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Abstract—360◦ video is gaining popularity thanks to the
increasing prevalence of Virtual Reality (VR) devices. This has
motivated novel approaches to improve the efficiency of 360◦

video transmission, with techniques that range from content
distribution techniques (using edge servers) to the so-called
viewport or tile prediction. In this paper, we take a different
approach and study the maximum capacity of a 5G cell to
support 360◦ video flows. Specifically, we provide a methodology
to estimate the upper bound on the number of simultaneous
360◦ video flows that can fit the cell. To this aim, we first
define different quality profiles for video transmission, which
are based on subjective video quality metrics. This upper bound
is calculated as a function of the quality profile of the video
transmission. We also analyze the impact of different parameters
on the results, including scenarios with interfering cells. Our
results quantify the ability of 5G cells to support VR traffic and
the impact of the type of video or the quality of experience on
performance.

I. INTRODUCTION

The advent of 5G technology marks a significant milestone
in the evolution of wireless communication systems. Charac-
terized by its high-speed data transfer, reduced latency, and
increased connectivity, 5G is poised to revolutionize various
sectors including healthcare, automotive, and smart cities. Its
deployment involves upgrading existing cellular infrastructure
and installing new cell towers equipped with advanced hard-
ware to support the 5G spectrum.

Virtual Reality (VR) technology, especially in the context of
the metaverse, poses significant challenges for 5G networks.
The metaverse depends extensively on VR technology to
deliver immersive and interactive experiences that closely sim-
ulate real-world environments. Achieving the high bandwidth
and low latency essential for an uninterrupted and high-quality
experience is critical, yet it challenges the existing capabilities
of 5G cells. The capacity of current 5G networks may restrict
the number of users who can simultaneously engage in these
environments.

When assessing the impact of network capacity on VR
experiences, Quality of Experience (QoE) metrics such as
the Video Multimethod Assessment Fusion (VMAF), play a
crucial role. VMAF [1], developed by Netflix, is a perceptual
video quality measurement that integrates various quality
metrics to predict subjective video quality more accurately.
Although not initially designed for 360◦ video content, recent
studies have demonstrated that VMAF performs adequately

well with this type of content [2]. In the context of VR,
VMAF helps in quantifying the user’s perceived quality by
evaluating factors such as resolution, buffering events, and
bitrate fluctuations, which are directly influenced by the net-
work’s capacity. The effective use of VMAF in VR scenarios
allows researchers and network providers to understand how
bandwidth limitations and network congestion can degrade the
visual fidelity and overall immersive experience of VR content.
This understanding is vital for optimizing network resources,
particularly in 5G environments, to ensure that the high
data requirements of VR are met without compromising the
user’s immersive experience. By leveraging VMAF and similar
QoE metrics, stakeholders can make informed decisions about
network planning and management, aiming to enhance the
overall quality and accessibility of VR services.

In this paper, we design a QoE-driven approach to quantify-
ing the capacity of 5G to support VR services. Our approach is
complementary to recent works such as [3], which in contrast
to QoE, focuses on high-level Key Quality Indicators (KQI)
such as throughput, delay, frame rate or stall events. We aim to
provide providers with a methodology and a tool to understand
the trade-off between the number of served users and the
experienced quality, in this way supporting e.g. the ability
to assess if a new VR flow can be added to the cell without
affecting the QoE of existing flows. To this aim, we first define
a video transmission model, based on different “focus areas”
as motivated by perceptual models. We then collect several
360◦ video traces, composed of videos of different natures,
and emulate different transmission configurations following
the above model, taking into account the impact of the
transmission rate on the QoE. Finally, we use these results to
study the number of users that can be served depending on the
video considered, transmission profiles, and other conditions
of the scenario.

The rest of the paper is structured as follows. In Section II
we describe the adopted video transmission model, which
consists of two flows of different quality; in Section III
we detail our QoE-driven methodology to determine the
transmission profiles considered; in Section IV we present
our capacity study, describing the 5G capacity model and
analyzing for different scenarios how many 360◦ video flows
can be supported; finally, we summarize the paper and provide
some ideas for future work in Section V.
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II. VIDEO TRANSMISSION MODEL

Following the classical definition, the visual field of the
human eye is the area visible during stable fixation of the
eyes (i.e., eye movements are excluded in this definition),
specified in degrees of visual angle [4]. It can be decomposed
into a horizontal visual field and a vertical visual field. The
perception of the eye changes depending on the angle range
around the eye’s focal point [5]: The central vision, approx.
a 60◦ angle (i.e., ±30◦) from the focal point) is the most
sensitive to the details, while the peripheral vision (an extra
±30◦ angle from the central vision) is less sensible to static
object recognition but still receptive to movements.

The Field of View (FoV) is the corresponding definition for
optical devices (such as VR headsets) when eye movements
are allowed. Formally speaking, the FoV is the area of all
points on a unit sphere around the human eye that correspond
to directions that end up on a screen. In other words, the visual
field tells us what the eye can potentially see (and how well it
perceives it) whereas the FoV describes the amount of “angle”
of vision of a human eye that is shown on the VR screen.

A prevalent technique for VR transmission involves seg-
menting each image into numerous rectangular segments,
commonly referred to as tiles. This method hinges on a
selective transmission strategy, where only a crucial subset of
these tiles—those encompassing the viewer’s current FoV—is
actively transmitted. Recent works that leverage deep learning
solutions, trained on the device onboard sensors such as
gyroscopes and accelerators show promising results for such
kinds of strategies [6], which also require overwriting of the
playout buffer when sudden changes are detected [7].

In this paper, to investigate the capacity limits of 5G to
transmit 360◦ video we postulate a simplified transmission
model, wherein the video is bifurcated into two distinct
streams. This model is inspired by YBVR’s (https://ybvr.com)
proprietary technology which applies an optical deformation
that maintains maximum resolution at the FoV and reduces it
outside of that field. The first stream, which we call the “front”
stream, corresponds to the viewer’s FoV and is transmitted at
the best quality to ensure a great viewing experience. The
second stream, which we call the “full” stream, encompasses
the remainder of the video, which is transmitted at an adequate
quality that balances bandwidth utilization and overall video
experience (which ultimately impacts the requirements on the
tile prediction algorithm).

To devise the video resolution of the above streams, we
considered the well-known HTC Vive visor (https://www.vive.
com/us/) and different 8K 360◦ videos from YouTube as
video sources. The former provides a horizontal and vertical
FoV of 108° and 111°, respectively (note that other visors
in the marker, e.g., the Oculus Meta Quest Pro, share similar
parameters), while the latter uses a custom resolution of 3840p,
namely 7680x3840, which corresponds to 360° in the horizon-
tal axis and 180° in the vertical axis. Following these values,
we compute the required resolution of the front stream by
proportionally cropping a portion of the video corresponding
to the FoV of the HTC Vive. In the following section, we
describe the videos used in our analysis and elaborate on what

constitutes ’best’ and ’adequate’ quality in this context.

III. QOE-DRIVEN DEFINITION OF PROFILES

In the above, we have defined a transmission model based
on two flows, one for the front video (also known as field
of view), and another one for the rest of the video, i.e., the
full view (a.k.a. equirectangular view). To define the different
videos and transmission profiles and requirements, we next:
(1) describe the videos used in the paper, (2) discuss the
criteria to determine a good and adequate quality, (3) design a
methodology to map the quality to the required transmission
rate, and (4) introduce the different transmission profiles
considered in the rest of the paper.

A. Videos considered

Although our motivation is live streaming, for repeatability
we decided to study the videos on the YouTube AirPano
VR channel [8]. To simplify the presentation of the results
while ensuring the conclusions are broadly applicable, we
selected three videos as a representative sample of the range
of behavior seen. Since these videos encapsulate a broad
range of performance behaviors observed across the hetero-
geneous dataset considered, it allows for the generalization
of findings, suggesting that the insights derived from these
selected videos are likely applicable to other videos beyond
the ones specifically analyzed. We downloaded local copies
for later analysis on a workstation powered by an 18-core
Intel i9-10980XE CPU: to this end, we used yt-dlp, an
open-source python script that allows us to specify the desired
resolution, which in this case is set to 8K. All videos are
originally encoded with the AV1 codec and, because of the
equirectangular format, their resolution is 7680x3840 pixels
(as confirmed by ffmpeg). We properly cut each video to
eliminate the opening credits and select a 10 s scene from
each video. We describe the three scenes next:

Everest: The video depicts a helicopter’s takeoff from a
base camp. The first 5 s are recorded by a ground camera,
while the last 5 s are captured by a camera on a pole attached
to the helicopter.

Caribbean: The video captures boats sailing on the
Caribbean Sea. It features short waves and small plant-covered
islands in a sunlit day.

Buffaloes: A static camera films a nearly still herd of
buffaloes in a snowy winter prairie. In the final 3 s, one buffalo
attacks another one.

To provide an idea about the content and dynamics of each
video, we provide in Fig 1 several stills from each of the
videos. Each row corresponds to a different video, which
are (from top to bottom): Everest, Caribbean, and Buffaloes.
For each video, we provide in the leftmost picture the full
(equirectangular) view at t = 5 s, highlighting in red the area
that corresponds to the front view. The stills corresponding to
these front views at t = 0 s, t = 5 s and t = 10 s are provided
in the three rightmost pictures in that order.
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equirectangular t = 5 s front view t = 0 s front view t = 5 s front view t = 10 s

Fig. 1: Stills extracted from the three AirPano videos (web: https://www.airpano.com). From top to bottom: Everest, Caribbean,
Buffaloes. Left: full view at t = 5 s, the red freeform corresponds to the front view. Right: front views at t = 0 s, 5 s, and 10 s.

B. QoE metric: VMAF

We rely on Netflix’s VMAF metric (as we previously did
in [9]) as unlike SSIM, which focuses primarily on changes
in structural information, or PSNR, which measures pixel-
level differences, it integrates multiple quality metrics and
machine learning algorithms to evaluate video quality. This
holistic approach allows VMAF to consider a range of factors
that affect human perception, including texture, motion, and
spatial complexities, providing a more comprehensive and
accurate reflection of perceived video quality. Furthermore,
VMAF is trained using a large dataset of human-rated video
samples, enabling it to predict subjective video quality with
greater precision. This makes VMAF particularly valuable in
scenarios where user experience is paramount.

VMAF scores range from 0 to 100, with scores closer to
100 indicating excellent quality, but the precise interpretation
of scores can vary depending on factors like the viewing
conditions. According to some sources [10], a score of 20
is “bad”, a score of 100 is “excellent”, while a score of
70 can be interpreted as somewhere between “good” and
“fair” by an average viewer; other sources [11] claim that
any value exceeding 95 is “wasting bandwidth” and that for
premium content, the target should be between 93 and 95,
while for user-generated content, scores between 84 and 92
are “acceptable”. Based on these values, we decided to set the
following thresholds:

• Front view, requiring the best quality: this translates into
a VMAF score of 95.

• Full view (rest of the video), requiring an adequate
quality: a VMAF score between 70 and 92.

C. Methodology

As mentioned above, our goal is to determine the VMAF
corresponding to different video encoding rates for (1) full
view (i.e., the entire equirectangular 360 frame), and (2) the
front view that appears on the headset, i.e., FoV. We first
describe how we achieved the first goal, and then explain
how to adapt the same methodology for the second goal. We
note that, during our tests, we chose Advanced Video Coding
version 1 (AVC1) over AOMedia Video 1 (AV1) to generate
the videos because of its lower computing power requirements,
making it suitable for real-time operations.1

We first trim the video to extract the desired 10 s scene.
To this end, we skip an integer number of Group-of-Pictures
(GOP) from the beginning until the starting time of the scene
and then save an integer number of GOPs that correspond to
at least 10 s (note that different videos use different GOP
lengths). Working with GOPs allows us not to transcode
the videos to extract the scenes, hence preserving the same

1Should AV1 encoding become fast enough, similar conclusions might
be drawn in relative terms, i.e., the ratio between the data rates of the
equirectangular and the front view videos should be comparable.
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quality as in the original content. We then generate two
reference points: (a) we explode with ffmpeg each video in
uncompressed yuv format inside an Audio Video Interleave
(AVI) container, which will serve as the starting point for
each encoding using a different rate; and (b) we save the
uncompressed content as a sequence of yuv pictures in a
binary file using a gstreamer pipeline, which will serve
as the reference for VMAF computation.

Based on the above, we then repeat for each considered
encoding rate the following steps:2

1) We re-encode the uncompressed yuv AVI file with
ffmpeg using the AVC1 codec from the libx264 library.
We use two passes to obtain a given rate.

2) We explode the re-encoded video into a new sequence
of yuv pictures using the same gstreamer pipeline as
before;

3) We compute the VMAF score using this last sequence
and the reference yuv sequence generated in the step (b)
above.

To compute the corresponding VMAF scores for the differ-
ent encoding rates for the front view, we follow the same
methodology but starting from a video containing just the
view that would appear in the headset. We generate a new
video with ffmpeg starting from the uncompressed AVI file
but applying the v360 filter of ffmpeg to extract the
central view. We then repeat the steps above to compute the
VMAF scores corresponding to the encoding rates. We next
discuss the results obtained and based on these the design of
the different transmission profiles.

D. Considered transmission profiles

We depict in Fig 2 the resulting VMAF scores for the differ-
ent videos and encoding rates considered: Fig. 2a illustrates the
results corresponding to the full view (equirectangular videos),
i.e., the whole 360 frame, while Fig. 2b illustrates the results
corresponding to the front view (note the different scale in the
x-axis).

According to the results, the “Caribbean” video is the most
demanding to encode in its full view (Fig. 2a), since it requires
an encoding rate above 25 Mb/s to achieve a VMAF score
above 70; in contrast, it is the least demanding in the its
front view (Fig. 2b), reaching VMAF scores above 80 or 90
for transmission rates smaller than for the other two videos.
This can be explained because of the prevalent sea waves in
the 360 format, which are much less noticeable in the front
view (see Fig. 1). The “Everest” video shows the qualitative
opposite trend: the full video vision reaches a VMAF score of
90 at approx. 25 Mb/s, but the front view requires the largest
transmission rate to reach a VMAF score of 80. This can be
explained because of the change of camera during the video
that heavily affects the front view (see Fig. 1, first row, at
t=5 s and t=10 s). Finally, the “Buffaloes” video roughly falls
between these two trends.

2Our methodology assumes that the downloaded AV1 videos are of very
high quality. We have confirmed that the resulting throughput figures for the
videos we analyzed match those reported in [12] for the transmission of AV1
video with VMAF=95, and therefore we have no reasons to believe otherwise.

To determine the different transmission profiles, note that
in Section III-B we discussed a set of target values for VMAF
scores. Following these, depending on the considered vision,
we define the following.

• Front view: to provide the best possible quality, a VMAF
score of 95 is required. According to the results in Fig. 2b,
this requires a transmission rate of 4.2 Mb/s, 8 Mb/s,
and 6.5 Mb/s for the Caribbean, Buffaloes, and Everest
videos, respectively.

• Full view / equirectangular video: to provide adequate
quality, the VMAF scores should follow between 70 and
92. This translates in the following transmission rate
ranges: 26–70 Mb/s for the Caribbean video, 11–70 Mb/s
for the Buffaloes video, and 10–31 Mb/s for the Everest
video.

Following these transmission rate requirements, the consid-
ered 360◦ video flows require between 16.5 Mb/s (Everest,
VMAF=70) and 78 Mb/s (Buffaloes, VMAF=92). In what
follows, we analyze and quantify how many of these flows
can be supported in a 5G cell.

IV. CAPACITY STUDY

A. 5G cell capacity model

In this section, we perform a numerical analysis to evaluate
how 5G networks in different configurations can support VR
streaming. To obtain the expected capacity of 5G networks
we consider the User Equipment (UE) model specified in [13],
which allows us to devise the maximum capacity depending on
various parameters, such as the system bandwidth, the Mod-
ulation and Coding Scheme (MCS), the number of Multiple
Input Multiple Output (MIMO) layers, etc. Besides, we cross-
validated our results using the Simu5G [14] simulator.

B. Impact of the MCS

Here we assume a bandwidth of 100 MHz, 4x4 MIMO,
and numerology 1. As discussed above, we keep VMAF=95
for the front view and consider two profiles: i) VMAF=92,
where the full video is transmitted at the highest considered
quality for this flow, and ii) VMAF=70, where the full video
is transmitted at the lowest considered quality. We consider
all the available MCS and compute for each MCS, video, and
profile the maximum number of streams that could fit in a 5G
cell. We depict the results in Fig. 3.

The results show that the cell capacity increases with the
MCS, with a steep increase for MCS ≥ 15, in particular for the
VMAF=70 flows (indicated by dashed lines). Focusing on the
VMAF=92 flows (solid lines), the capacity for transmitting
the Caribbean and the Buffaloes videos is nearly identical,
with both achieving a maximum of 22 simultaneous flows for
the highest MCS. This number increases to 46 flows for the
Everest video, which is caused by its lower demands in terms
of throughput.

These findings underscore the substantial impact that the
type of video has on the resulting capacity. This disparity
is more pronounced with VMAF=70 videos. For the most
demanding video (Caribbean) fewer than 60 flows can be
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Fig. 2: Comparison of Equirectangular (left) and Front view (right) videos’ VMAF vs encoding rate.
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accommodated, while for the other two videos the capacity
escalates to as many as 92 flows (Buffaloes) or 105 (Everest),
highlighting the variability in demand across different video
types.

C. Impact of the full video quality
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Fig. 4: Trade-off between cell capacity and QoE.

We next explore in more detail the impact of the quality
of the full view on the capacity. To this aim, we assume the

same cell configuration as before and assume the use of the
highest MCS. As before, we keep the front view to VMAF=95
and perform a sweep on the VMAF of the full view, from
0 (i.e., no transmission) to the highest possible value. For
each considered VMAF and video, we compute the maximum
number of flows supported. We plot the resulting pairs of
(VMAF, # streams) in Fig. 4, to illustrate the trade-off between
the quality of the full view video (x-axis) and the maximum
capacity (y-axis) (the highlighted values at VMAF=70 and
VMAF=92 correspond to the same results at MCS=28 in the
previous Fig. 3).

Firstly, it is worth highlighting the significant decline in
the capacity as soon as the VMAF exceeds a marginal value,
illustrated by the reduction of supported Caribbean video
streams from approx. 275 to 225. This steep decrease in
capacity can be seen as the cost of transmitting video outside
the front view, which could be eliminated with precise and
timely FoV prediction algorithms (so only the front view
would be transmitted). Secondly, the figure illustrates an ap-
prox. inverse linear relation between the number of supported
streams and the QoE, with a reduction of roughly 2 flows per
each VMAF score increase. Third and finally, it is also worth
noting again the impact of the type of video on performance,
as e.g. at VMAF=60 the maximum capacity varies between
60 (Caribbean) and 130 (Everest), i.e., a span of 70 streams.

D. Non-ideal channel conditions

Finally, we explore the resulting capacity under more con-
strained transmission conditions with the use of Simu5G. We
assume a scenario with four cells: one tagged gNB supporting
the downlink transmission of VR flows which is surrounded by
3 interfering gNBs with an inter-site distance of 600 m. Each
gNB has a bandwidth of 100 MHz and employs numerology 1,
but in this case no MIMO is used since it is not supported yet
by the simulation tool –so the maximum achievable capacity
is divided by 1/4 as compared to the previous case.

A variable number of User Equipments (UEs) is randomly
deployed in the coverage area of the tagged cell, and moves
within the coverage area at a constant speed of 50 km/h.
For each of the videos defined in Section III and used in
Section IV-B, we extract a trace file, wherein each video
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frame is associated with a timestamp and a size in bytes,
and we let UEs in each configuration receive a UDP flow
resembling the trace file of the corresponding video profile.
For each considered number of UEs, video profile, and video,
we compute the packet delay of each flow towards each of the
UE, which is defined as the time between the transmission
of a packet from the gNB and its reception at the UE. To
analyze the system at maximum utilization, we configure the
gNB to use a “max throughput” scheduler that gives priority
to those UEs using the highest MCS. Although this could
starve those UEs using lower MCS, the overall performance is
better than with a “proportional fair” scheduler, as our results
confirm (not presented due to space reasons). Each simulation
is repeated 10 times to achieve statistical soundness, and
confidence intervals at 95% level are reported.

We consider each of the three representative videos sep-
arately. For each video and quality, we compute the average
delay from all UEs. We provide in Fig. 5 the results, where the
bars represent the average delay, colors indicate the number
of UEs considered, and results are grouped by video and
quality profile. The results show that performance worsens
with the number of flows, ranging between 0.5 s and 2 s
for just 9 UEs (green bars). In fact, the highest quality
profile (VMAF=92) already results very demanding with only
6 UEs, since the average delay exceeds 0.5 s for all videos
considered. In contrast, with the VMAF=70 profile and 6 UEs
the delay is kept below 0.4 s, which could be acceptable for
some VR experiences. Finally, the results confirm that the
“everest” video is the least demanding video in all considered
cases, while the buffaloes video has smaller delays than the
caribbean video at VMAF=70 (less traffic) but larger delays
at VMAF=92 (more traffic), a result caused by its larger
variability of the instantaneous transmission rate. Overall,
these results confirm the need to use transmission profiles with
moderate consumption of resources to maximize the capacity
of the cell.

E. Main takeaways

In our study, we have illustrated how the maximum number
of flows that can be supported in a 5G cell heavily depends
on the transmitted video, the quality profile, and the channel
quality. We next summarize the main takeaways from our
study: (1) under ideal conditions, there can be differences of

2× in the number of videos that can be admitted at the best
quality in a 100 MHz, 4x4 MIMO 5G cell using numerology
1, i.e., from approx. 22 flows (caribbean, buffalos) to 46 flows
(everest), as illustrated in Fig. 3; (2) if the quality of the
non-FoV stream is reduced (Fig. 4), this capacity could be
improved up to a factor of 5×, which illustrates the potential
capacity gains of using accurate FoV-prediction algorithms
that do not require a non FoV stream to deal with sudden head
movements; (3) non-ideal channel conditions, instantaneous
bitrate variations, and mobility can reduce the number of flows
by a factor of 0.5×, according to the results from the Simu5G
simulator (Fig. 5).

V. SUMMARY AND FUTURE WORK

In this paper, we have presented a methodology to analyze
the capacity of 5G networks to support 360◦ video transmis-
sions, which is pivotal for immersive Virtual Reality (VR)
experiences. Our study quantifies the trade-off between video
quality, characterized by VMAF, and the number of concurrent
VR streams that a 5G cell can support. Our methodology
paves the way for several lines of future work, such as: the
use of alternate and/or more sophisticated video transmission
models, including other video codecs; the development of call
admission control schemes, that limit the number of VR flows
to ensure the QoE of existing flows (including non VR flows);
the impact of other aspects on performance (FoV prediction,
beamforming, etc.); the relation between KQI and the resulting
QoE; the validation of the methodology based on VMAF using
Mean Opinion Scores tests with real users; or exploring future
directions in 3GPP standard developments that could further
enhance VR QoE.
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