
ABSTRACT

COMPLEX MICROCIRCUIT SIMULATION AND
TEST DEVELOPMENT USING

BEhavioral STimulus TEST (BEST TEST) SOFTWARE

Ronald D. Cox
Naval Surface Warfare Center (NSWC)

Crane, Indiana 47522 USA
Phone (812) 854-5251 Fax (812) 854-1916 E-Mail: ron@homer.nwscc.sea06.navy.mil

Developing comprehensive test stimulus for complex
microcircuits, particularly microprocessor boards, can be a
tedious and time consuming task of hunt and peck; racking up
thousands of work hours of labor. This paper will describe a
behavioral simulation method using software emulators for the
creation and automatic timing generation of test stimulus.
"BEST TEST(c)" software was used to develop tests for a 1750A
based microprocessor module which also contains a MILSTD-
1553 data bus controller hybrid and other circuitry for which
stimulus can be developed using behavioral methods. This paper
will show how this technique saved many hours of tedious
analysis and on tester debugging.

I. INTRODUCTION

T h e N a v a l S u r f a c e W a r f a r e C e n t e r
(NAVSURFWARCENDIV) Crane, Indiana is responsible for
qualification test development for the 1750a microprocessor
based, SEM format E module set. During the selection
process for a method of testing the Embeddable Standard
Avionics Processor (ESAP) module, Integrated Test Solutions
(ITS) presented a pitch on using behavioral modeling
techniques {BEST TEST(c)} for testing boards such as this
one. After studying this method, it appeared to be superior to
any other known method and therefore was utilized.

The power of the BEST TEST(c) tool then took shape as the
development proceeded. This tool in combination with
Teradyne's LASAR simulation environment and LABEL
behavioral modeling language, dramatically lowered the test
development effort, allowing for a Test Program Set (TPS)
development that is affordable and competitive within the
current TPS development market.

The BEST TEST(c) tool, which extracts nodal data from VO
pins that connect the Unit Under Test (UUT) to the
Behavioral simulation models "Transactor's" that surround the
UUT (as shown in figure l.O), translates that data into
TESTCOM compatible pattem files. This paper illustrates the
use of this tool by outlining the TPS development of the
Embeddable Standard Avionics Processor (ESAP) module

developed by the Standard Hardware Acquisition and
Reliability Program (SHARP).

11. THE STANDARD PROBLEM

The conventional method of stimulus generation for the above
module would be tedious and time consuming. The engineer
would stimulate the inputs of the module using TESTCOM in
the following fashion:

1.SEND OPCODE TO PROCESSOR
2.CLOCK FOR MANY PATTERNS
3 .SIMULATE
4.PERUSE SIMULATION RESULTS TO DETERMINE AT

5.CHANGE CLOCKS ABOVE TO REFLECT TIME

6.RETURN TO STEP 1 AND REPEAT FOR ALL

WHICH PATTERN PROCESSOR RETURNS

OBSERVED IN STEP 3

OPCODES SENT.

LOOP UNTIL BUDGET EXPIRES

The difficulty in this approach is that the engineer does not
know when particular devices on the module will be ready for
stimulus until they simulate the module. The engineer would
develop patterns based on previous simulation results so that
the devices on the board are in the proper state as to receive
the input stimulus. This can be a tedious and time consuming
task of hunt and peck; racking up thousands of work hours of
labor. The simulation would be developed in an iterative
manner. You would first simulate to determine when and
how to apply stimulus to the module. You would then add
stimulus to your pattem file based on the previous simulation
run. A process of simulation and pattem creation would
continue until fault coverage goals are met. This process is
inherently dangerous because minor pattem changes at the
beginning of the simulation or minor changes to module
design may have major effects throughout. Test engineers run
the risk of losing major amounts of work due to small
changes. A closer look at the ESAP module TPS
development within this paper will reveal some of the

221
U.S. Government Work Not Protected By U.S. Copyright.

mailto:ron@homer.nwscc.sea06.navy.mil

TIMING CONTROL
1
I 1 I I cLocIcs-I

__ MTA BUS

NODAL CAPTURE

Figure 1. Simulation Model Block Diagram

difficulties encountered in the standard method of pattern
generation and the solutions offered by the BEST TEST (c)
simulation process.

111. THE ECONOMIC PROBLEM

With today's economy, it is essential that developmental cost's
for military electronics decrease. This must be done in
association with increase, or at least no decrease, in reliability.
For both cost and reliability scenarios to be satisfied the past
developmental methods must be reevaluated. Not only does the
standard development method take longer, it also causes higher
support cost in the future. By using this development method
and researching new method's, it will soon become
economically feasible as well as absolutely necessary for the

health and welfare of our nation to test military electronics
thoroughly to prevent life threatening fleet failures and finding
latent design defects.

This BEST TEST(c) developmental method will decrease the
life cycle cost of the electronics. When design changes are
made on an electronic module there will be much less effort in
changing the TPS which tests this module. Re-simulation of the
module could be as simple as changing the module net list,
simulate and then postprocess to the tester. Whereas before, it
was necessary to recreate test vectors in order to contain the
correct timing changes that may be present within the new
design. These benefits will become apparent after studying this
paper. The TPS developed with this method will follow the
module from birth to death without any proceeding lengthy
developments reducing the life cycle costs.

222

Iv. WHAT IS BEST TEST(c)? v. PHASE I - TRANSACTOR CREATION

There are two primary components of the BEST TEST(c)
technology:

1) TRANSACTOR’S : LASAR Behavioral Language
(LABEL) Models.

2) STIMULUS EXTRACTION : Capturing TRANSACTOR
contributions.

The TRANSACTOR’S emulate system interfaces such as the
Rockwell R655 1 serial interface, Intel 8255 parallel interface,
MIL-STD-1553 serial interface and complex components such
as the PACE P1750a Microprocessor. A P1750a
TRANSACTOR is able to emulate the microprocessor and act
as the host for a TRANSACTOR simulation. The MIL-STD-
1553 interface TRANSACTOR is able to receive
communications from the module and respond appropriately.
With this approach LASAR simulation is able to emulate a
high level, system like, functional test. The
TRANSACTOR’S are added to the master LASAR netlist and
a TRANSACTOR simulation is performed. When the desired
response is achieved, the contributions from the
TRANSACTOR’S at the module U0 (Figure 1) are captured
by the BEST TEST(c) tool and the stimulus is converted into
a traditional TESTCOM language pattem file.

The primary reasons for the improvements in TPS
development are as follows:

1) Object oriented nature of BEST TEST technology.

2) High level approach to code development.

3) Automatic generation of response stimulus at system
interfaces.

The object oriented nature of the technology allows
TRANSACTOR models to be reused and modified, helping to
eliminate the massive duplication of effort which might
normally occur using manual TESTCOM to develop tests for
a group of modules. The high level approach to code
development allows the TPS development engineer to
concentrate on the module functionality and allows the
transactor’s to handle the tedious details of the operation of
the module. The use of a transactor at a system interface
enables automatic generation of response stimulus. With
manual TESTCOM an engineer would typically be required
to simulate, evaluate the response and proceed with additional
stimulus. With the BEST TEST(c) approach, the
TRANSACTOR’S handle hand shake protocols and stimulus
is applied when the interfaces are in the correct state.[l]

PI 750A TRANSACTOR DEVELOPMENT

The 1750a transactor (XACTOR) developed by Integrated
Test Solutions (ITS), P1750A_XT, supports basic memory
and I/O read and write cycles. In addition to these basic
functions there are three additional operations: The first
instruction in the 0PCODE.DAT control file indicates
whether XACTOR microprocessor emulation will be used, no
operation cycle to insert wait states, and wait for interrupt 0
(INTO) to occur. On the embeddable Standard Avionics
Processor (ESAP) card INTO is used to indicate 1553 bus
controller interrupts.

INITULIZE

The P1750A-XT XACTOR consists of a synchronizing clock
input, control inputs and outputs, interrupts, and a 16 bit
information bus (IB[O:15]) which carries both address and
data with bit 0 being the Most Significant Bit (MSB). The.
clock input is used to synchronize all activity created by the
XACTOR. The clock input should be specified in the
XACTOR simulation timing file as an input with a phase
assertion time different from the CPU clock assertion time.
Preferably an assertion time early in the pattem at the same
time as the other inputs (RESET, etc.) in the XACTOR
simulation will be used to minimize the number of phases
created during BEST Test(c) Stimulus capture. The
XACTOR input clock will be stripped during Capture using
the DELEE-NODES command.

Upon reset the P1750A-XT tri-states the information bus as
well as processor output control signals M-IO, BSLOCK-,
BUSY-, STRBD-, STRJ3A and R-W. All error and interrupt
signals are set to the inactive state. The XACTOR also reads
in the 0PCODE.DAT control file, The 0PCODE.DAT file
contains information on whether or not the XACTOR will be
used and if so emulation will be used. The following section
shows how the 0PCODE.DAT control file is formatted and
explains the operation of the file.

0PCODE.DAT Control File Format

The 0PCODE.DAT Control File is read by the
microprocessor at the beginning of simulations and is used to
control the operation of the microprocessor emulator. The
format of the 0PCODE.DAT file is illustrated in the
following table.

223

TABLE I
OPCODEDAT Control File Format

Table 111
OPCODE DAT Control File First Operation

Address Data Operation Address Data Operation Description

001 1 5 5 5 5 0

The first line of the file and every odd line after that are
interpreted as comments by the P1750A-XT XACTOR to
enable the user to comment the 0PCODE.DAT source file. As
shown in the table above, the first field of an operation is the
16-bit address which will be issued on the Information Bus.
The second field of an operation is the 16-bit data which will
also be issued on the Information Bus during write cycles.
The third field of an operation is the operation indicator.
There are 7 operations which are supported by the
P1750A-XT XACTOR as shown in the following table.

Table I1
PI’ISOA-XT XACTOR Supported Operations

Operation Description

0 VO Write Cycle (M-IO Low)

1

2

I/O Read Cycle (M-IO Low).

Lockout bus, select microprocessor emulation.

3 No operation, create wait states.

4

5

6

Memory Write Cycle (M-IO High).

Memory Read Cycle (M-IO High).

Wait for 1553 Interrupt (INTO).

0 0 2 P 1750A-XT Microprocessor Emulation
Selected, lock out bus

0 0 0 P 1750A-XT Microprocessor Emulation
not selected.

When P1750A-XT Microprocessor Emulation is selected the
0PCODE.DAT control file operations are executed to
stimulate the module. When Emulation is not selected the
on board processor is granted the bus (BUSGNT- Low) and
enabled to run self test and on board ROM code.

Operation

Table I1 is referenced throughout this section as the Operation
Codes are explained in more detail. The first instruction of
the 0PCODE.DAT file indicates whether the XACTOR will
be used to emulate the 1750A Microprocessor. If Emulation
is selected with Operation Code 2, then the Bus Lock signal
BSLOCK- is asserted to prevent the on board processor from
gaining access to the bus.

Operation Code 3 is used to create wait states while another
module operation such as a serial data transfer are taking
place. This operation will create a waiting period of 8
XACTOR clock periods.

Operation Code 6 will cause the XACTOR to wait for the
INTO signal to be asserted (high).

Operation Codes 0 and 4 are I/O and Memory Write Cycles
respectively. These operation cycles emulate the basic write
cycles of the PACE 1750A Microprocessor. The steps of the
Sate Machine used to control this cycle are as follows:

The first instruction in the 0PCODE.DAT control file is
always interpreted as the command selecting P1750A-XT
Microprocessor Emulation. The follow table indicates the two
possible selections for the first instruction.

1. Assert R-W cycle indicator low indicating a write cycle.
Assert M-IO low for an I/O write and high for a memory
write. Assert BUSY- active low indicating the bus is
currently being used. Assert BSGNT- low to indicate that the
bus has been granted to the P1750A-XT XACTOR. Drive
the address on the information bus. Drive STRBA high
enabling address to be driven onto address bus.

2. Drive STRBA low latching the address on the module

224

address bus.

3. Drive the data on the information bus.

4. Drive STRBD- low latching the data bus information.
XACTOR issues message containing the address being written
to, the data, and a simulation time stamp. This information
will appear on screen during an interactive simulation and in
the command listing file for a BATCH simulation.

5. Wait for signal RDYD high indicating that the data cycle
has completed.

6. Deassert STRBD- data strobe, BUSY- and BSGNT-.

Operation Codes 1 and 5 are I/O and Memory Read Cycles
respectively. These operation cycles emulate the basic read
cycles of the PACE 1750A Microprocessor. The steps of the
State Machine used to control this cycle are as follows:

1. Assert R-W cycle indicator high indicating a read cycle.
Assert M-IO low for an I/O read and high for memory read.
Assert BUSY- active low indicating the bus is currently being
used. Assert BSGNT- low to indicate that the bus has been
granted to the P1750A-XT XACTOR. Drive the address on
the information bus. Drive STRBA high enabling address to
be driven onto address bus.

2. Drive STRBA low latching the address on the module
address bus.

3. Assert STRBD- low and tristate information bus enabling
data to be driven on the bus by the peripheral device being
read from.

4. Wait for RDYD active high indicating that the data cycle
has completed.

5. XACTOR issues message containing the address being
read from, the data received, and a simulation time stamp.

6. Deassert STRBD- data strobe, BUSY- and BSGNT-.

Interface Pinout

The following table describes each pin on the P1750A-XT
transactor. Type indicates if the pin is an input, output or
bidirectional.

Table VI
Pin Description

Type Pin Description

I

I

I

I

I

I

I

I

I

I

B

B

B

0

0

0

0

0

0

0

0

0

0

0

CLK Input clock. Drive XACTOR state machine,
Synchronize activity.

RDYD Data Ready. Active high indicator that data
cycle completed.

RDYA Address Ready. Active high indicator that
address cycle completed.

TRGRST- Trigger Reset. Pulses during initialization.

RESET-

B S R E Q

CS232-

Master Reset input, initialize XACTOR.

Bus request, on board processor requesting bus.

Serial interface selector, special handling
required.

x2 Serial interface clock.

RW Serial interface readlwrite indicator.

INTO 1553 interrupt signal.

BSLOCK- Bus lock, lock out bus when emulation
selected.

BUSY-

IB(O:15)

M-IO

Bus busy, readlwrite cycle boundary indicator.

Information bus, address and data, MSB is bit 0.

Memory YO selector, high for memory, low for
I/O.

CONREQ

BSGNT-

Console request, initiate console operations.

Bus Grant, grant bus to on board processor or
XACTOR.

IOINTl VO level interrupt 1.

IOINT2 I/O level interrupt 2.

INT2 User interrupt 2.

INT3 User interrupt 3.

INT4 User interrupt 4.

INTS User interrupt 5.

TMRCLK Timer clock.

STRBA Address strobe.

225

Table VI (CONT)
Pin Description

0010 AA 0
!Write to U2 port B, 8255 parallel interface
0011 55 0
!Write to U2 port B, 8255 parallel interface

Type Pin Description 0011 AA 0
!Write to U2 port C, 8255 parallel interface
0012 55 0

0 STRBD- Datastrobe.

0 R-W R e a m r i t e data flow control

!Write to U2 port C, 8255 parallel interface
0012 AA 0

0 MPTER- Memory protect error.

0 MPAER- Memory parity error.

0 XADER- External address error.

0 PDMT Power Down Interrupt.

0 SFLTO System fault 0.

0 SFLTl System fault 1.

Simulation Listing File

Table VI11 illustrates the messages which the P1750A-XT
XACTOR will issue to the current output devices interactively
during a simulation. If the simulation is being run
interactively by the user the messages will appear on screen.
If the simulation is being run in batch mode the messages will
appear in the batch listing file.

VI. SAMPLE SIMULATION
Table VI11

Simulation List file (i.e SIMRUNLI~)

This section will show an example 0PCODE.DAT simulation
control file and an example simulation listing file. The
simulation listing file is an example of the messages the
XACTOR will issue to indicate the status of communications
interactively during simulation.

0PCODE.DA T File

Table VI1 contains a listing of an 0PCODE.DAT file used in
stimulating the parallel interface. The P1750A-XT XACTOR
will read and execute the 0PCODE.DAT control file. The
P1750A-XT XACTOR is programmed to recognize that every
other line of the 0PCODE.DAT file is a comment.

Table VI1
Example OPCODE DAT File

!!OPCODE.DAT!!
!Select XACTOR emulation, lock out bus
0 0 2
!Read from U2 port A, 8255 parallel interface
0010 0 1
!Read from U2 port A, 8255 parallel interface
0010 0 1
!Read from U2 port B, 8255 parallel interface
0011 0 1
!Read from U2 port B, 8255 parallel interface
0011 0 1
!Write to U2 control register, all ports output ports
0013 80 0
!Write to U2 port A, 8255 parallel interface
0010 5 5 0
!Write to U2 port A, 8255 parallel interface

LASAR> simul/ran=l:700/tim=typ
Requested range = 1 : 700
Actual range
Finished Load of Opcode Data File!!!!!! Type name BUS61553: hardware
output change assigned default functional delay trigger.

Type name pl750: hardware output change assigned default functional

Read Add:0010 Dat:XX55 at User Pattern: 68 Time: 50.000 NS
Pattern 69/69. 0 Unsolved races. 0 Unsolved conflicts. 14 Seconds.
Read Add:0010 Dat:XXAA at User Pattern: 76 Time: 50.000 NS
Read Add:0011 Dat:XXSS at User Pattern: 84 Time: 50.000 NS ,

Read Add:0011 Dat:XXAA at User Pattern: 92 Time: 50.000 NS
Write Add:0013 Dat:0080 at User Pattern: 97 Time: 50.000 NS
Write Add:0010 Dat:0055 at User Pattern: 104 Time: 50.000 NS
Write Add:0010 Dat:OOAA at User Pattern: 11 1 Time: 50.000 NS
Write Add:0011 Dat:0055 at User Pattern: 118 Time: 50.000 NS
Write Add:0011 Dat:OOAA at User Pattern: 125 Time: 50.000 NS
Write Add:0012 Dat:0055 at User Pattern: 132 Time: 50.000 NS
Write Add:0012 Dat:OOAA at User Pattern: 139 Time: 50.000 NS

= 0 : 700

delay trigger.

CREATING TESTCOM WITH BEST TEST(C)

This section will show Best Test(c) being used to extract
transactor output and create low level TESTCOM patterns.

Running BEST Test(c)

BEST Test(c) uses a control file like the one shown in Table
IX. This file sets up the parameters that determine how
stimulus is created. In the RT simulation BUSHOST and
both P1750A-XT transactors have stimulus created from their

226

outputs. To create the stimulus from the system prompt:

$ bt :== $btdir:capl
$ bt cap-control.dat

Table IX
Capture Control File

!CAP CONTROL FOR TESTING CAPTURE ENVIRONMENT
CAPTURE-MODE = REPLACE; !use replace mode
REPLACE-PIS;
DEVICE-NAME E2,E3,E4;

PHASE-ERROR = 1500;

FILTER-WIDTH = 1000;
DELETE-NODES = UNNCLK;

!include all pi activity in new pattern file
!use these transactor outputs to create

!any edge within 1.511s of each other can
!new stimulus

!be combined into the same phase

BEST Test(c) Output

BT produces a low level pattern file and a new netlist. The
netlist will have the transactors removed, and any pins
formerly driven by a transactor will now be declared as
bidirectional nodes that are driven by the pattern file. Table
X contains a condensed version of the BT timing and pattern
files from the RT simulation. Table XI shows the new netlist
created by BEST Test(c).

Table X
BEST Test(c) Timing File

Capture.tim File
Set Tset 1 clock = 400ns
Phase 1 assert = 5 NS return = 65 NS
Phase 2 assert = 30 NS return = 85 NS
Phase 3 assert = 10 NS return = 399 NS
Window 1 open = 360 NS close = 380 NS

Set Phase 1 trigger = $topat;
Set Phase 2 trigger = $topat;
Set Phase 3 trigger = $topat;
Set Phase 4 trigger = $topat;

SET DIGITAL (RESET- STRBA STRBD)
window = 1,
phase = 1,
Format = $met;

SET DIGITAL (IB7 IB6 IB5 IB4 IB3 IB2 IBI IBO)

window = I ,
phase = 2,
Format = Snret;

SET DIGITAL (CPUCLK)
window = I ,
phase = 2,
Format = $met;

SET DIGITAL (CPUCLK)
window = 1 phase = 3,
Format = h e r o ;

Capture.pat File
Include 'capture.tim'
Highspeed
Use Tset 1
c p p = 1

Hi €U- WR- BSGNT- INT2 IOINTI

IB7 IB6 IBS IB4 IB3 IB2
IBI IBO RESET-

;!pattern 1
Lo RESET-
;!Pattern 2

!!!!Remainder of Simulation not shown here!!!!

Table XI
BEST Test(c) Netlist and CAPTURE E File

Capture.e File
Node Section;

bi IB7,@IB7;
bi IB6,@IB6;
bi IB5,@IBS;
bi IB4,@IB4;
bi IB3,@IB3;
bi IB2,@IB2;
bi IBI,@IBl;
bi IBO,@IBO;

End-Node;

Capture.net File
Board = 'CAPTURE-module';

Include 'CAPTURE.e';

Declaration Section;

Ignore Component Section;

Ul=P1750A;
E 1 =P 1750A-XT;
End-component;

Node Section;

@IB7,E1-9,U 1-44;
@IB6,E1-8,U 1-4;

227

http://Capture.net

@IBS,E1-7,U 1-43;
@IB4,E1-6,U 1-3;
@IB3,E1-5,U 1-42;
@IB2,E1-4,U1-2;
@IB 1 ,El -3,U 1 - 4 1 ;
@IBO,EI-Z,UI -1 ;

End-node;
End-board;

A new simulation can now be run with the BT output files.
This simulation can be checked for timing hazards and
accuracy. By adjusting BT parameters, such as
PHASE-ERROR, the user can modify how output timing is
created. The number of phases and tsets, including assert and
return times, can be controlled to meet tester and simulation
requirements.

BT output files will have the default name of "capture". This
can be changed with an OUTPUT-FILES=FILENAME;
command in the capture control file.

VI. COST DRIVERS

When developing digital Test Program Set (TPS) software
using traditional methods, the largest cost driver is stimulus
development. When using Best Test(c) software the cost
drivers, although minimal compared to traditional stimulus
development, exist in transactor modeling. After all
modeling is complete, using the Best Test(c) method, the only
stimulus development necessary is initialization (if necessary)
and clocks. Any additional stimulus development would be
minimal. This section will explore these two methods of TPS
development and trade-offs associated with both.

Traditional TPS Development

When using the traditional method of TPS development on a
microprocessor module, the stimulus development flow
progresses as follows:

1.SEND OPCODE TO PROCESSOR
2.CLOCK FOR MANY PATTERNS
3.SIMULATE
4.PERUSE SIMULATION RESULTS TO
DETERMINE AT WHICH PATTERN
PROCESSOR RETURNS

5.CHANGE CLOCKS ABOVE TO REFLECT TIME
OBSERVED IN STEP 3

6.RETURN TO STEP 1 AND REPEAT FOR ALL
OPCODES SENT.. . . .

-____ L o o p -----

requires many workhours of labor and massive CPU time of
the simulators host processor. Modeling is confined to on
board devices. Considering the stimulus development time and
availability of component simulation models
(Structura1,Behavioral and Hardware), modeling should be a
minimal percentage of development time .

Best Test(c) TPS Development

When using the Best Test(c) method of TPS development on
a microprocessor module, the stimulus development flow
progresses as follows:

1 .DEVELOP AND/OR PROCURE TRANSACTOR

2.WRITE HIGH LEVEL CODE TO FUNCTIONAL

3.COMPILE HIGH LEVEL CODE INTO A

4.CLOCK FOR MANY PATTERNS (DATA FILE IS

5,POSTPROCESS USING LSRTAP
6.CAPTURE NODAL DATA USING BEST TEST(c)

7.SIMULATE TEST PATTERNS GENERATED BY

SIMULATION MODELS

EXERCISE CPU

ROMCODE.DAT FILE

PULLED IN AND EXECUTED USING TRANSACTOR)

SOFTWARE

BEST TEST(c)

This method is a high level approach to stimulus development
that immensely reduces the stimulus development time. The
1750A assembler code was compiled to a romcode.dat file
which is pulled in by the ROM transactor which in turn is
accessed by the 1750A CPU for instructions. At this point
the stimulus generation becomes semi-automatic. Sending
clocks to the CPU under simulation creates stimulus by
causing nodal activity between the module U 0 and the
transactor models which can be captured and converted into
stimulus. This Best Test(c) conversion process creates the
following files:

- CAPTURE.NET (NEW NETLIST EXCLUDING
TRANSACTORS)

- CAPTURE.TIM (TIMING FILE CREATED BY BEST
TEST(c))

- CAPTURE.PAT (PATTERN FILE CREATED BY
BEST TEST(c))

- LSRTAP.LIS (FILE CONTAINING CAPTURE
WARNINGS AND ERRORS)

The major cost drivers using the Best Test(c) method is the
transactor development/procurement. The transactor
development time is minimal compared to developing stimulus
the traditional way for a CPU module.[2]

This method is a manual method, machine code oriented,that

228

http://CAPTURE.NET

VIII. COST SUMMARY REFERENCES

The cost saving accrued by using Best Test(c) as opposed to
manual Testcom is dependent upon the complexity of the
electronics. The higher the complexity of the circuitry the
higher the cost savings. The following table shows a STIMULUS FOR TEST TUTORIAL.
summary of cost savings based on the 1750A CPU module
explained earlier. The UCP module listed in the table below
is a completed TF'S development with a 68000 CPU. The
UCP was developed using Traditional stimulus generation
methods and does not contain a complex MIL-STD-1553
hybrid bus controller.[11

[I] Joe paliotta and Jeff Steams, "Behavioral Stimulus Test (BEST) Test
Developmenf" Teradyne Users Group (TUG) 1993.

[2] John Amaral and Frank Meunier, "BEST TEST BEHAVIORAL

Module Development Test Vector BEST Fault
Time Count Test Dictionary

(Months)

UCP 18 52,540 NO NO

ESAP 6 11,739 YES YES

ESAP(1) -24 -60,000 NO NO

NOTE (1) : Estamated manual Testcom Stimulus Development

E. CONCLUSION

I. Dramatic Improvement in TPS Development Time
Achieved

11. Primary advantages of BEST Test(c) Methodology

a) Object Oriented Technology: Transactors are reusable
and modifiable.

b) High level approach: Complex timing, hand shaking,
and other "state sensitive" functions embedded in
transactors.

c) System Interface Communications: Automatic
generation of response stimulus by transactor.

111. In the competitive market of TPS development it's no
longer practical to use manual Testcom in the
development of medium to highly complex TPS's.

ACKNOWLEDGMENT

NSWC Crane thanks Jeff Steams of Integrated Test Solutions
(ITS) for his help in the development of the Test Program Set
(TPS) which made this publication possible.

229

