N Suresoft

'ﬁ Technische SUSTAINABLE RESEARCH SOFTWARE
v 2 . g o
% Universitat

*#s Braunschweig

Scientific software development is not a Jenga game!
Software Engineering to the rescue

HeFDI Code School — Sustainable Research Software

Who are we?

Dr. Jan Linxweiler Soren Peters

jlinxweiler@tu-braunschweig.de soe.peters@tu-braunschweig.de

S Suresoft wroiding ‘% S Suresoft

SUSTAINABLE RESEARCH SOFTWARE SUSTAINABLE RESEARCH SOFTWARE

1L
o e,

%2 Technische
%" Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 2

Braunschweig

v

7, v
()Nscﬂ

‘Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Agenda

« Part1

Requirements and characteristics of maintainable and sustainable research software

« Part?2

Software Development Principles and Practices (SOLID)

 Part3

Design Patterns
« Part4

Clean Code and Refactoring
* (Part5) Software Development

_ _ Is not a Jenga game
(Introduction to Test-Driven Development (TDD))

Sy, .
t Technische

X% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 3

l—— N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

How to follow along?

Join at

slido.com
#123 444

1L
o e,

%2 Technische
> %" Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 4
{\J’ Braunschweig

"’b v
¥sce

y Suresoft

' SUSTAINABLE RESEARCH SOFTWARE

What is your educational background?

a) (Human) Medicine

b) Physics

c) Electrical Engineering
d) Computer Science

e) Biology

f) other

Join at

slido.com

#123 444

1

v°'v‘
%
~
<
o
o5
o,
Ns

e,
a% Technische
%;‘ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 5

o .
“> Braunschweig

SUSTAINABLE RESEARCH SOFTWARE

cP

[A

Which programming language do you prefer?

C++
Java
Python
Matlab
R

f) other

o Q

® QO

@)
N’ SN N N’ N

Join at

slido.com

#123 444

Hy .
a% Technische
Y% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 6 S

o .
I Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

How much experience do you have in OOP - Object-Oriented Programming?

a) | have zero experience

b) | have just a little experience

c) | feel comfortable in programming
d) I’'man expert

e) | would rather not say

f) other

Join at

slido.com

#123 444

1
¢

e,

a% Technische
%;‘ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 7
{$’ Braunschweig

c\v‘é

v°'v‘
3
~
<
o
o5
o,
Ns

y Suresoft

SUSTAINABLE RESEARCH SOFTWARE

[A

How familiar are you with UML class diagrams?

a) What the heck are you talking about?

b) It would be nice to refresh my knowledge a bit
c) | feel comfortable in reading UML

d) I’'man expert

e) | would rather not say

f) other

Join at
slido.com

#123 444

WILy

oW ke, .
3‘% %ﬂ; Technische
< v z

® Universitat Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 8 S

o v
",ﬁ ¥4 Braunschweig
0~scﬂ4‘

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Who uses the code that you write?

a) Only you

b) Your direct colleagues

c) Other researching groups you collaborate with
d) The whole scientific community in your field

e) Even more

f) other

Join at

slido.com

#123 444

o, .
a% Technische
Y% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 9 S

o .
g Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Software provides the ultimate flexibility ...

1L
o e,

%2 Technische
S %" Universitat Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 10

¥ Braunschweig 2 & S u r e S Oft

SUSTAINABLE RESEARCH SOFTWARE

Relationships - Dependencies - Coupling

»

DON'T

(
4

B

TRY THIS
AT HOME

Technische
% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 11

S 2 ' Suresoft

SUSTAINABLE RESEARCH SOFTWARE

One of the first scientific software developers

https://bit.ly/3KYIXWR

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 12 S

Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

https://bit.ly/3kYfXWR

One of the first scientific software developers

“One of our difficulties will be the maintenance of an appropriate

discipline, so that we do not lose track of what we are doing.”
- 1947

[Lecture to London Mathematical Society, February 20, 1947]

&,
"%_ Technische

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 13

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

One of the first scientific software developers

“One of our difficulties will be the maintenance of an appropriate

discipline, so that we do not lose track of what we are doing.”
- 1947

[Lecture to London Mathematical Society, February 20, 1947]

1L,
4,

&,
st Technische

%E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 14

L e Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Bl
o
7%
~
<
o
o5
*
o,
¥s

C

German Society for Research Software

d e‘S‘

https://de-rse.org/

GESELLSCHAFT FUR
FORSCHUNGSSOFTWARE

recognition for software development as a scientific achievement B ETTEH
anchoring in the scientific reputation system SOFTWAHE

availability and usability of scientific software BETTER
competence in software engineering BESEABBH

quality standards for the development and review of scientific software

reproducibility, e.g. of simulation results

reg jonal Chapte 'S nhttps://de-rse.org/chapter/

Technische

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 15

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

https://de-rse.org/chapter/
https://de-rse.org/

New career path in science

- ~N
—J
N Bremerhaven
roninger. Oldenburg
©
Assen Bremen
! H Emmen
! N -H ind [
]
/ Lelystad
N
| Amst§lam
/ Ensched Osnabruck
nschede r
Veider Nederland
Utrecht £de
Amhemy ‘ 2 ! Bielefeld
Dordrecht -
F Nijmegen Homey Paderborn
's-Hertogenbosch Ro(khnghaqu
Helmond Esseno or
venlo) ot
mburg Dusseldorf
Antwerpen Solingen
3ruxelles - Koin
Brussel /) Siegen
® Maastrichty ~ aA5che 5
) Bonn Q
Belgié / Belgiqué / S issen
Belgien Koblenz
v n “r
f 3 7 Fg kfurtam
) Main
létzebuerg Teier
)
0}
Luxembourg Mariphaen

Rostock©) Mecklenburg
Lubeck
Hambu»rgq
Berlin
Halilwver G
4 Wolfsburg Potsdarm
Bra S eig
Hildesheim
) Sé€
Ggen
Halle (Saale)
Kassel 'R
2

Chemnitz

9
Erla n

Plzed

Swinoujscie
\

Szczecin

Cottbus
- Chésebuz

Usti'nad
Labem

Praha
Y ©

Koszalin

Gorzéw
Wielkopolski

Zielona
Gora

Les

Legnica

Jelenia
Goéra

Liberec
Walbrzych

Cesko

https://de-rse.org/

Technische

Universitat
Braunschweig

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 16

S

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

https://de-rse.org/

I'T WORKED
yesterday

1L,
o'« Ve,

Technische
Universitat
Braunschweig

v e
Y
M Z
o >
o
i

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 17

[photo: pixabay.com]

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Publications relying on software

2 /3rds 65t

of papers indicate

software reliance in 2017 50%

26%
18%
12%
9%
6%
2000 2003 2006 2009 2012 2015 2017 https:/bit.ly/37XEJ2u

3‘%%?%%_ Technische

bl %" Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 18

'%%; f;’ Braunschweig

9, .
Ong “4\

y Suresoft

SUSTAINABLE RESEARCH SOFTWARE

[A

https://bit.ly/37XEJ2u

Use of research software

* 92% of academics use research software bu;edu d“ "{"‘”*"‘”'};‘r'ﬁ*ixpl'uulb alis. tledénlalslaslrr}];;}'rr(l‘ltg\[;;"]‘\\]‘:{{)l
gU pen nO e 0 a = lumun confro solid \01)‘:] o X

69(y h . i i i]llll\l\ ”(l'.\]()l”'ll[t p t ““ ‘l)llr[“"l“‘ sdma Stata min

. o say that their research would not be practical without it silab maven ,u gnuplof chemdraw

lm.« TYS

. ga P rm ((d ¢ 1\[0)ly conds “l""zotepo < "l

» 56% develop their own software cs Mu ge{ave o Jango e “fr“ =Salt

(lllll[ll(s\ floals ® “sublime text meep froaes

da i
.,].USJ,mlcrosoftmexce Sh ki

https://bit.ly/2zZPhSa »lant(ont"r'ﬁ(“ﬁdplp‘ skvpe ax IH K intelli
yp e mlmld 'mumsuﬁ “"“l[(‘dll

Jl[‘ahnU\ CCpL{ sikis npchers t O ns 'b"r‘lgin i
slack]atexC - N _]Upﬂ?l gfortran

v O 1
mlwin® (Slgn% {plol - T \l)lml[\ 1.\[uh(m 1 v g‘lmIOOIS (’maCS

ht(m}a ‘ , ; he Suite

coreldrd\l\n i;ﬂr)v (Uff Ilnks fOPtP?R «g1imp h{}lVO fﬁgr(UTy-

pymolicrest OCl\GI‘ php <l($0m AP Coiaoke s o ide (0

isio (OOt ar Lgls o p Shaskell¥ 1sual studio trello
wa pe [\l ol

filers=a =01 Linodoni|. - €mé ke mp] sh
bO\\ tl? \Y 1m penie .‘ mercurial’ - l[]l(‘llq] acccessg t Sh(“amOS
q[ym\sx in fer lll(\ lmageJ P00t =7, (i 95 bitbocket vba

tP)’009](0cs £ arcme ‘l’h Subiersion hulf‘n”]" nrefine]d\dS[l‘l[)l bl 1\[
tFavig Javass . graphpad prism -mathematica gala¥y

sal Srver mcnasal, paverpaint derrs PANAS w3 SUVRATE
https./bit.ly/2BAvzwQ

Technische
% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 19

¢ Braunschweig S u r e S Oft

SUSTAINABLE RESEARCH SOFTWARE

https://bit.ly/2BAvzwQ
https://bit.ly/2zZPhSa

Growing demands on scientific software

2045
+— Surpasses
brainpower
equivalent
to that of
all human
brains
combined

* Increasing Complexity (e.g. multi physics, multiple groups)

Surpasses

brainpower

of human
n 2023

RN

* Longer Life Span (base your work on the work of others)

» Reproducible and Verifiable Results

r—— Apple Il
At a price of $1,298, Nedia Tesla
GPU & PC
the compact)
machine was one of >
UNIVAC | the first massively Surpasses
The first commer- popular personal 0,000 l:'.mslxn\:' of
cially marketed computers mouse in 2015
Colos computer, used to
Sus
COMPUTER RANKINGS S ST isens fle 8.2
By calculations per second ensus, occupled
oer $1.000 computer, with 943 cu. ft
e, E 1,500 vacuum
tubes, helped the ' 100,000
. " s g Compag
Analytical engine British crack German i Desipro 386
Never fully built, codes during WW Il &
Charles Babbage's o Su
invention was Whithwing 2 DEC
designed to solve o e Power Mac G4
computational and * - .rw 1620 The first personal .
logical problems NAC &8 e o computer to deliver
BM EOVAC ?g.f;""": more than 1 billion
. duse 3 SSEC N floating-point
Hatbenth 16M Tabulater 2use 2 operations per
Tsbulator L4 ® Natonad second
@ Elks 3000
00001
.- t t TROME MANICA - HE AY - Al MT | -w TRANSIST 1 - - o
|| T T T T T T T |
1900 1920 1040 1960 1980 2000 2011 2020 2045

Universitat

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Braunschweig

Technische
Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 20 S

“The function of good software is to make the complex appear to be simple. ”

Grady Booch

Applications

Domain Specific Languages

Libraries / Cloud Services

Frameworks

Design Patterns

level of abstraction

Principles & Practices

flexibility,
complexity

Object Oriented Programming

Structured Programming

Assembly Language

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 21 S

Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

“The art of programming is the art of organizing complexity. ”
Edsger W. Dijkstra

essential complexity
&
accidental complexity

[Notes On Structured Programming, Edsger W. Dijkstra, 1970]

oV ke, [Frederick P. Brooks, No Silver Bullet: Essence and Accidents of Software Engineering, 1987]

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 22

%ﬁ Technische

g

shI=% Braunschweig 2 S u r e S Oft

SUSTAINABLE RESEARCH SOFTWARE

SURESOFT Approach for Sustainable Software

,/\

2 . q
= ‘;W ________________________________ N ?éfei@“
9"%{’; Methods Infrastructure, Tools & Process ‘x\';, ;ﬁ;igh
y \{*‘ W (‘K *5(":71 if/
ot LeoPARD N
ot

Archiving &

Version Control Publication

Documentation

<
i’;.

Soft Engi , : Cl & docker docker '
oftware Engineering ! . . :
Automated Testing il !

Principles

iyt O

LeoPARD dJocker

Installation &

Issue Reporting Deployment

Testing

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 23 S

Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Growth in technology vs. software development paradigms

2045

10° +— Surpasses

1[John McCarthy, Recursive Functions of Symbolic Expressions and Their Computation by Machine, 1960]
2 [Kristen Nygaard, Ole-Johan Dahl, The development of the SIMULA languages, 1978]
3[Edsger W. Dijkstra, Go To Statement Considered Harmful, 1968]

brainpower
equivalent
to that of
all human
brains
combined

Surpasses

brainpower

of human
n 2023

L)

——— Apple Il
At a price of $1,298, g;‘f'z‘;'é‘ﬂ
the compact .

machine was one of
the first massively
popular personal
computers

UNIVAC |

The first commer-
cially marketed
computer, used to
tabulate the U.S.
Census, occupled

10,000,000,000

Dimension
8400

Colossus
The electronic
computer, with

COMPUTER RANKINGS

By calculations per second nee

per $1,000 943 cu. f.
A 1,500 vacuum 1 :f"“'

tubes, helped the Do s 100,000
Analytical engine British crack German = v TR
Never fully built, codes during WW II pop4 1130
Charles Babbage's ° .,3'."*. o
invention was Whitwind i e
designed to solve ° e POP-10 Power Mac G4
computational and Y .xsu 1620 The first personal -
logical problems ENAC @ ° ® o computer to deliver

° BN EVC pooete more than 1 billion
Juse 3 SSEC floating-point
Mallenth 'W.I'""‘“""' use 2 operations per
Tabutator ® Novonsd second
a Elks 3000
0.00001
.- 3 CHA - £ Y . .. TRANSIST RS - -
T T T T T T T T T
1900 1920 1040 G 1060 k'-D‘ 1980 2000 2011 2020 2045
(9] (<))
(o] ()]

LISP! OOP2 Structured
Programming?

Technische

”

Surpasses
brainpower of
mouse in 2015

Universitat
Braunschweig

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 24

S

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Take Home Messages

In accordance to Wirth’s law one can argue:

“Software systems grow faster in size and complexity than methods to

handle complexity are invented.”
[Niklaus Wirth, "A Plea for Lean Software”, 1995]

» We need to make the best possible use of the software development
techniques available to cope with the growth in complexity.

“The gap between the best software engineering practice and the average
practice is very wide — perhaps wider than in any other engineering
discipline. [...] The difference between the the great and the average
approach an order of magnitude.”

[Frederick P. Brooks, No Silver Bullet: Essence and Accidents of Software Engineering, 1987]

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 26 E

¥ Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Productivity Crisis

floating point performance is constantly rising
time-to-solution is inceasing

scientists spend 50% of the time finding bugs
[P. Prabhu, A Survey of the Practice of Computational Science, 2011]

A
0
\®)
Sz
S
>
=
m -
S no deS\gn
=
(@)
c
2 |---design payoff liNg --=====--—— o5 @Em e
()
=
-
©
S down here it might be worth
g trading design for earlier results ...
(@)
time
Design Stamina Hypothesis - https://bit.ly/2A64CAR
Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 27

Braunschweig

S Suresoft

SUSTAINABLE RESEARCH SOFTWARE

https://bit.ly/2A64CAR

Productivity Crisis

“The only way to go fast is to go well.”

Robert C. Martin

3|59 Technische
3 %E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 28

< v
‘:ﬁ ¥4 Braunschweig
N\ Sureso
SUSTAINABLE RESE

ARCH SOFTWARE

Credibility Crisis

Questionable reliability, accuracy, reproducibility and verifiability of the results ...

W18 Agrd 2013, 1231 CEST

FAQ: Reinhart, Rogoff, and
the Excel Error That Changed

History

By Peter Coy

509
)
tf’u% S

PHOTOGRAMY BT GHEGOR SCUSTER

Technische

Universitat
Braunschweig

‘s a—

el

SCIENTIFIC PUBLISHING

Papers in economics ‘not

reproducible’

Fears that discipline is particularly susceptible to statistical ‘hacking’ of data to

gain a positive result
October 21, 2015
By David Matthews

Twitter: @DavidMjourno

At least half of papers in economics are

A Scientist's Nightmare: Software
Problem Leads to Five Retractions

Until recently, Geoffrey Chang's career was on
a trajectory most young scicntists only dream
about. In 1999, at the age of 28, the protein
crystallographer landed a faculty position at
the prestigious Scripps Research Institute in
San Diego, California. The next year, in a cer-
emony at the White House, Chang received a
Presidential Early Carcer Award
for Scientists and Engineers, the
country’s highest honor for young
researchers. His lab generated a
stream of high-profile papers
detailing the molecular structures
of important proteins embedded in
cell membranes,

Then the dream turned into a
nightmare. In September, Swiss
researchers published a paper in
Nature that cast serious doubt on a
protein structure Chang's group
had described in a 2001 Science
paper. When he investigated,
Chang was horrified to discover
that a homemade data-analysis pro-
gram had flipped two columns of
data, inverting the electron-density
map from which his team had

2001 Science paper, which described the struc-
ture of a protein called MsbA, isolated from the
bacterium Escherichia coli. MsbA belongs toa
huge and ancient family of molecules that use

Sciences and a 2005 Science paper, described
EmrE, a different type of transporter protein.
Crystallizing and obtaining structures of
five membrane proteins in just over § years
was an incredible feat, says Chang’s former
postdoc adviser Douglas Rees of the Califor-
nia Institute of Technology in Pasadena. Such
proteins are a challenge for crystallographers
because they are large, unwieldy, and notori-
ously difficult to coax into the crystals
needed for x-ray crystallography. Rees says

energy from phosphate to trans-
port molecules across cell membranes. These
so-called ABC transporters perform many

was at the root of Chang s suc-
cess: “He has an incredible drive and work
ethic. He really pushed the field in the sense
of getting things to crystallize that
no one else had been able to do”
Changs data are good, Rees says,
but the faulty software threw
everything off.

Tronically, another former post-
doc in Rees’s lab, Kaspar Locher,
exposed the mistake. In the 14 Sep-
tember issue of Nature, Locher,
now at the Swiss Federal Institute
of Technology in Zurich, described
the structure of an ABC transporter
callod Sav1866 from Staphylococeus
aureus. The structure was dramati-
cally—and unexpectedly—differ-
ent from that of MsbA. After
pulling up SavI866 and Chang’s
MsbA from S. typhimurium on a
computer screen, Locher says he
realized in minutes that the MsbA

derived the final protein structure. Flipping fiasco. The structures of MsbA (purple) and Sav1866 (green) overlap Structure was inverted. Interpreting
Unfortunately, his group had used little Ueft) until MsbA is inverted (right).

the program to analyze data for

the “hand” of a molecule is always
a challenge for crystallographers,

fcent of papers.

ludes.

IS THERE A REPRODUCIBILITY CRISIS?

7% 52%
Don't know Yes, a significant crisis
3% ‘
No, there is no
crisis

1,576

researchers
surveyed

38%
Yes, a slight

crisis

onature

https://go.nature.com/2DgtDKR

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 29

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

https://go.nature.com/2DgtDKR

Birth of Software Engineering discipline in 1968

2023 ?

growing social responsibility:
climate change, COVID-19

growing social responsibility:
autonomous driving

Computational Software
Science Engineering

Errors in scientific data processing applications
might be a “hassle”, but they are all in all tolerable.

Failures in mission-critical military systems might
cost lives and substantial amounts of money.

1968
NATO conference
in Garmisch

[Naur, Software Engineering: Report of a Conference Sponsored by the NATO Science Committee, Garmisch, Germany, 1968]

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 30

S Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Start caring about your code

“Clean code always looks like
it was written by someone who cares.”

Michael Feathers

Clean Code

—

[Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, 2008]

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 31

S Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Software Entropy - Broken Window Effect

Broken window effect: https://bit.ly/2BddXYh

[A. Hunt, The Pragmatic Programmer: From Journeyman to Master, 1999]

Technische
Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 32 S

Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

https://bit.ly/2BddXYh

The Boy Scout Rule

“Leave the campground cleaner than you found it.”

a
= Cle_an ‘Code

.

—

[Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, 2008]

1L
o e,

; %2 Technische
ﬁ %" Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 33

o .
ol Braunschweig
sc¥

. Suresoft

' SUSTAINABLE RESEARCH SOFTWARE

Today it’s all about concepts...

| PRASARMXCPPOKENPRIPABARHRRAE

THE FELLOWSHIP Al anm
OF THE RING mlqﬂ" =

JR.R. TOLKIEN

J.RR.
TOLKIEN

0150yl lara

EL SENOR

JERCRCTOLKIEN

s IDJENR
| X I ~! ..! : ‘ DER
| JRR. TOLKIEN 7 Ailal] INGIE
THE I(YKI;::]I‘III RINGS % @ I}] (;U””“”“””r('
PASARAIXE PIYCNBRIMABAKHRRA A

Technische
Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 34 S

Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

External and Internal Software Quality

Two Categories of Quality

External Quality Factors
« aim to the needs of a user
Internal Quality Factors

 aim to the needs of the developers

Implicit dependencies of several quality factors prevent the maximization of all factors.

Engineering task: Optimal balancing of quality goals.

[James McCall, Factors in Software Quality, Technical Report, General Electric, 1977]

[C.A.R. Hoare, The Quality of Software, in Software, Practice and Experience, 1972]
[Barry W. Boehm, J.R. Brown, G. McLeod, Myron Lipow and M. Merrit: Characteristics of Software Quality, 1978]

1L
oV ke,

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 35

7H2% Braunschweig P, g S u r e S oft

SUSTAINABLE RESEARCH SOFTWARE

%ﬁ Technische

External Quality Factors - J. McCall, 1977

lI.Q0

O
£
~
<
o
P
o

el
v
o
b‘\rscﬁ

¢ .
%2 Technische
%E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 36 E "

o .
*% Braunschweig

Correctness - The degree to which a system is free from faults in its specification, design, and
implementation.

Usability - The ease with which users can learn and use a system.
Efficiency - Minimal use of system resources, including memory and execution time.

Reliability - The ability of a system to perform its required functions under stated conditions whenever
required—having a long mean time between failures.

Integrity - The degree to which a system prevents unauthorized or improper access to its programs and its
data.

Adaptability - The extent to which a system can be used, without modification, in applications or
environments other than those for which it was originally designed.

Accuracy - The degree to which a system, as built, is free from error, especially with respect to quantitative
outputs. Accuracy differs from correctness; it is a determination of how well a system does the job it’s built
for rather than whether it was built correctly.

Robustness - The degree to which a system continues to function in the presence of invalid inputs or
stressful environmental conditions.

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Internal Quality Factors - J. McCall, 1977

“The key to achieving these external factors is in the internal ones.”
— B. Meyer, 1988

« Maintainability - The ease with which you can modify a software system to change or add capabilities,
improve performance, or correct defects.

* Flexibility - The extent to which you can modify a system for uses (or environments) other than those for
which it was specifically designed.

« Portability - The ease with which you can modify a system to operate in an environment different from that
for which it was specifically designed.

* Reusability - The extent to which and the ease with which you can use parts of a system in other systems.

« Readability - The ease with which you can read and understand the source code of a system, especially
at the detailed-statement level.

« Testability - The degree to which you can unit-test and system-test a system; the degree to which you can
verify that the system meets its requirements.

« Understandability - The ease with which you can comprehend a system at both the system-organizational
and detailed-statement levels. Understandability has to do with the coherence of the system at a more

general level than readability does.
[Bertrand Meyer, Object-Oriented Software Construction, 1988]

‘LQO

v

O
£
~
<
o
P
o

¢ .
%2 Technische
%E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 37 E "

o .
*% Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

el
v
o
b‘\rscﬁ

Quality characteristics valued by scientists — survey by J. Carver, 2007

» functional correctness
» performance
 portability

* maintainability

[Jeffrey Carver, Software Development Environments for Scientific and Engineering Software: A Series of Case Studies, 2007]

Technische

£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 38
Braunschweig

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

What do you value the most?

a) functional correctness
b) performance

c) portability

d) maintainability

e) other

Join at

slido.com

#123 444

1

o'« I,‘l’e
3‘% ‘st Technische
3%3 %E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 39
% o .

e Braunschweig

cP

\ Suresoft

' SUSTAINABLE RESEARCH SOFTWARE

Traditional vs. Agile Processes

Product

A / expensive

Design

cheap

1Lz
> %

g.}g %2 Technische
3 W %" Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 40

‘éﬁ & Braunschwei
B srinscheis N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Traditional vs. Agile Processes

definel(l
‘can',
'models/account‘,
‘controls/dashboard/dashboard',
'controls/misc/titlebar‘,

'toastrlr
‘moment’,

‘utils/he\pers‘
Account, Dashboard,

. new can.Mapl
H null,

Titlebar,

Design

expensive

[photo: pixabay.com]

3 Ifchnhche
niversitit Scientifi
tific software d
evelopment is not
aJe
nga game! - Software Engineering to th
e rescue | Dr. Jan Li
. inxweiler, Séren P
, eters | Slide 41

N Suresoft

SusT
AINABLE RESEARCH SOFTWARE

Evolution of costs for Hardware vs. Software

80 |-
Hardware
8 60
o
8
i)
Y
S}
=
3
o 40
o
20
1955 1960 1965 1970 1975 1980 time
[Barry W. Boehm, Software and its impact: A quantitative assessment, 1973]
Technische
Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 42

S Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Traditional vs. Agile Processes

Plan-Driven (Waterfall)

Project Timeline

Requirements Technology

ChangeA Innovation

Technische

Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 43 S

Quality characteristics valued by scientists — survey by J. Carver, 2007

» functional correctness
» performance
 portability

* maintainability

[Jeffrey Carver, Software Development Environments for Scientific and Engineering Software: A Series of Case Studies, 2007]

Technische

£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sren Peters | Slide 44
Braunschweig

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

The one constant in Software development is

CHANGE

Technische
Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 45

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

W1l
> %

0% *;; Technische
%

o% 2 Universitat

L) .

» %45 Braunschweig
OA’SCY‘@

https://bit.ly/3BGi1cU

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 46

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

https://bit.ly/3BGi1cU

Object Oriented Programming — It‘s all about messages

Reality
message
\move() accelerate() rotate() _
Model ————> Person Car Engine

direction of dependency / “knowledge*

Technische
% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 47

m 2 Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependencies in code

Circle

- center_x: float
- center_y: float

- radius: float
<—
+ color: str App
+ translate(dx: float, dy: float))
+ scale(factor: float))/
+ draw() /
depends on the public API
(the public methods and attributes)
oV iy
st Technische
%E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 48

45 Braunschweig

S Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependencies make changes difficult

< >
source code Mai flow of control
dependency----co] amn e ‘

R :-
“‘ HL1 HL2 }“

'
. .
. .
.
.
.
. ’ . ') '
. '

g‘l’ ‘1’@ g‘l’ ‘l’g L ‘1’4 o \l'g
LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 49 ‘
i Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependencies propagate change

< >
source code Mai flow of control
dependency----co] amn e ‘

R :-
“‘ HL1 HL2 }“

'
. .
. .
.
.
.
. ’ . ') '
. '

g‘l’ ‘1’@ g‘l’ ‘l’g L ‘1’4 o \l'g
LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 50 ‘
i Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependencies propagate change

< >
source code Mai flow of control
dependency----co] amn e ‘

R :-
“‘ HL1 HL2 }“

'
. .
. .
.
.
.
. ’ . ') '
. '

g‘l’ ‘1’@ g‘l’ ‘l’g L ‘1’4 o \l'g
LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 51 ‘
i Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependencies propagate change

< >
source code Mai flow of control
dependency----co] amn e ‘

R :-
“‘ HL1 HL2 }“

'
. .
. .
.
.
.
. ’ . ') '
. '

g‘l’ ‘1’@ g‘l’ ‘l’g L ‘1’4 o \l'g
LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 52 ‘
i Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependencies propagate change

< >
source code Mai flow of control
dependency----co] am- e ‘

R :-
“‘ HL1 HL2 }“

'
. .
. . .
ML1 1 ML2 ML3 1 ML4
. . . . P . . .
.
.
[y
) ' .

g‘l’ ‘1’@ g‘l’ ‘l’g L ‘1’4 o \l'g
LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8

Technische
Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 53

¢ Braunschweig S 'Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Take Home Message

“Design for change by managing dependencies.”

".é ¢ Technische
3 %E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 54 ’
L s Suresoft

¥scv '
SUSTAINABLE RESEARCH SOFTWARE

Low cohesion

- >
source code] H flow of control
dependency----occtt] Main oo
.{ v :-
. . . .
» HL1 HL2 ..
v v v v
N oma B M B “| ms mLa ¥
N Ve Ve AV Ve AV Ve
LL1. LL2. LL3.‘ LL4. LL5. LL6. LLF‘ LL8.
Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 55

Braunschweig

S Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Low cohesion

<.

T~

source code

dependency

Main

ML2

.
. ‘
1 ML3
. .
. .
. .

| ML4
A rd
- rd
- rd

LL3

/ "l ‘\~~
LL%‘ LL5.

/ _,' ‘~~ \l/
LL%‘ LL7.

Technische
Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 56

* Universitit
Braunschweig

g

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

High cohesion

=
T

source code
dependency----occttT)

“‘ HL1
v v R v
Ms3 | | wmua ¥

Main

N ML

A Ve Ve A Ve~
LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8

SUSTAINABLE RESEARCH SOFTWARE

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 57
S Suresoft

Metrics - Yourdon und Constantine, 1979

Use Coupling and Cohesion as Metrics to evaluate the quality of the design with regard to the impact and
the reach of changes.

Coupling = Measure of Strength of the Relationship of two or more components.

A high Coupling causes systems, which are complicated to understand, to change or even to fix. Changes in
a module often lead to a cascade of changes in other tightly coupled modules.

Cohesion = Degree of how well the elements of a module relate/fit together.
Random Cohesion = non-relating Abstractions are grouped together. [=> worst case]

High functional Cohesion = the sum of elements which form a consistent and clearly defined Behavior.
Changes regarding a specific Behavior are easily performed, since they are ideally affecting a single element.

The Goal of the Design should therefore simultaneously aim for a
preferably high cohesion and low coupling of its components.

1Ly, [E. Yourdon and L.L. Constantine, Structured Design: Fundamentals of a Discipline of Computer Program and Systems Design, 1979]

O
£
~
<
o
P
o

Suresoft

¢ .
%2 Technische
%E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 58 .

8 SUSTAINABLE RESEARCH SOFTWARE

o .
*% Braunschweig

el
.
o
bﬁscﬁ

Software can not be proven to be right

“Testing shows the presence, not the absence of bugs.”
Edsger W. Dijkstra’

Software is not a mathematical endeavour in the sense that software can not formally be proven to be correct. In that way at
has a lot in common with scientific theories and laws which can only be proven to be incorrect.

['Software Engineering Techniques: Report on a conference sponsored by the NATO Science Committee, Rome, Italy, 27--31 October 1969]

1L,
oV .?Q

3 % Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 59 :
‘,95 ¥4 Braunschweig
N Sureso

SUSTAINABLE RESEARCH SOFTWARE

§a Technische

Design Smells

Symptoms of poor design

Rigidity — The system is difficult to change

Fragility — The system is easy to break

Immobility — The system is difficult to reuse

Viscosity — It is difficult to do the right thing

Needless Complexity — Overdesign (YAGNI - “You Aren't Gonna Need It”)
Needless Repetition — Copy / Paste Development

Opacity — The systems design is hard to understand

These symptoms are similar in nature to code smells, but are at a higher level. They are smells that
pervade the overall structure of the software rather than a small section of code.

[Robert C. Martin, Agile Principles, Patterns, and Practices, 2003]

1

&,
§a Technische

£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 60

é‘;j Braunschweig 8 S u r e S Oft

SUSTAINABLE RESEARCH SOFTWARE

Bl
o
%
~
<
o
o5
*
o,
s

Another metric for code quality

TL"Q C)/\/L?/ ‘\/A'Llp{ M ASURE Men T
OF Coche @UQLH’\/? \/\F\Fs/mwurrg

h

Code
REevVieWw

ﬁ

Goock code . l BAd codle.

oWy https://bit.ly/2VWkvBA

%2 Technische
> %’»‘ Universitiat Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 61

7% Braunschweig S u r e S Oft

SUSTAINABLE RESEARCH SOFTWARE

https://bit.ly/2VWkvBA

» No Silver Bullet «

Software Development is a non-deterministic process — McConnell, 2004

Clearly, there is no magic, no “silver bullet” (F. P. Brooks, 1987) that can unfailingly lead the software
engineer down the path from requirements to the implementation of a complex software system, which
reflects a high-quality design on the other hand.

Software Design and Software Development are evolutionary processes which demand for an
incremental and iterative approach.

There are “no” norms nor standards, which assure the quality of development.

Software Design is a heuristic process — Quality is mainly achieved by cautiously applying proven
Principles, Patterns and Practices.

[Steve McConnell, Code Complete, Second Edition, 2004]

[Frederick P. Brooks, No Silver Bullet: Essence and Accidents of Software Engineering, 1987]

Technische

Braunschweig

Suresoft

Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 62 ;
v,
8 SUSTAINABLE RESEARCH SOFTWARE

Complexity

“There is an inherent complexity in software systems that works against the software quality.”

— Dijkstra, 1972

Causes of Complexity (Booch et al., 2007):

« complexity of the problem domain

- difficulty of managing the development process

 flexibility possible through software

» problems of characterizing the behavior of discrete systems

Problems evolving in scope, result in continuously growing complexity of software
systems. Complexity does not increase linearly. The more complex a system gets,
the higher its possibility of failure gets. The task of designing high-quality software
consists in managing its complexity.

[Edsger W. Dijkstra, The humble programmer, 1972]

o, [Grady Booch et al., Object-oriented analysis and design with applications, 2007]

uﬁ % Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 63
*A|%45 Braunschweig
N Sureso

SUSTAINABLE RESEARCH SOFTWARE

S %ﬁ Technische

Basic Concepts of Organized Complexity

“...the maximum number of chunks of information that an individual can handle simultaneously is on
the order of seven, plus or minus two.”
— G. A. Miller, 1956

Decomposition: “divide et impera” (divide and conquer) — When designing a complex software system, it is
essential to decompose it into smaller and smaller parts, each of which we may then refine independently.

Abstraction: “We (humans) have developed an exceptionally powerful technique for dealing with complexity.
We abstract from it. Unable to master the entirety of a complex object, we choose to ignore its inessential
details, dealing instead with the generalized, idealized model of the object” (W. Wulf ,1980)

Hierarchy: Another way to increase the semantic content of individual chunks of information is by explicitly
recognizing the class and object hierarchies within a complex software system. By classifying objects into
groups of related abstractions (e.g., kinds of plant cells versus animal cells), we come to explicitly distinguish
the common and distinct properties of different objects, which further helps us to master their inherent
complexity (A. Goldberg, 1984).

1Ly, [George A. Miller, The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information, 1956]

O
£
~
<
o
P
o

Suresoft

¢ .
%2 Technische
%E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 64 .
8 SUSTAINABLE RESEARCH SOFTWARE

o .
*% Braunschweig

el
v
o
b‘\rscﬁ

Object-orientation vs. complexity

Object-orientation (OO) is an approved paradigm to organize the complexity of software.

The methods of object-oriented analysis (OOA) and design (OOD) provide an engineering approach, which
leads from the specific requirements to its software implementation.

The general procedure is based on principles of modularization (decomposition), encapsulation,
abstraction and hierarchy.

Wy,
a% Technische

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 65

Sl N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Applications

C

i)

*g Domain Specific Languages

E Libraries / Cloud Services

©

S5 Frameworks

g Design Patterns - g

B Principles & Practices 52

X

Object Oriented Programming g g

Structured Programming

Assembly Language

Technische
% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 66 S

Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Managing complexity with Object Oriented Programming
In the 1980s Alan Kay introduced the term ,Object Oriented Programming®.
An OO Language should at least support the following three key principles:
- Encapsulation

- Inheritance
- Polymorphism

Wy,
a% Technische

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 67

i N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Object Oriented Programming - Encapsulation

Circle

+ center_x: float
+ center_y: float
+ radius: float

Msg: “radius = -100" SomeCaller

What might happen when the radius

is set to -1007 u/

1L
oV .f’%

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 69

8 %ﬁ Technische

o
5
*

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Your PC ran into a problem and needs to restart. We're just
collecting some error info, and then we'll restart for you.

If you'd like to know more, you can search online later for this error: ALWAYS_LOOK_ON_THE_BRIGHT_SIDE_OF_LIFE

Who's to blame?

a) The circle

b) The caller

c) Both

d) None of them

Join at

slido.com

#123 444

W1l
> %

Your PC ran into a problem and
collecting some error info, and estart fo

If you'd like to know more, you can search online later for ti)OK?ON,THE?BRIGHT,SIDEJ

%' %; Technische
%

35| 2
Q\ﬁr

7, '
sz(;ﬁ

Braunschweig

Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 71

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Keep in mind!

An object is responsible to guarantee it’s state is valid!

WILy

3|59 Technische
3% %E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 72
*

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Object Oriented Programming - Encapsulation

<

c¥

Caller 3
“scale(2.3)”
Circle
“X=1 Y
Caller 1 _
- center_x: float
- center_y: float
- radius: float
ez AQO0 _
e + translate(dx: float, dy: float): void
Caller 2 + scale(factor: float): void
oVl
s‘% ‘st Technische
3% %E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 73
%8745 Braunschweig

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Information Hiding

Public API

Details / Implementation

[Steve McConnell, Code Complete, Second Edition, Microsoft Press, 2004]

1L
o™ e,

;% %2 Technische
S %" Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 74
L

,%; & Braunschwei
i l—— N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Object Oriented Programming - Inheritance

rectangle

circle triangle

miniCAD App

o
square hexagon
W1l
2t|s% Technische
S %" Universitat Scientific software development is not a Jenga gamel! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 75

¥ Braunschweig 2 & S u r e S oft

SUSTAINABLE RESEARCH SOFTWARE

Move objects on the screen

That's what
I’d like to have

~ ol

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 76

S N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

What actually happens ...

Not bad, but

- e

Technische
Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 77

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

After you fixed it ...

- e

£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 78

3|72 Braunschweig), | S ures Oft

SUSTAINABLE RESEARCH SOFTWARE

u'?"c .
%2 Technische
" >
55

Object Oriented Programming - Inheritance

Classes can be specializations of other classes. That means classes can be in hierarchical order by inheriting properties
and behavior of higher ranked classes.

Lower ranked classes can specialize (override) or extend higher classes.
On code level Inheritance may be used to avoid

redundancy by allowing code reuse. <<abstract>>
Shape
center_x: float
Supports # center_y: float inheritance arrow
Don’t Repeat Yourself (DRY) _ 4 + translate(delta_x: float, delta_y: float)

e | = ,is a“- relation ship
prlnC|pIe provides common

[A. Hunt and D. Thomas, The Pragmatic Programmer, 1999] behaviour for all shapes A
to be translated

Inheritance enables Circle Rectangle Triangle
POIymOrph |Sm! - radius: float - s!de_ai float - side_length: float 7
= - side_b: float o V7 /
’ 7 / /
/ s’ ‘ :
T~
adds adds AN adds side length for any other
cadius sides equilateral triangle shape type
aandb

Technische
Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 79

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Object Oriented Programming - Inheritance

Classes can be specializations of other classes. That means classes can be in hierarchical order by inheriting properties
and behavior of higher ranked classes.

Lower ranked classes can specialize (override) or extend higher classes.
On code level Inheritance may be used to avoid
redundancy by allowing code reuse.

y inheritance arrow
Bird . .

, = ,is a“- relation ship
Supports gﬁi sjgig'ﬁ;r for __--O+fly() : void
don’t repeat yourself (DRY) @l birds fly inthe |
principle same way) /

[A. Hunt and D. Thomas, The Pragmatic Programmer, 1999

Inheritance enables
Polymorphism!

(4

/'y (

/

%

Nightingale |

ﬂ
N

I
“"

‘”;k‘

strich

e,

Duck \ Vo
ﬁwim() : void ‘&Zl-

, o

.
’ ,
’

—h

ly() : void + sing() : void

+ walk() : void

.
’

’
4

adds behaviour to swimlﬁ
adds behaviour to walk

and changes the fly
behaviour (can't fly)

adds behaviour to sing lﬁ

Technische

£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 80

o .
“ Braunschweig

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Favor composition over inheritance (FCol)

Technische

* Universitit
%5 Braunschweig

/\

Class B

Class A
a() : void
#b() : void < ® Classp
+¢() : void N
+d() : void

depends on methods:
candd

~
~
~
~
~
~

depends on methods:
a,b,cand d

[Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software, 1995]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 81

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Object Oriented Programming - Polymorphism

» Generally, the ability to have different individuals of a species.
(...also in Biology, Chemistry)

» In object-oriented programming, polymorphism refers to a programming language's ability of objects to react
differently to one and the same message depending on their class.
(Technically, this is achieved by redefining methods in derived classes - Inheritance)

* One may also speak of the autonomy or independence of objects.

WILgy
o %o

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 82

%ﬁ Technische

S N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Have you heard about polymorphism?

a) Poly ... what??

b) | have heard of it, but | don’t use it. —
c) luseit, butl can’t explain it. €y
d) |luse itall the time. It's part of my daily work.

e) I'm a polymorphism ninja -

f) other Q

—

Join at
slido.com

#123 444

Ve,
a% Technische

o .
b Braunschweig

Suresoft

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 83
S SUSTAINABLE RESEARCH SOFTWARE

Polymorphism - Ant Hill

Technische
Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 84 S

Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Polymorphism — All are ants

X X/ X/ .
‘c "‘ . L
‘l ‘v.u.". " v
" ¥

"

‘,L ‘oL
X/

!

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 85

SUSTAINABLE RESEARCH SOFTWARE

Polymorphism — Queen is managing the tribe (Core Unit)

\XL/ \&/

i)

"

‘OL
9 7

. ¥ ﬁ'
f:L . o’ 'Lch

o ¥ 2/
\ L/ \ XL/

f@ l"l il
,!,L o}

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 86

SUSTAINABLE RESEARCH SOFTWARE

Polymorphism - Worker Ant

9 VAR ¥, e ¥ e ¥

i

Li' b é'

‘cL X/
" 9 0

l"l

ﬁ % Technische

S %g Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 87

"va:f-‘i ',j Braunschweig S S u re S Oft
Nscv

SUSTAINABLE RESEARCH SOFTWARE

Polymorphism — Soldier Ant

9 VAR ¥, e ¥ e ¥

: ‘ ;' Q'i'g"'g'
os

§ §

\d '/

U o

s

T lere
Nscv

ﬁ %2 Technische
S %E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 88
Braunschweig S

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Polymorphism — Nurse Ant

~

X Y &Y Y &Y oY =X W7_aml Y

C"L ‘oL ‘cL 10L‘0 ‘ac ‘cL ‘cL Y o c‘c

‘l.‘v.".". “'. . ' p 7, " "
4

‘" .'u Y

e ¥ e ¥

‘ "L ‘oL "L
.‘c!u.

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 89 S

Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Polymorphism — Queen doesn‘t know specific ants

o, .
a% Technische
% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 90 S

o .
g Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Polymorphism — Queen only knows ants

1L
o™ .f'%

¢ Technische
%E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 91 S

o .
K
o deeg® Braunschweig
scV

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Queen knows that ants understand the message: ,,DO YOUR JOB!*

Do your job!

1

%ﬁ Technische

£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 92

5 srunschveg N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Ly,
b
v

o
'
by

W
o
£
~
<
o
o5
*
o,
¥s

C

All ants react differently to the message according to their subtype

“Do your job!”
=> protects
tribe

“Do your job!”
- feeds
children

“Do your job!”
=> builds hill

J

Wy,
a% Technische

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 93

i N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Polymorphism — Ready for Evolution - SkyDriver Ant

Hy .
a% Technische
% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 94 S

o .
b Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Polymorphism — Ready for Evolution - Skydiver Ant

_ “Do your job!”
Do your job! - go sky
diving =

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 95

8 %ﬁ Technische

o
5
*

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

¢ Technische
2 Universitit

Polymorphism — Queen Ant is not affected by change

QueenAnt

0.~
~
—

«interface»
Ant

—

~

+ doJob() :void (
/\

~
~
~

Must not change!!

[

SoldierAnt

+ dodJob() : void

protects the tribelﬁ

abstract method non-volatil
(no content)
1= W W volatil
NurseAnt WorkerAnt ...Ant
¢ + dodob() : void Q + dodJob() : void OR + dodJob() : void

feeds the children B‘

builds the ant hill

¥ Braunschweig

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 96

S Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Object Oriented Programming - Polymorphism

1L
o™ .?0(

A% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 97

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

%ﬁ Technische

Object Oriented Programming - Polymorphism

v

Technische
% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 98 S

Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Object Oriented Programming - Polymorphism

v

Technische
% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 99 S

Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Object Oriented Programming - Polymorphism

)= 1
g

AN

Technische
Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 100

* Universitit
Braunschweig

S

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Object Oriented Programming - Polymorphism

)= 1
=

AN

v

l"}""‘- r
I N

|y =]
-
30w Energy Saving

Braunschweig

Technische
% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 101 S

SUSTAINABLE RESEARCH SOFTWARE

Object Oriented Programming - Polymorphism

~
T

XN \ ‘ (

»% I: -

' =) :

= 2 —

E 3 ——— =

-g ::? : i 3 More to come!

30w Energy Saving LED

Technische
Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 102

* Universitit
Braunschweig

S\ Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Object Oriented Programming - Polymorphism

Must not change!!

v

’r“-"v
W [
L —

Kk g' = 3, u

3 = = s = More to come!
= £ S

30W Energy Saving LED

Technische
% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 103 S

Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Object Oriented Programming - Polymorphism

Must not change!!

1 * «interface»
+ lightUp() : void=0 Qx_
abstract method _
(no Content) non'VOIatll
A .
(W W volatil
EnergySavingBulb LedBulb ...Bulb
+ lightUp() : void + lightUp() : void

ClassicalBulb

+ lightUp() : void

+ lightUp() : void

\|

?

[|
More to come!

N Suresoft

Wil

SUSTAINABLE RESEARCH SOFTWARE

iy
3¢ |a% Technische

=)
&
<
]

%3 Universitit
S Braunschweig

57

7,
Onsc

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 104

Applications

C

o

'§ Domain Specific Languages

§ Libraries / Cloud Services

©

S5 Frameworks

g Design Patterns =&

- Principles & Practices 52

X

Object Oriented Programming 2 g

Structured Programming

Assembly Language

Technische
% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 105

m 2 Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Principles of object-oriented Design

Software Development is not a Jenga game

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 106 E .

¥ Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Do you know the SOLID Principles?

a) No, have never heard of them

) | have heard of them, but | don’t apply them
) | follow some of them €y
) | can explain every single one of them

) From time to time they even visit me in my dreams ol

® o O T

Join at } " |

slido.com

#123 444

o, .
a% Technische
% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 107 S

o .
ol Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Principles of Object-Oriented Design

S.0O.L.1.D. Principles

» Single Responsibility Principle (SRP)
» Open-Closed Principle (OCP)

» Liskov Substitution Principle (LSP)

» Interface Segregation Principle (ISP)
* Dependency Inversion Principle (DIP)

...Guidelines (no laws) for object-oriented design!

1L

o [Robert C. Martin, Agile Principles, Patterns, and Practices, 2003]

%,
st Technische

%E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 108 ’

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Bl
o
7%
~
<
o
o5
*
o,
¥s.

C

Single Responsibility Principle (SRP)
— Robert C. Martin [90]

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should

W1Lyy
PONERS

o .
ol Braunschweig
S

s
cé“

Suresoft

5% % Technische
;‘.ﬁ %E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 109
'S SUSTAINABLE RESEARCH SOFTWARE

Single Responsibility Principle (SRP)
— Robert C. Martin [90]

(¥

: N £

¥, €.<
V.o W0
,bi* .

SANE A N
Single Responsibility Principle — z: {f&‘ E }
“Each class should only have one reason to change.” — Uncle Bob *‘u by ¢
é**

everything in a c@aM i

Each Responsibility = Reason to change.
related to. a single purpose

Changes also affect depending classes

Changes have to be made to depending classes

Possible failing behavior of depending classes (to be tested)

In C++ depending classes have to be recompiled unnecessarily after changes.

Classes that do more than one thing are difficult to reuse

[David L. Parnas, On the Criteria To Be Used in Decomposing Systems into Modules, 1972]
[Tom DeMarco, Structured Analysis and System Specification, 1979]

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 110

Suneeheie N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Single Responsibility Principle (SRP)
— Robert C. Martin [90]

Example — Violation of SRP:

Rectangle
Geometry | = _J| . Rectangle(width, height) |« | Graphical
Application + area() Y Application
+ perimeter() /gf-ff\-s‘ﬂb
+ draw() OV

GUI <

1Ly
KON

S %ﬁ Technische

<

o

55 %% Braunschweig
b“fscﬁd

Suresoft

W% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 111 -
' SUSTAINABLE RESEARCH SOFTWARE

Single Responsibility Principle (SRP)
— Robert C. Martin [90]

Solution:

Geometry
Application

Graphical
Application

GUI

(f/ ﬁf‘;fﬁ‘«‘ Rectangle Graphical

1 Q \f.*

G ' ' B Rectangle N
i + Rectangle(width, height) g P ;f; \
i + area() + draw() ~ S § ‘0}
| + perimeter() oe~

1Ly
KON

uﬁ % Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 112
*A|%45 Braunschweig
N Sureso

SUSTAINABLE RESEARCH SOFTWARE

S %ﬁ Technische

Single Responsibility Principle (SRP)
— Robert C. Martin [90]

Solution:

Geometry
Application

Graphical
Application

GUI

L
(f/ *.5>” Rectangle Graphical

> Rectangle A
+ Rectangle(width, height) q o :{; \
+ area() +draw() ¢ *3% «\h‘;?j

+ perimeter() o

O«Q

. (3 UmverSItat Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 113

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

§$ Technische

Single Responsibility Principle (SRP)
— Robert C. Martin [90]

Solution:

Geometry
Application

Graphical
Application

GUI

L AR O .
¢ ﬁf‘;w Rectangle Graphical

5 e Rectangle PN
+ Rectangle(width, height) 4 ~ ,’,’f; \
+ area() + draw() <A)

) ‘;ry’v

i | + perimeter()

L
oV ke,

3 % Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 114
‘,ﬁ %% Braunschweig
N Sureso

SUSTAINABLE RESEARCH SOFTWARE

%ﬁ Technische

Open-Closed Principle (OCP)
- Bertrand Meyer, 1988

e | a B LG X
: ,.--» .

OPEN CLOSED PRINCIPLE

Open Chest Surgery Is Not Needed When Putting On A Coat

[Bertrand Meyer, Object-Oriented Software Construction, 1988]

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 115

¥ praunschweie N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Open-Closed Principle (OCP) Sk
- Bertrand Meyer, 1988 ormve consTmucrion

Open for Extension, closed for modifications.
A module should be open for extensions, but closed for modifications.

BerTRAND MEYER

Principle ensures extensions of components without changing the source code of the specific component.

Tool: Polymorphism
Encapsulation of volatile and non-volatile Code (in Base Classes)

Abstract Core of the application remains untouched.

Technische

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 116

¢ Braunschweig S Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Open-Closed Principle — Step 1

WorkerAnt QueenAnt

+ collect_food(): void + morning_routine(): void

ﬁ’ [a lé
§ 4
w2
.

Fine, as long nothing changes. f 9&
/ &

% <8 £
el

WA .
t Technische

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 117

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Open-Closed Principle — Step 1

WorkerAnt QueenAnt

+ collect_food(): void + morning_routine(): void

class WorkerAnt(): class QueenAnt():
def collect_food(self) -> None: def __init__(self, ants) -> None:
print("I'm collecting") self._ants = ants

worker = WorkerAnt() def morning_routine(self) -> None:
for ant in self._ants:

queen = QueenAnt([worker])
ant.collect_food()

queen.morning_routine()

Technische
Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 118

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Change: Open-Closed Principle — Step 2 — new Ant

WorkerAnt QueenAnt

+ collect_food(): void + morning_routine(): void

SoldierAnt

+ protect(): void

volatile | non volatile

1
L¢

%,
st Technische

%E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 119 ’

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Bl
o
7%
~
<
o
o5
*
o,
¥s

C

Open-Closed Principle — Step 2

class WorkerAnt():
def collect_food(self) -> None:
print("I'm collecting!")

class QueenAnt():
def __init__(self, ants) -> None:

self._ants = ants
class SoldierAnt():

def protect(self) -> None:
print("I'm protecting!")

morning_routine(self) -> None:
for ant in self._ants:
if isinstance(ant, WorkerAnt):
ant.collect_food()
elif isinstance(ant, SoldierAnt):
ant.protect()

worker = WorkerAnt()

soldier = SoldierAnt()

queen = QueenAnt([worker, soldier])
queen.morning_routine()

volatile | non volatile

1L
oV ke,

A% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 120

%ﬁ Technische

4

% Braunschweig . g S u r e S oft

SUSTAINABLE RESEARCH SOFTWARE

Open-Closed Principle — Solution: Interface (Protocol)

QueenAnt

must not change!

\4

<<interface>>
Ant

+ do_your_job(): void =0

abstract method

T

(no implementation)
non-volatil

volatil

WorkerAnt

+ do_your_job(): void

Ly
I

SoldierAnt

+ do_your_job(): void

+ do_your_job(): void

A% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 121

§$ Technische

R
57
c¥

ot Braunschweig

S Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Open-Closed Principle — Solution: Interface (Protocol) :E%C’&%\

class WorkerAnt(Ant):
def do_your_job(self) -> None:
print("I'm collecting!")

class SoldierAnt(Ant):
def do_your_job(self) -> None:
print("I'm protecting!")

worker = WorkerAnt()

soldier = SoldierAnt()

queen = QueenAnt([worker, soldier])
queen.morning_routine()

volatile

Adding a Protocol (Interface): b Qir
Being specific about what messages '& y
ants needs to understand. |

from typing import Protocol

Class Ant(Protocol):
def do_your_job(self) -> None:
raise NotImplementedError

class QueenAnt():
def __init__(self, ants: list[Ant]) -> None:
self._ants = ants

def morning_routine(self) -> None:
for ant in self._ants:
ant.do_your_job()

non volatile

Technische

Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 122

Braunschweig

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

1. With Protocol and Inheritance

class WorkerAnt(Ant): from typing import Protocol

def do_your_job(self) -> None:

print("I'm collecting!™) class Ant(Protocol):
def do_your_job(self) -> None:

raise NotImplementedError

class SoldierAni (Ant)
def protect(self) -> None:

class QueenAnt():
def __init__(self, ants: list[Ant]) -> None:
self._ants = ants

print("I'm protecting!")

worker = WorkerAnt()

soldier = SoldierAnt()

queen = QuzenAnt([worker, soldier])
queen.merning_routine()

def morning_routine(self) -> None:
for ant in self._ants:
ant.do_your_job()

MyPy error!
Cannot instantiate abstract class "SoldierAnt"

with abstract attribute "do_your job"
— volatile i non volatile
Technische :

Universitit Scientific software development is not a Jenga game! - Software Engineeriné to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 123

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

2. With Protocol — Without Inheritance

class WorkerAnt(Ant):
def do_your_job(self) -> None:
print("I'm collecting!")

from typing import Protocol

class Ant(Protocol):

def do_your_job(self) -> None:
class SoldierAnt(): raise NotImplementedError
def protect(self) -> None:

print("I'm protecting!")

class QueenAnt():
def __init__(self, ants: list[Ant]) -> None:

self._ants = ants
worker = WorkerAnt()

soldier = SoldierAnt()
queen = QueenAnt([worker, soldier])
queen.morning_routine()

def morning_routine(self) -> None:
for ant in self._ants:
ant.do_your_job()

MyPy error!
List item 1 has incompatible type

"SoldierAnt"; expected "Ant" o _
volatile i non volatile
Technische :

Universitit Scientific software development is not a Jenga game! - Software Engineeriné to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 124

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

3. Without Protocol

class WorkerAnt():
def do_your_job(self) -> None:
print("I'm collecting!")

class QueenAnt():
def __init__(self, ants) -> None:

class SoldierAnt(): self. ants = ants

def protect(self) -> None:
print("I'm protecting!")

def morning_routine(self) -> None:
for ant in self._ants:
ant.do_your_job()

worker = WorkerAnt()

soldier = SoldierAnt()

queen = QueenAnt([worker, soldier])
queen.morning_routine()

If not: runtime error!
AttributeError: 'SoldierAnt' object has
no attribute ‘do_your job()’

volatile | non volatile
Technische :

£ Universitit Scientific software development is not a Jenga game! - Software Engineeriné to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 125

e N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Protocol

Protocol types allows developers to define and enforce a set of methods that classes must implement in
order to satisfy a particular interface (like a contract).

Advantages using Protocols:

* Reusable Interfaces
« Static Duck Typing (“Type Checking”)
« Compatibility

Technische
Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 126

Braunschweig

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Liskov Substitution Principle (LSP)
- Barbara Liskov, 1987

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

1L [Barbara Liskov, Data Abstraction and Hierarchy, 1987]

o .
ol Braunschweig
S

s
cé“

Suresoft

5% % Technische
;‘.ﬁ %E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 127
'S SUSTAINABLE RESEARCH SOFTWARE

Liskov Substitution Principle (LSP)
- Barbara Liskov, 1987

Liskov Substitution Principle
Type T’ is a Subtype of T, if objects of Type T can be exchanged by
objects of Type T’ without any limitations.

Tight relationship to Inheritance and virtual/abstract methods

Simple Example:
A driver of a BMW shouldn‘t be surprised, if he tries to drive a VW.
(Since both are cars and should work in kind of the same way, when trying to interact with similar functions.)

1
10

%,
st Technische

%E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 128 -

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Bl
o
%
~
<
o
o5
*
o,
¥s

C

Liskov Substitution Principle (LSP)
- Barbara Liskov, 1987

Example — Violation of LSP

e Situation:

R Class Rectangle is existing.
ectangle ’
Class Square is needed.

* Inheritance seems right:
A Square IS a Rectangle

‘ Square \

Technische

Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 129

Braunschweig

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

What do you think — is a square a rectangle?

Join at

slido.com

#123 444

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 130 S

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Liskov Substitution Principle (LSP)
- Barbara Liskov, 1987

class Rectangle:

def

def

def

def

Technische

Universitat

__1Init (self, height=1.0, width=1.0):

self. height: float = height
self. width: float = width

set height(self, height: float):
self. height = height

set width(self, width: float):
self. width = width

area(self) -> float:
return self. height * self. width

First doubts

properties of Rectangle: 2 (height & width)
required properties of Square: 1

ok, memory is cheap...

Rectangle

‘ Square \

Braunschweig

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 131

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Liskov Substitution Principle (LSP)
- Barbara Liskov, 1987

class Square (Rectangle) :
def init (self, width=1.0):
self. height = width
self. width = width

def set height(self, height: float):
self. height = height
self. width = height

def set width(self, width: float):
self. width = width
self. height = width

Further doubts

properties: height & width

names aren't suitable

height and width have to be consistent

Rectangle

‘ Square \

Technische

Universitat
Braunschweig

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 132

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Liskov Substitution Principle (LSP)
- Barbara Liskov, 1987

def foo(r: Rectangle): Unpreventable Error:
r.set width (5) legitimate assumption for Rectangle:
r.set height (4) If height is changed, the width stays untouched!

f r. 1= 20: i i
if r.area() But wrong polymorphic behavior of square!
print ("Bad area!")

Technische
Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 133

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Liskov Substitution Principle (LSP)
- Barbara Liskov, 1987

Violation of the Open Closed Principle (OCP)
Using the Square class introduces a dependency to

the subtype of Rectangle!
def foo(r: Rectangle):

r.set width (5) /'

. ™
r.set height (4) {J¢;§\\
1if r.area() !'= 20 and not isinstance(r, Square):‘\¢‘

print ("Bad area!")

Conclusion:
Although a Square is a Rectangle in a geometric sense,
this isn‘t true in the sense of software (polymorphism)!

Technische
Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 134

Braunschweig

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependency Inversion Principle (DIP)

DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?

¢ .
Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 135 E "

R .
“ Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependency Inversion Principle (DIP)

Dependency Inversion Principle

a) High-level modules should not depend on low-level modules. Both should depend on abstractions.
b) Abstractions should not depend upon details. Details should depend upon abstractions.

But: If a concrete class is not going to change very often, and no other similar derivatives are going to be
created, it does very little harm to depend on it.

1
10

%,
st Technische

%E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 136 -

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Bl
o
%
~
<
o
o5
*
o,
¥s

C

Dependency Inversion Principle (DIP)

Example — Violation of DIP

Lamp

‘ Button —> + lighton()

+ lightOff()

Do you see a problem here?

Technische
Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 137

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependency Inversion Principle (DIP)

Example — Violation of DIP

B Lamp
1 1
1 1
i i + lightOn()
; : + lightOff()
1 1 S —
i ‘ Button %: i
| : 222
i |
I non volatile ! + turnOn()
+ turnOff()
S ————— |
Do you see a problem here?
ok,
st Technische
%E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 138

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependency Inversion Principle (DIP)

Example — Violation of DIP

e Lamp
1 1
1 1
i i + lightOn()
; | + lightOff()
‘ Button ’<
1
i i v
1 1
i non volatile i + tvOn()
+ tvOff()
Do you see a problem here?
Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 139

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependency Inversion Principle (DIP)

Example — Violation of DIP

e, Lamp
i i + lightOn()
i | + lightOff()
| J g : TV
i_.n_o_rlY_()Et_"_e________________________i + tvOn()

+ tvOff()

Button is directly dependent on Lamp.

Changes in Lamp have a direct impact on Button.
Button can only control objects of Lamp.

Button can't be reused.

2
I

t Technische

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 140

i s N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependency Inversion Principle (DIP)

Technische

Universitat
Braunschweig

Sol

<<interface>>

Button Server A\

+ turnOn()

= NI
+ turnOff() = 0 e ()4 2

+ turnOn()
+ turnOff()

Lamp

+ turnOn()
+ turnOff()

Button is now depending on an interface called ButtonServer.
Changes in Lamp won‘t influence the Button.

Button can be reused.

Button can control any object which implements the interface of ButtonServer.

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 141

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependencies make changes difficult

< >
source code Mai flow of control
dependency----co] amn e ‘

R :-
“‘ HL1 HL2 }“

'
. .
. .
.
.
.
. ’ . ') '
. '

g‘l’ ‘1’@ g‘l’ ‘l’g L ‘1’4 o \l'g
LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 142 ‘
i Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependencies propagate change

< >
source code Mai flow of control
dependency----co] amn e ‘

R :-
“‘ HL1 HL2 }“

'
. .
. .
.
.
.
. ’ . ') '
. '

N /2SN Vel AV /2SN Ve
LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8
volatile
Technische
Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 143

¢ Braunschweig S 'Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependencies propagate change

< >
source code Mai flow of control
dependency----co] amn e ‘

R :-
“‘ HL1 HL2 }“

'
. .
. .
.
.
.
. ’ . ') '
. '

N /2SN Vel AV /2SN Ve
LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8
volatile
Technische
Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 144

¢ Braunschweig S 'Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependencies propagate change

< >
source code Mai flow of control
dependency----co] amn e ‘

R :-
“‘ HL1 HL2 }“

'
. .
. .
.
.
.
. ’ . ') '
. '

N /2SN Vel AV /2SN Ve
LL1 LL2 LL3 LL4 LL5 LL6 LL7 LL8
volatile
Technische
Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 145

¢ Braunschweig S 'Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependencies propagate change

-~ i >
source code . flow of control
dependency------ot] Main oo
! vV :
N HL HL2 }“
v v SR

< S
oMb M2 | Y omw 1 M |

ﬁu LL2 ﬁL3 LL4L‘ ﬁLS LL6 ﬁL? LL8 \

volatile
ML4 is directly dependent on L8
Changes in LL8 have a direct impact on ML4
ML4 can only work with objects of 1.1.8
ML4 can‘t be reused without L.1.8
Technische
Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 146

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Inverted direction of dependency

<~ >
source code] flow of control
dependency _.....---coctt Main oo -
! V :
N HL IO T R
Pihd (Q\(\

(s |
V : \ Qef_f N\
K \ (’,’\a Lo %
<<interfaoe>v‘>\.~ N -'(:JE‘,,‘\)
G

N N -
Joomuo o 4 om0 ML L 1 ML > piaserver -G

&

LL1 LL2 LL3 LL4 LL5 LL6 LL7

volatile N

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 147
S Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Dependency Inversion Principle (DIP)

< e >
source code flow of control

dependency----ccottT Main oo N

Solution

l’ ‘l ’\ \
v v L v 2SN

<<interface>\. "j-m.,)

‘§ & ~ ", €
". ML1 .. L ML2 .. ‘,‘ ML3 .. 4 . = ML4Server | . x,'—/,

A 4 . . .
. . A] .
[} N . .
. . . [}
. . . .
d -~ L4 ~
L “A) L AN

LL1 LL2 | ‘ LL3 LL4 | ‘ LL5 LL6

. (’\ ‘*? 7 ~
volatile \o”

ML4 is now depending on an interface called ML4Server.

Changes in LL8 won't influence the ML4.

ML4 can be reused.

ML4 can control any object which implements the interface of ML4Server.

Technische
Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 148

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Interface Segregation Principle (ISP)

INTERFACE SEGREGATION PRINCIPLE

You Want Me To Plug This In, Where?

¢ .
Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 149 !

¥ Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Interface Segregation Principle (ISP)

Interface Segregation Principle

Covers the drawbacks of broadly defined interfaces
Classes with non-coherent interfaces

Problem:

Dependency of the calling object to methods, which it doesn‘t need to know because it isn't using them.
Changes to an interface are concerning every object knowing that interface.

Solution:
(Coherent) Segregation of methods to multiple interfaces for the specific calling objects.

Dynamic languages aren‘t affected.

1
10

%,
st Technische

%E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 150 3

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Bl
o
%
~
<
o
o5
*
o,
¥s.

C

Interface Segregation Principle (ISP) — Example 1

Client A Service

<< Client A methods>>
. + ...

Client B — << Client B methods>>

+ ...

<< Client C methods>>

+ ...

Client C

o™ R,

; %ﬁ Technische

3% &% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 151
*A|%45 Braunschweig
CN

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Interface Segregation Principle (ISP) — Example 1

<<interface>>

: Service A
‘ Client A >
<< Client A methods>>

+ ...

]

Service

<<interface>> << Client A methods>>

_ Service B +
‘ Client B > _ ~N << Client B methods>>
<< Client B methods>> +
+ ... << Client C methods>>
+ ...

<<interface>>

: Service C N\
‘ Client C
<< Client C methods>> 7 4~
P X\

non volatile

Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 152 E

¥ Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Books

. HALL MALL * HALL T
Robert C. Martin Series Robert C. Martin Series Robert C. Martin Series Robert C. Martin Serie: Robert C. Martin Series

Agile
Principles, Patterns,
and Practices

.
» In " #
. A .
. - - ‘
h
% 3
.

Robert C. Martin Wirh Conl from Jerry Fitzpatrick, Tim Ottinger,

RG : Martin
obert C: Mart Jeff Langr, Eric C Damon Poole, and Sandro Mancuso

5 ' .
and Micah Martin o me
- 2 s P Robert C. Martin
0 S e T 4 _
-
A 1 g 0
yvy AN S R - D1 1 N

Clean Code The Clean Coder Cléan Architectirs Clean Agile

A Craftsman’s Guide to
A Handbook of Agile Software Craftsmanship A Code of Conduct for Professional Programmers . Software Structure and Design Back to Basics

OBJECT—ORIENTED ‘ ; \/ Q
ANALYSIS AND DESIGN ' Pl \
WITH APPLICATIONS The i

Tuirp EpiTioN Pra mattlc

GRADY BOOCH, ROBERT A MARSIMOHUK,

PRACTICAL
OBJECT-ORIENTED
DESIGN IN RUBY

SECOND EDITION

rogrammer

with contributions by your journcy tojmastery

ompas rrcs ey

AN AGILE PRIMER / s | [‘
| / H JALOBS DR i
i fj]‘u"{{ Davip THOMAS
SANDI METZ RUNBALGH ‘ i H
by e e SECOND EDITION ANDREW HUNT

1idy,
% Technische
£ Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, S6ren Peters | Slide 156 E

o .
s 4”* Braunschweig
sc¥

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

References

McCall,J.: Factors in Software Quality: Preliminary Handbook on Software Quality for an
Acquisiton Manager, Bd. 1-3. General Electric, November 1977.

Meyer, B.: Object-Oriented Software Construction, Prentice Hall PTR, 1988.
McConnell, S.: Code Complete, Second Edition. Microsoft Press, Redmond, WA, USA, 2004.
Dijkstra,E.W.:The humble programmer. Commun. ACM, 15(10):859-866, 1972.

Booch, G., Maksimchuk, R.A., Engle, M.W., Young, B.J., Connallen, J. und Houston, K.A.:
Object-oriented analysis and design with applications. Addison Wesley, 3. Aufl., 2007.

Yourdon, E. und Constantine, L. L.: Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design. Yourdon Press computing series. Prentice-Hall, Inc,
Upper Saddle River, NJ, USA, 1979.

Ingalls,D.H.H.:Design Principles Behind Smalltalk. Byte,6(8):286—-298,1981.

Brooks, Jr., F.P.: No Silver Bullet - Essence and Accidents of Software Engineering. Computer,
20(4):10-19, 1987.

Jack W. Reeves:, What is software design?. C++ Journal, 1992,
http://www.developerdotstar.com/mag/articles/reeves design.html

L
oV ke,

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 157

%ﬁ Technische

<

o

o3
*

o .
8
Topilerd Braunschweig

v
c¥

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

http://www.developerdotstar.com/mag/articles/reeves_design.html

Get in touch!

website 'online https://suresoft.dev

chat 19 user https://matrix.to/#/#suresoft-general:matrix.org

Zenodo Community https://zenodo.org/communities/suresoft/

Mailinglist https://lists.tu-braunschweig.de/sympa/info/musen-rse

 website Jonline
chat S user

 Zenodo_ Community_
Mailinglist.

v

https://qgit.rz.tu-bs.de/suresoft

1L
o e,

%2 Technische
S " %" Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 158

¥ Braunschweig 2 & S u r e S oft

SUSTAINABLE RESEARCH SOFTWARE

https://suresoft.dev/
https://matrix.to/
https://zenodo.org/communities/suresoft/
https://lists.tu-braunschweig.de/sympa/info/musen-rse
https://git.rz.tu-bs.de/suresoft

Acknowledgment

The SURESOFT project is funded by the German Research Foundation (DFG) as part of the “e-Research Technologies”
funding programme under grants: EG 404/1-1, JA 2329/7-1, KA 3171/12-1, KU 2333/17-1, LA 1403/12-1, LI 2970/1-1 and
STU 530/6-1.

% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 159

% Braunschweig P, ' S u r e s Oft

SUSTAINABLE RESEARCH SOFTWARE

oVWilay,
S %ﬁ Technische
<
o

—_—
7

| —

Technische
Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 160 S

Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Ly,
vl

%2 Technische
%E Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 161

7% Braunschweig 2 g S ur e S Oft

SUSTAINABLE RESEARCH SOFTWARE

&,

a% Technische
&% Universitit
Braunschweig

R
%

®
L

o

~
o
szc e

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 162

N Suresoft

SUSTAINABLE RESEARCH SOFTWARE

The SURESOFT project is funded by the German Research Foundation (DFG) as part of the “e-
Research Technologies” funding programme under grants: EG 404/1-1, JA 2329/7-1, KA 3171/12-1, KU
2333/17-1, LA 1403/12-1, LI 2970/1-1 and STU 530/6-1.

Hy .
st Technische
% Universitit Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Séren Peters | Slide 163 S

o .
I Braunschweig

Suresoft

SUSTAINABLE RESEARCH SOFTWARE

