses on techniques for dimensionality 
reduction and discriminant analysis. The paper examines the use of principal components and 
Fisher's linear discriminant for dimensionality reduction along with parametric and nonparamet- 
ric statistical techniques for discriminant analysis. 

1: Introduction 

It is estimated that there are approximately 150,000 new cases of breast cancer diagnosed 
annually[ 11. Besides the large toll in human suffering that this represents, the diagnosis and treat- 
ment of these cases is a burden on the health care system. As with many medical conditions a 
favorable prognosis for the patient is based on the earliest possible detection of the abnormality. 

There has been a great deal of recent interest in using computer techniques in image processing 
and pattern recognition to help the radiologist's diagnostic efforts[2]. This work, along with work 
in medical expert systems, has come under the general heading of computer aided diagnosis 
(CAD). Much of the CAD work seeks to help the radiologist by drawing attention to regions of 
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Name 

Contrast 1 
Contrast 2 
Contrast 3 
Smoothness B 
Area 
Smoothness 1 

Smoothness 2 

Edge Strength 

the image that the computer has identified as suspicious. This would be an extremely valuable 
tool to aid in the timely and accurate detcction of anomolous tissue. CAD techniques have been 
applied to such diverse areas as liver ultrasound[3], chest radiography[4], and x-ray mammogra- 

One of the early indicators of breast cancer is the radiographic presence of clusters of malig- 
nant microcalcifications. In many cases these clusters are located in the midst of dense parenchy- 
mal tissue and it takes very careful inspection by the radiologist to locate them. Their prominent 
role in diagnosis and difficult detectability make their CAD an important goal. 

The next section focuses on our techniques used to extract features from the microcalcifica- 
tions. This is followed by a brief discussion of the Fisher linear discriminant and principal com- 
ponent analysis approaches to dimensionality reduction. Next we tum our attention to a few 
words on parametric and nonparametric Bayesian based classification techniques. The fruits of 
the application of these techniques to the detection problem at hand is presented in the results sec- 
tion and we conclude the paper with a few words on future directions. 

PhYPI. 
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2: Feature Extraction 

The first step in the feature extraction process is the identification of regions of interest from 
the image. It is expected that these extracted regions contain both true groups of malignant micro- 
calcifications and groups of benign microcalcifications or other anatomical features. It is the func- 
tion of the classification portion of the system to sort out the true malignancies from the false 
positives, which will be discussed below. The segmentation is done by thresholding a difference 
image which is created by subtracting from every pixel the average of a 15x15 pixel (1.13") 
window surrounding it. Region growing is performed on all the pixels left in order to group them 
into candidate objects for input into the feature extraction system. This segmentation routine can 
produce hundreds of candidate objects due to its sensitivity. To reduce the number of candidate 
objects only 3% of the total number of segmented objects with the highest contrast (with a mini- 
mum of 100) are retained. The twenty-one extracted features along with references to where they 
first appeared in the literature are listed in Table 1. A designator of "Standard" indicates a stan- 
dard image processing technique. 

Table 1: Microcalcification Features. 

Ref. 
Number 

[61 
[61 
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Table 1: Microcalcification Features. 

Ref. 
Number 

Standard 

Name Description 

Gradient 1 Avg. of 3x3 Sobel Gradient 

Standard 

the feature 

Average Edge Step Computed on Perimeter Pix- 
els 

3: Dimensionality Reduction 

Given our set of extracted features in R2', Bcllman's curse of dimensionality [13] dictates that 
we project our features to as low a dimensional space as possible before we parametrically or 
nonparametrically model their underlying density. There are many techniques for dimensionality 
reduction. Since our ultimate goal is classification. i t  is beneficial to consider those transfoma- 
tions that enhance the separation between the probability density function of the features com- 
puted on the malignant microcalcifications and the one computed on the other nonmalignant 
tissue. 

The two techniques for dimensionality reduction that were used here are the Fishers linear dis- 
criminant (FLD) [14] and principal component analysis (PCA) [13]. The FLD procedure seeks 
the best projection from the feature space to RI, i. e. it seeks the best line to project upon. In this 
case optimality is measured by J(w), the ratio of between-class scatter, SB, to within-class scatter, 
SW. given by 

In eq. 1 S, = (GI -k2)  (k,  -&,)'where $,is the mean vector for class 1, and %,is the mean for 
class 2. The within class scatter matrix Sw=S1+S2, where s, = C (i - k,) (i - k,) I .  

: E x ,  
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In PCA one seeks to rotate the original data axes so that they align with the eigenvectors of the 
covariance matrix Z. In this manner we seek a lower dimensional space that accounts for the vari- 
ance of the features. In our case, in order to put the PCA approach on equal footing with the FLD 
we seek the best Id subspace to project upon. In order to account for the largest variance in the 
features we project upon the eigenvector corresponding to the largest eigenvalue. 

4: Discriminant Analysis 

Given the projected features in R' we proceed with a Bayesian approach to the classification 
problem. We seek parametric or nonparametric models of the class-conditional 
probability densities p(xlq). Once we have modeled these class-conditional or state-conditional 
probability densities we employ a standard likelihood ratio hypothesis testing procedure[ 151 to 
determine the class of an unknown observation. 

In the simplest approach each of the two class-conditional probability density functions is 
modeled as N(p.&), where & is the mean for the i-th class and is the pooled covariance 
matrix. This procedure is known in the literature as a linear classifier. If we allow each class-con- 
ditional density to have its own covariance matrix then the resulting classifier is known as a qua- 
dratic classifier. The reader is referred to Duda and Hart [14] for a good treatment of these topics. 

If on the other hand there is reason to believe that the underlying class-conditional densities are 
inherently nonnormal, then it is beneficial to employ a nonparametric estimator. One of the sim- 
plest such procedures is the kemel estimator[l6]. In this case given X=(x;)";,, where xi4.i.d 
f(x), we model the unknown distribution as 

l n  x - x .  
3 ( x )  = - J X g ( L ) ,  h 

i =  1 

where the smoothing function g(z) is chosen to be N(0,1), and h is referred to as the kemel band- 
width. This procedure has not only the benefits of computational simplicity. but it possesses pow- 
erful asymptotic properties that provide it robustness to the nonnormality of the class-conditional 
probability density functions. In our analysis h was chosen optimal based on the normal assump- 
tion[ 161. 

Given models of the class conditional probability densities, one is interested in assessing the 
performance of the classifier. One approach to this task is through the production of receiver oper- 
ator characteristic (ROC) curves. These curves typically display some function of the probability 
of misclassifying a target (microcalcification in our case) as a function of false alarm rate. The 
probability of the first type of e m r  is designated as a and (I-a) is often referred to in the medical 
community as the sensitivity. A false alarm of course is when the classifier incorrectly identifies 
normal tissue as tumorous. In order to produce the most accurate estimation of the ROC curve of 
our classifiers we employ a variant of the "leave one out" procedure[l7]. In this procedure the 
features from a given image are left out and the FLD and PCA projections along with the class- 
conditional probability densities are built on the features from the remaining images. The projec- 
tions are applied to the features in the image that was left out and the constructed class-condi- 
tional probability densities are used to build the likelihood ratios that are eventually used to 
determine class membership at each point. This procedure is repeated using the other images. At 
the end of the procedure the full set of likelihood ratios is used to perform the ROC analysis. 
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5: Results 

The 24 images in the study were digitized at 70 micron resolution with 8 bit gray levels. The 
location of the malignant microcalcifications in the image was determined by having the groups 
of microcalcifications first identified by a radiologist and then the subsequent exact location of 
each microcalcification labeled by a trained technician. After passing the images through the seg- 
mentation portion of the algorithm there were 5730 nonmalignant regions and 542 malignant 
regions produced. The twenty-one features were computed for each of these regions. 

Let’s first examine the structure of the data for the two classes. Figure 1 represents kemel esti- 
mator approximations of the probability densities for each of the two classes’ feature sets in FLD 
space. The normal appearance of the densities in Figure 1 is to be contrasted with the kemel esti- 
mated densities in PCA space shown in Figure 2. 

Figures 3.4,  and 5 show the ROC curves for the linear, quadratic, and kemel based classifiers 
for the FLD and PCA features. The curves plot a as a function of false alarm rate. In each case the 
classifiers perform better using the FLD feature then the PCA one. It is also interesting to note 
that the performance of the three classifiers is virtually identical. To provide a figure for compari- 
son we note that at a false alarm rate of 10% the classifiers possesses an a level of 20% accross 
the set of images. This value is in the same ballpark as some of our previous work utilizing seven 
dimensional features[ 111. 

6: Conclusions 

The preliminary results put forth in this paper indicate the superiority of the Fisher linear dis- 
criminate transformation over projection on the strongest principal component as a means for 
dimensionality reduction prior to Bayesian based discriminant analysis. These results are based 
on one area of application and future work is needed to determine if this trend will hold in gen- 
eral. With the curse of dimensionality in mind it is also important to reemphasize the comparable 
performance of the classifiers using the one dimensional features and our previous higher dimen- 
sional work. Future work will focus on “optimal” projections to R2 and R3 along with the applica- 
tion of our semi-parametric adaptive mixtures density estimator[ 181. 
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Figure 1. Kernel estimates for 
the microcalcification and non- 
microcalcification probability 
densities in Fisher linear dis- 
criminant space. 
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Figure 2. Kernel estimates for 
the microcalcification and non- 
microcalcification probability 
densities in the first principal 
component space. 
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Figure 3. Leave one image out 
ROC curve for the linear classi- 
fier on the FLD and PC features. 
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Figure 4. Leave one image out Figure 5. Leave one image out 
ROC curve for the quadratic ROC curve for the kernel estima- 
classifier on the FLD and PC fea- tor on the FLD and PC features. 
tures. 
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