
Platzhalter für eigenes Bild:
§ Bild hinter das TU-Logo einsetzen
§ Größe und Position des Bildes nicht verändern
§ Hintergrund des Bildes möglichst nicht weiß

Scientific software development is not a Jenga game!
Software Engineering to the rescue

HeFDI Code School – Sustainable Research Software

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 2

Who are we?

Dr. Jan Linxweiler
j.linxweiler@tu-braunschweig.de

Sören Peters
soe.peters@tu-braunschweig.de

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 3

Agenda

• Part 1

Requirements and characteristics of maintainable and sustainable research software

• Part 2

Software Development Principles and Practices (SOLID)

• Part 3

Design Patterns

• Part 4

Clean Code and Refactoring

• (Part 5)

(Introduction to Test-Driven Development (TDD))

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 4

How to follow along?

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 5

What is your educational background?

a) (Human) Medicine
b) Physics
c) Electrical Engineering
d) Computer Science
e) Biology
f) other

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 6

Which programming language do you prefer?

a) C++
b) Java
c) Python
d) Matlab
e) R
f) other

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 7

How much experience do you have in OOP - Object-Oriented Programming?

a) I have zero experience
b) I have just a little experience
c) I feel comfortable in programming
d) I’m an expert
e) I would rather not say
f) other

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 8

How familiar are you with UML class diagrams?

a) What the heck are you talking about?
b) It would be nice to refresh my knowledge a bit
c) I feel comfortable in reading UML
d) I’m an expert
e) I would rather not say
f) other

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 9

Who uses the code that you write?

a) Only you
b) Your direct colleagues
c) Other researching groups you collaborate with
d) The whole scientific community in your field
e) Even more
f) other

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 10

Software provides the ultimate flexibility …

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 11

Relationships - Dependencies - Coupling

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 12

One of the first scientific software developers

https://bit.ly/3kYfXWR

https://bit.ly/3kYfXWR

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 13

One of the first scientific software developers

- 1947

“One of our difficulties will be the maintenance of an appropriate
discipline, so that we do not lose track of what we are doing.”

[Lecture to London Mathematical Society, February 20, 1947]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 14

One of the first scientific software developers

- 1947

“One of our difficulties will be the maintenance of an appropriate
discipline, so that we do not lose track of what we are doing.”

[Lecture to London Mathematical Society, February 20, 1947]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 15

German Society for Research Software

• recognition for software development as a scientific achievement

• anchoring in the scientific reputation system

• availability and usability of scientific software

• competence in software engineering

• quality standards for the development and review of scientific software

• reproducibility, e.g. of simulation results

• regional chapters https://de-rse.org/chapter/

https://de-rse.org/

https://de-rse.org/chapter/
https://de-rse.org/

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 16

New career path in science

https://de-rse.org/

https://de-rse.org/

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 17

IT WORKED
yesterday

[photo: pixabay.com]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 18

Publications relying on software

https://bit.ly/37XEJ2u

https://bit.ly/37XEJ2u

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 19

Use of research software

• 92% of academics use research software

• 69% say that their research would not be practical without it

• 56% develop their own software

https://bit.ly/2BAvzwQ

https://bit.ly/2zZPhSa

https://bit.ly/2BAvzwQ
https://bit.ly/2zZPhSa

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 20

Growing demands on scientific software

• Increasing Complexity (e.g. multi physics, multiple groups)

• Longer Life Span (base your work on the work of others)

• Reproducible and Verifiable Results

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 21

Domain Specific Languages

Assembly Language

le
ve

l o
f a

bs
tra

ct
io

n

Structured Programming
Object Oriented Programming

Principles & Practices
Design Patterns

Frameworks
 Libraries / Cloud Services

fle
xib

ilit
y,

co
m

pl
ex

ity

Applications

“The function of good software is to make the complex appear to be simple. ”

Grady Booch

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 22

“ The art of programming is the art of organizing complexity. ”
Edsger W. Dijkstra

[Frederick P. Brooks, No Silver Bullet: Essence and Accidents of Software Engineering, 1987]
[Notes On Structured Programming, Edsger W. Dijkstra, 1970]

essential complexity
&

accidental complexity

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 23

SURESOFT Approach for Sustainable Software

Infrastructure & Methods

CI &
Automated Testing Virtualization

Archiving &
Publication

Issue Reporting

Version Control

Installation &
Deployment

Education

Software Engineering
Principles

Documentation

Testing

Methods Infrastructure, Tools & Process

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 24

Growth in technology vs. software development paradigms

1958

LISP1

1966

OOP2

1968

Structured
Programming3

1 [John McCarthy, Recursive Functions of Symbolic Expressions and Their Computation by Machine, 1960]
2 [Kristen Nygaard, Ole-Johan Dahl, The development of the SIMULA languages, 1978]
3 [Edsger W. Dijkstra, Go To Statement Considered Harmful, 1968]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 26

“Software systems grow faster in size and complexity than methods to
handle complexity are invented.”

[Niklaus Wirth, "A Plea for Lean Software”, 1995]

In accordance to Wirth’s law one can argue:

We need to make the best possible use of the software development
techniques available to cope with the growth in complexity.

Take Home Messages

“The gap between the best software engineering practice and the average
practice is very wide — perhaps wider than in any other engineering
discipline. […] The difference between the the great and the average
approach an order of magnitude.”

[Frederick P. Brooks, No Silver Bullet: Essence and Accidents of Software Engineering, 1987]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 27

Productivity Crisis

• floating point performance is constantly rising
• time-to-solution is inceasing
• scientists spend 50% of the time finding bugs

[P. Prabhu, A Survey of the Practice of Computational Science, 2011]

cu
m

ul
at

iv
e

fu
nc

tio
na

lit
y

good desig
n

no design

design payoff line

Design Stamina Hypothesis - https://bit.ly/2A64CAR

time

down here it might be worth
trading design for earlier results …

https://bit.ly/2A64CAR

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 28

Productivity Crisis

“ The only way to go fast is to go well.”
Robert C. Martin

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 29

Credibility Crisis

Questionable reliability, accuracy, reproducibility and verifiability of the results …

https://go.nature.com/2DgtDKR

https://go.nature.com/2DgtDKR

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 30

Birth of Software Engineering discipline in 1968

1968
NATO conference

in Garmisch

Software
Engineering

2023 ?

Computational
Science

[Naur, Software Engineering: Report of a Conference Sponsored by the NATO Science Committee, Garmisch, Germany, 1968]

Failures in mission-critical military systems might
cost lives and substantial amounts of money.

Errors in scientific data processing applications
might be a “hassle”, but they are all in all tolerable.

growing social responsibility:
climate change, COVID-19

growing social responsibility:
autonomous driving

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 31

Start caring about your code

“Clean code always looks like
it was written by someone who cares.”

Michael Feathers

[Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, 2008]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 32

Software Entropy - Broken Window Effect

Broken window effect: https://bit.ly/2BddXYh

[A. Hunt, The Pragmatic Programmer: From Journeyman to Master, 1999]

https://bit.ly/2BddXYh

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 33

The Boy Scout Rule

“Leave the campground cleaner than you found it.”

[Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship, 2008]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 34

Today it’s all about concepts…

It needs more than knowing a language to be a successful author!

J.R.R. Tolkien (1892 – 1973)

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 35

External and Internal Software Quality

Two Categories of Quality

External Quality Factors

• aim to the needs of a user

Internal Quality Factors

• aim to the needs of the developers

Implicit dependencies of several quality factors prevent the maximization of all factors.

Engineering task: Optimal balancing of quality goals.

[C.A.R. Hoare, The Quality of Software, in Software, Practice and Experience, 1972]

[Barry W. Boehm, J.R. Brown, G. McLeod, Myron Lipow and M. Merrit: Characteristics of Software Quality, 1978]

[James McCall, Factors in Software Quality, Technical Report, General Electric, 1977]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 36

External Quality Factors - J. McCall, 1977

• Correctness - The degree to which a system is free from faults in its specification, design, and
implementation.

• Usability - The ease with which users can learn and use a system.
• Efficiency - Minimal use of system resources, including memory and execution time.
• Reliability - The ability of a system to perform its required functions under stated conditions whenever

required—having a long mean time between failures.
• Integrity - The degree to which a system prevents unauthorized or improper access to its programs and its

data.
• Adaptability - The extent to which a system can be used, without modification, in applications or

environments other than those for which it was originally designed.
• Accuracy - The degree to which a system, as built, is free from error, especially with respect to quantitative

outputs. Accuracy differs from correctness; it is a determination of how well a system does the job it’s built
for rather than whether it was built correctly.

• Robustness - The degree to which a system continues to function in the presence of invalid inputs or
stressful environmental conditions.

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 37

“The key to achieving these external factors is in the internal ones.”
 – B. Meyer, 1988

Internal Quality Factors - J. McCall, 1977

• Maintainability - The ease with which you can modify a software system to change or add capabilities,
improve performance, or correct defects.

• Flexibility - The extent to which you can modify a system for uses (or environments) other than those for
which it was specifically designed.

• Portability - The ease with which you can modify a system to operate in an environment different from that
for which it was specifically designed.

• Reusability - The extent to which and the ease with which you can use parts of a system in other systems.
• Readability - The ease with which you can read and understand the source code of a system, especially

at the detailed-statement level.
• Testability - The degree to which you can unit-test and system-test a system; the degree to which you can

verify that the system meets its requirements.
• Understandability - The ease with which you can comprehend a system at both the system-organizational

and detailed-statement levels. Understandability has to do with the coherence of the system at a more
general level than readability does.

[Bertrand Meyer, Object-Oriented Software Construction, 1988]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 38

Quality characteristics valued by scientists – survey by J. Carver, 2007

• functional correctness
• performance
• portability
• maintainability

[Jeffrey Carver, Software Development Environments for Scientific and Engineering Software: A Series of Case Studies, 2007]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 39

What do you value the most?

a) functional correctness
b) performance
c) portability
d) maintainability
e) other

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 40

Traditional vs. Agile Processes

Product
expensive

Design
cheap

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 41

Traditional vs. Agile Processes

Design Product
cheapexpensive

[photo: pixabay.com]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 42

Evolution of costs for Hardware vs. Software

[Barry W. Boehm, Software and its impact: A quantitative assessment, 1973]

Pe
rc

en
t o

f t
ot

al
 c

os
t

Software

Hardware

time

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 43

Analyse Plan Design Build Test Deploy

Plan-Driven (Waterfall)

 Analyse Plan Deploy
 Design Build

 Test

Agile

 Analyse Plan Deploy
 Design Build

 Test

 Analyse Plan Deploy
 Design Build

 Test

Project Timeline

Requirements
Change

Technology
Innovation

Traditional vs. Agile Processes

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 44

Quality characteristics valued by scientists – survey by J. Carver, 2007

• functional correctness
• performance
• portability
• maintainability

[Jeffrey Carver, Software Development Environments for Scientific and Engineering Software: A Series of Case Studies, 2007]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 45

The one constant in Software development is

CHANGE

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 46

https://bit.ly/3BGi1cU

https://bit.ly/3BGi1cU

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 47

Person Car Engine
accelerate() rotate()move()

Object Oriented Programming – It‘s all about messages

Reality

Model

message

direction of dependency / “knowledge“

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 48

Dependencies in code

+ translate(dx: float, dy: float)
+ scale(factor: float)
+ draw()

- center_x: float
- center_y: float
- radius: float
+ color: str

Circle

App

depends on the public API
(the public methods and attributes)

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 49

Dependencies make changes difficult

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 50

Dependencies propagate change

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 51

Dependencies propagate change

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 52

Dependencies propagate change

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 53

Dependencies propagate change

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 54

Take Home Message

“Design for change by managing dependencies.”

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 55

Low cohesion

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 56

HL1 HL2

ML1 ML2 ML3 ML4

Main

LL8LL7LL6LL5LL4LL3LL2LL1

flow of controlsource code
dependency

Low cohesion

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 57

High cohesion

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 58

Metrics - Yourdon und Constantine, 1979

Use Coupling and Cohesion as Metrics to evaluate the quality of the design with regard to the impact and
the reach of changes.

Coupling = Measure of Strength of the Relationship of two or more components.
A high Coupling causes systems, which are complicated to understand, to change or even to fix. Changes in
a module often lead to a cascade of changes in other tightly coupled modules.

Cohesion = Degree of how well the elements of a module relate/fit together.
Random Cohesion = non-relating Abstractions are grouped together. [=> worst case]
High functional Cohesion = the sum of elements which form a consistent and clearly defined Behavior.
Changes regarding a specific Behavior are easily performed, since they are ideally affecting a single element.

The Goal of the Design should therefore simultaneously aim for a
preferably high cohesion and low coupling of its components.

[E. Yourdon and L.L. Constantine, Structured Design: Fundamentals of a Discipline of Computer Program and Systems Design, 1979]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 59

Software is not a mathematical endeavour in the sense that software can not formally be proven to be correct. In that way at
has a lot in common with scientific theories and laws which can only be proven to be incorrect.

Software can not be proven to be right

[1Software Engineering Techniques: Report on a conference sponsored by the NATO Science Committee, Rome, Italy, 27--31 October 1969]

“Testing shows the presence, not the absence of bugs.”
Edsger W. Dijkstra1

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 60

Symptoms of poor design

Rigidity – The system is difficult to change
Fragility – The system is easy to break
Immobility – The system is difficult to reuse
Viscosity – It is difficult to do the right thing
Needless Complexity – Overdesign (YAGNI - “You Aren't Gonna Need It”)
Needless Repetition – Copy / Paste Development
Opacity – The systems design is hard to understand

These symptoms are similar in nature to code smells, but are at a higher level. They are smells that
pervade the overall structure of the software rather than a small section of code.

Design Smells

[Robert C. Martin, Agile Principles, Patterns, and Practices, 2003]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 61

Another metric for code quality

https://bit.ly/2VWkvBA

https://bit.ly/2VWkvBA

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 62

» No Silver Bullet «

Software Development is a non-deterministic process – McConnell, 2004
Clearly, there is no magic, no “silver bullet” (F. P. Brooks, 1987) that can unfailingly lead the software
engineer down the path from requirements to the implementation of a complex software system, which
reflects a high-quality design on the other hand.
Software Design and Software Development are evolutionary processes which demand for an
incremental and iterative approach.
There are “no” norms nor standards, which assure the quality of development.
Software Design is a heuristic process – Quality is mainly achieved by cautiously applying proven
Principles, Patterns and Practices.

[Frederick P. Brooks, No Silver Bullet: Essence and Accidents of Software Engineering, 1987]

[Steve McConnell, Code Complete, Second Edition, 2004]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 63

Causes of Complexity (Booch et al., 2007):
• complexity of the problem domain
• difficulty of managing the development process
• flexibility possible through software
• problems of characterizing the behavior of discrete systems

Complexity

“There is an inherent complexity in software systems that works against the software quality.”

– Dijkstra, 1972

Problems evolving in scope, result in continuously growing complexity of software
systems. Complexity does not increase linearly. The more complex a system gets,
the higher its possibility of failure gets. The task of designing high-quality software
consists in managing its complexity.

[Edsger W. Dijkstra, The humble programmer, 1972]

[Grady Booch et al., Object-oriented analysis and design with applications, 2007]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 64

Basic Concepts of Organized Complexity

Decomposition: “divide et impera” (divide and conquer) – When designing a complex software system, it is
essential to decompose it into smaller and smaller parts, each of which we may then refine independently.
Abstraction: “We (humans) have developed an exceptionally powerful technique for dealing with complexity.
We abstract from it. Unable to master the entirety of a complex object, we choose to ignore its inessential
details, dealing instead with the generalized, idealized model of the object” (W. Wulf ,1980)
Hierarchy: Another way to increase the semantic content of individual chunks of information is by explicitly
recognizing the class and object hierarchies within a complex software system. By classifying objects into
groups of related abstractions (e.g., kinds of plant cells versus animal cells), we come to explicitly distinguish
the common and distinct properties of different objects, which further helps us to master their inherent
complexity (A. Goldberg, 1984).

“…the maximum number of chunks of information that an individual can handle simultaneously is on
the order of seven, plus or minus two.”

– G. A. Miller, 1956

[George A. Miller, The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information, 1956]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 65

Object-orientation vs. complexity

Object-orientation (OO) is an approved paradigm to organize the complexity of software.
The methods of object-oriented analysis (OOA) and design (OOD) provide an engineering approach, which
leads from the specific requirements to its software implementation.
The general procedure is based on principles of modularization (decomposition), encapsulation,
abstraction and hierarchy.

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 66

Domain Specific Languages

Assembly Language

le
ve

l o
f a

bs
tra

ct
io

n

Structured Programming
Object Oriented Programming

Principles & Practices
Design Patterns

Frameworks
 Libraries / Cloud Services

fle
xib

ilit
y,

co
m

pl
ex

ity

Applications

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 67

Managing complexity with Object Oriented Programming

In the 1980s Alan Kay introduced the term „Object Oriented Programming“.

An OO Language should at least support the following three key principles:

- Encapsulation
- Inheritance
- Polymorphism

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 69

Object Oriented Programming - Encapsulation

x, y

ra
diu
s

Circle
+ center_x: float
+ center_y: float
+ radius: float

Msg: ″radius = -100″ SomeCaller

What might happen when the radius

is set to -100? 🤷

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 70

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 71

Who‘s to blame?

a) The circle
b) The caller
c) Both
d) None of them

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 72

Keep in mind!

An object is responsible to guarantee it’s state is valid!

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 73

Object Oriented Programming - Encapsulation

Caller 1

Circle

- center_x: float
- center_y: float
- radius: float

+ translate(dx: float, dy: float): void
+ scale(factor: float): void

“radius= -100”

“x=1”

Caller 2

Caller 3

“scale(2.3)”

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 74

Information Hiding

Details / Implementation

Public API

[Steve McConnell, Code Complete, Second Edition, Microsoft Press, 2004]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 75

Object Oriented Programming - Inheritance

miniCAD App

circle
rectangle

triangle

square hexagon

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 76

Move objects on the screen

That’s what
I’d like to have

…

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 77

What actually happens …

Not bad, but
…

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 78

After you fixed it …

Argh 🤔…

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 79

+ translate(delta_x: float, delta_y: float)
…

center_x: float
center_y: float

<<abstract>>
Shape

- radius: float

Circle

- side_a: float
- side_b: float

Rectangle

- side_length: float

Triangle …

provides common
behaviour for all shapes

to be translated

adds
radius

adds
sides

a and b

adds side length for
equilateral triangle

any other
shape type

Object Oriented Programming - Inheritance
Classes can be specializations of other classes. That means classes can be in hierarchical order by inheriting properties
and behavior of higher ranked classes.
Lower ranked classes can specialize (override) or extend higher classes.
On code level Inheritance may be used to avoid
redundancy by allowing code reuse.

inheritance arrow
= „is a“- relation ship

Inheritance enables
Polymorphism!

Supports
Don’t Repeat Yourself (DRY)
principle
[A. Hunt and D. Thomas, The Pragmatic Programmer, 1999]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 80

Nightingale

+ sing() : void

Duck

+ swim() : void

Ostrich

+ fly() : void

+ walk() : void

Bird

+ fly() : void

adds behaviour to swim
adds behaviour to walk
and changes the fly
behaviour (can't fly)

adds behaviour to sing

has behaviour for
all birds to fly
(all birds fly in the
same way)

Object Oriented Programming - Inheritance
Classes can be specializations of other classes. That means classes can be in hierarchical order by inheriting properties
and behavior of higher ranked classes.
Lower ranked classes can specialize (override) or extend higher classes.
On code level Inheritance may be used to avoid
redundancy by allowing code reuse. inheritance arrow

= „is a“- relation ship

Inheritance enables
Polymorphism!

Supports
don’t repeat yourself (DRY)
principle
[A. Hunt and D. Thomas, The Pragmatic Programmer, 1999

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 81

Favor composition over inheritance (FCoI)

Class A

a() : void
b() : void
+ c() : void
+ d() : void

depends on methods:
a, b, c and d

Class B

depends on methods:
c and d

Class BClass D

[Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software, 1995]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 82

Object Oriented Programming - Polymorphism
• Generally, the ability to have different individuals of a species.

(…also in Biology, Chemistry)
• In object-oriented programming, polymorphism refers to a programming language's ability of objects to react

differently to one and the same message depending on their class.
(Technically, this is achieved by redefining methods in derived classes - Inheritance)

• One may also speak of the autonomy or independence of objects.

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 83

Have you heard about polymorphism?

a) Poly … what??
b) I have heard of it, but I don’t use it.
c) I use it, but I can’t explain it.
d) I use it all the time. It’s part of my daily work.
e) I’m a polymorphism ninja
f) other

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 84

Polymorphism - Ant Hill

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 85

Polymorphism – All are ants

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 86

Polymorphism – Queen is managing the tribe (Core Unit)

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 87

Polymorphism - Worker Ant

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 88

Polymorphism – Soldier Ant

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 89

Polymorphism – Nurse Ant

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 90

Polymorphism – Queen doesn‘t know specific ants

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 91

Polymorphism – Queen only knows ants

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 92

Queen knows that ants understand the message: „DO YOUR JOB!“

Do your job!

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 93

All ants react differently to the message according to their subtype

“Do your job!”
➜ protects

tribe

“Do your job!”
➜ feeds
children

“Do your job!”
➜ builds hill

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 94

Polymorphism – Ready for Evolution - SkyDriver Ant

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 95

Polymorphism – Ready for Evolution - Skydiver Ant

Do your job!
“Do your job!”
➜ go sky
diving 😆

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 96

...Ant

+ doJob() : void

NurseAnt

+ doJob() : void

SoldierAnt

+ doJob() : void

WorkerAnt

+ doJob() : void

protects the tribe feeds the children builds the ant hill

«interface»
Ant

+ doJob() : void = 0

abstract method
(no content)

QueenAnt
0..*

Polymorphism – Queen Ant is not affected by change

non-volatil

volatil

Must not change!!

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 97

Object Oriented Programming - Polymorphism

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 98

Object Oriented Programming - Polymorphism

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 99

Object Oriented Programming - Polymorphism

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 100

Object Oriented Programming - Polymorphism

30W

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 101

Object Oriented Programming - Polymorphism

30W Energy Saving

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 102

Object Oriented Programming - Polymorphism

30W Energy Saving LED

?
More to come!

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 103

Object Oriented Programming - Polymorphism

30W Energy Saving LED

?
More to come!

Must not change!!

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 104

Object Oriented Programming - Polymorphism

Must not change!!

LedBulb

+ lightUp() : void

ClassicalBulb

+ lightUp() : void

EnergySavingBulb

+ lightUp() : void

...Bulb

+ lightUp() : void

«interface»
LightBulb

+ lightUp() : void = 0

abstract method
(no content)

Lamp
1..*

?
More to come!

non-volatil

volatil

Must not change!!

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 105

Domain Specific Languages

Assembly Language

le
ve

l o
f a

bs
tra

ct
io

n

Structured Programming
Object Oriented Programming

Principles & Practices
Design Patterns

Frameworks
 Libraries / Cloud Services

fle
xib

ilit
y,

co
m

pl
ex

ity

Applications

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 106

Principles of object-oriented Design

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 107

Do you know the SOLID Principles?

a) No, have never heard of them
b) I have heard of them, but I don’t apply them
c) I follow some of them
d) I can explain every single one of them
e) From time to time they even visit me in my dreams

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 108

S.O.L.I.D. Principles

• Single Responsibility Principle (SRP)
• Open-Closed Principle (OCP)
• Liskov Substitution Principle (LSP)
• Interface Segregation Principle (ISP)
• Dependency Inversion Principle (DIP)

…Guidelines (no laws) for object-oriented design!

Principles of Object-Oriented Design

[Robert C. Martin, Agile Principles, Patterns, and Practices, 2003]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 109

Single Responsibility Principle (SRP)
– Robert C. Martin [90]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 110

Single Responsibility Principle –
“Each class should only have one reason to change.” – Uncle Bob

Each Responsibility = Reason to change.

Changes also affect depending classes
Changes have to be made to depending classes
Possible failing behavior of depending classes (to be tested)
In C++ depending classes have to be recompiled unnecessarily after changes.

Classes that do more than one thing are difficult to reuse

Single Responsibility Principle (SRP)
– Robert C. Martin [90]

[David L. Parnas, On the Criteria To Be Used in Decomposing Systems into Modules, 1972]
[Tom DeMarco, Structured Analysis and System Specification, 1979]

everything	in	a	class	is	
related	to	a	single	purpose

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 111

Single Responsibility Principle (SRP)
– Robert C. Martin [90]

Example – Violation of SRP:

Geometry
Application

+ Rectangle(width, height)
+ area()
+ perimeter()
+ draw()

Rectangle

Graphical
Application

GUI

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 112

Solution:

Geometry
Application

+ draw()

Graphical
Rectangle

Graphical
Application GUI

+ Rectangle(width, height)
+ area()
+ perimeter()

Rectangle

Single Responsibility Principle (SRP)
– Robert C. Martin [90]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 113

Solution:

Geometry
Application

+ draw()

Graphical
Rectangle

Graphical
Application GUI

+ Rectangle(width, height)
+ area()
+ perimeter()

Rectangle

Single Responsibility Principle (SRP)
– Robert C. Martin [90]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 114

Solution:

Geometry
Application

+ draw()

Graphical
Rectangle

Graphical
Application GUI

+ Rectangle(width, height)
+ area()
+ perimeter()

Rectangle

Single Responsibility Principle (SRP)
– Robert C. Martin [90]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 115

Open-Closed Principle (OCP)
- Bertrand Meyer, 1988

[Bertrand Meyer, Object-Oriented Software Construction, 1988]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 116

Open for Extension, closed for modifications.
A module should be open for extensions, but closed for modifications.

Principle ensures extensions of components without changing the source code of the specific component.
Tool: Polymorphism
Encapsulation of volatile and non-volatile Code (in Base Classes)
Abstract Core of the application remains untouched.

Open-Closed Principle (OCP)
- Bertrand Meyer, 1988

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 117

QueenAnt

+ morning_routine(): void

WorkerAnt

+ collect_food(): void

Open-Closed Principle – Step 1

Fine, as long nothing changes.

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 118

QueenAnt

+ morning_routine(): void

WorkerAnt

+ collect_food(): void

Open-Closed Principle – Step 1
Fine, as long nothing changes.

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 119

QueenAnt

+ morning_routine(): void

WorkerAnt

+ collect_food(): void

SoldierAnt

+ protect(): void

Change: Open-Closed Principle – Step 2 – new Ant

volatile non volatile

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 120

Open-Closed Principle – Step 2

volatile non volatile

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 121

abstract method
 (no implementation)

<<interface>>
Ant

+ do_your_job(): void = 0

WorkerAnt

+ do_your_job(): void

SoldierAnt

+ do_your_job(): void

...

+ do_your_job(): void

QueenAnt

non-volatil

volatil

must not change!

Open-Closed Principle – Solution: Interface (Protocol)

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 122

Open-Closed Principle – Solution: Interface (Protocol)
Adding a Protocol (Interface):
Being specific about what messages
ants needs to understand.

volatile non volatile

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 123

1. With Protocol and Inheritance

MyPy error!
Cannot instantiate abstract class "SoldierAnt"
with abstract attribute "do_your_job"

volatile non volatile

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 124

2. With Protocol – Without Inheritance

MyPy error!
List item 1 has incompatible type
"SoldierAnt"; expected "Ant"

volatile non volatile

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 125

3. Without Protocol

volatile non volatile

If not: runtime error!
AttributeError: 'SoldierAnt' object has
no attribute ‘do_your_job()’

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 126

Protocol

Protocol types allows developers to define and enforce a set of methods that classes must implement in
order to satisfy a particular interface (like a contract).

Advantages using Protocols:

• Reusable Interfaces
• Static Duck Typing (“Type Checking”)
• Compatibility

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 127

Liskov Substitution Principle (LSP)
- Barbara Liskov, 1987

[Barbara Liskov, Data Abstraction and Hierarchy, 1987]

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 128

Liskov Substitution Principle
Type T’ is a Subtype of T, if objects of Type T can be exchanged by
objects of Type T’ without any limitations.

Tight relationship to Inheritance and virtual/abstract methods

Simple Example:
A driver of a BMW shouldn‘t be surprised, if he tries to drive a VW.
(Since both are cars and should work in kind of the same way, when trying to interact with similar functions.)

Liskov Substitution Principle (LSP)
- Barbara Liskov, 1987

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 129

Example – Violation of LSP

• Situation:
Class Rectangle is existing.
Class Square is needed.

• Inheritance seems right:
A Square IS a Rectangle

Liskov Substitution Principle (LSP)
- Barbara Liskov, 1987

Rectangle

Square

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 130

What do you think – is a square a rectangle?

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 131

class Rectangle:

def __init__(self, height=1.0, width=1.0):

self._height: float = height
self._width: float = width

def set_height(self, height: float):

self._height = height

def set_width(self, width: float):

self._width = width

def area(self) -> float:
return self._height * self._width

First doubts
• properties of Rectangle: 2 (height & width)

required properties of Square: 1
• ok, memory is cheap...

Liskov Substitution Principle (LSP)
- Barbara Liskov, 1987

Rectangle

Square

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 132

class Square(Rectangle):
def __init__(self, width=1.0):

self._height = width

self._width = width

def set_height(self, height: float):
self._height = height
self._width = height

def set_width(self, width: float):

self._width = width
self._height = width

Further doubts
• properties: height & width
• names aren‘t suitable
• height and width have to be consistent

Liskov Substitution Principle (LSP)
- Barbara Liskov, 1987

Rectangle

Square

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 133

def foo(r: Rectangle):

r.set_width(5)

r.set_height(4)
if r.area() != 20:

print("Bad area!")

Unpreventable Error:
legitimate assumption for Rectangle:
If height is changed, the width stays untouched!
But wrong polymorphic behavior of Square!

Liskov Substitution Principle (LSP)
- Barbara Liskov, 1987

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 134

def foo(r: Rectangle):

r.set_width(5)

r.set_height(4)
if r.area() != 20 and not isinstance(r, Square):

print("Bad area!")

Violation of the Open Closed Principle (OCP)
Using the Square class introduces a dependency to
the subtype of Rectangle!

Conclusion:
Although a Square is a Rectangle in a geometric sense,
this isn‘t true in the sense of software (polymorphism)!

Liskov Substitution Principle (LSP)
- Barbara Liskov, 1987

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 135

Dependency Inversion Principle (DIP)

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 136

Dependency Inversion Principle

a) High-level modules should not depend on low-level modules. Both should depend on abstractions.
b) Abstractions should not depend upon details. Details should depend upon abstractions.

But: If a concrete class is not going to change very often, and no other similar derivatives are going to be
created, it does very little harm to depend on it.

Dependency Inversion Principle (DIP)

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 137

Example – Violation of DIP

Do you see a problem here?

Dependency Inversion Principle (DIP)

Button + lightOn()
+ lightOff()

Lamp

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 138

Example – Violation of DIP

Do you see a problem here?

Dependency Inversion Principle (DIP)

non volatile

Button

+ lightOn()
+ lightOff()

Lamp

+ turnOn()
+ turnOff()

???

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 139

Example – Violation of DIP

Do you see a problem here?

Dependency Inversion Principle (DIP)

non volatile

Button

+ lightOn()
+ lightOff()

Lamp

+ tvOn()
+ tvOff()

TV

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 140

Example – Violation of DIP

Button is directly dependent on Lamp.
Changes in Lamp have a direct impact on Button.
Button can only control objects of Lamp.
Button can‘t be reused.

Dependency Inversion Principle (DIP)

non volatile

Button

+ lightOn()
+ lightOff()

Lamp

+ tvOn()
+ tvOff()

TV

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 141

Solution

Button is now depending on an interface called ButtonServer.
Changes in Lamp won‘t influence the Button.
Button can be reused.
Button can control any object which implements the interface of ButtonServer.

non volatile

+ turnOn() = 0
+ turnOff() = 0

<<interface>>
Button Server

Button

+ turnOn()
+ turnOff()

Lamp

+ turnOn()
+ turnOff()

…

Dependency Inversion Principle (DIP)

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 142

Dependencies make changes difficult

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 143

volatile

Dependencies propagate change

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 144

volatile

Dependencies propagate change

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 145

volatile

Dependencies propagate change

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 146

volatile

Dependencies propagate change

ML4 is directly dependent on LL8
Changes in LL8 have a direct impact on ML4
ML4 can only work with objects of LL8
ML4 can‘t be reused without LL8

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 147

volatile

Inverted direction of dependency

HL1 HL2

ML1 ML2 ML3 ML4

Main

LL7LL6LL5LL4LL3LL2LL1

<<interface>>
ML4Server

LL8

flow of controlsource code
dependency

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 148

ML4 is now depending on an interface called ML4Server.
Changes in LL8 won‘t influence the ML4.
ML4 can be reused.
ML4 can control any object which implements the interface of ML4Server.

Dependency Inversion Principle (DIP)

Solution

volatile

HL1 HL2

ML1 ML2 ML3 ML4

Main

LL7LL6LL5LL4LL3LL2LL1

<<interface>>
ML4Server

LL8

flow of controlsource code
dependency

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 149

Interface Segregation Principle (ISP)

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 150

Interface Segregation Principle

Covers the drawbacks of broadly defined interfaces
Classes with non-coherent interfaces

Problem:
Dependency of the calling object to methods, which it doesn‘t need to know because it isn‘t using them.
Changes to an interface are concerning every object knowing that interface.

Solution:
(Coherent) Segregation of methods to multiple interfaces for the specific calling objects.

Dynamic languages aren‘t affected.

Interface Segregation Principle (ISP)

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 151

Interface Segregation Principle (ISP) – Example 1

<< Client A methods>>
+ …
<< Client B methods>>
+ …
<< Client C methods>>
+ …

Service

Client B

Client A

Client C

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 152

<< Client A methods>>
+ …
<< Client B methods>>
+ …
<< Client C methods>>
+ …

Service

<< Client A methods>>
+ …

<<interface>>
Service A

Client B

Client A

<< Client B methods>>
+ …

<<interface>>
Service B

Client C
<< Client C methods>>
+ …

<<interface>>
Service C

Interface Segregation Principle (ISP) – Example 1

non volatile

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 156

Books

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 157

References

McCall,J.: Factors in Software Quality: Preliminary Handbook on Software Quality for an
Acquisiton Manager, Bd. 1-3. General Electric, November 1977.
Meyer, B.: Object-Oriented Software Construction, Prentice Hall PTR, 1988.
McConnell, S.: Code Complete, Second Edition. Microsoft Press, Redmond, WA, USA, 2004.
Dijkstra,E.W.:The humble programmer. Commun. ACM, 15(10):859–866, 1972.
Booch, G., Maksimchuk, R.A., Engle, M.W., Young, B.J., Connallen, J. und Houston, K.A.:
Object-oriented analysis and design with applications. Addison Wesley, 3. Aufl., 2007.
Yourdon, E. und Constantine, L. L.: Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design. Yourdon Press computing series. Prentice-Hall, Inc,
Upper Saddle River, NJ, USA, 1979.
Ingalls,D.H.H.:Design Principles Behind Smalltalk. Byte,6(8):286–298,1981.
Brooks, Jr., F.P.: No Silver Bullet - Essence and Accidents of Software Engineering. Computer,
20(4):10–19, 1987.
Jack W. Reeves:, What is software design?. C++ Journal, 1992,
http://www.developerdotstar.com/mag/articles/reeves_design.html

http://www.developerdotstar.com/mag/articles/reeves_design.html

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 158

Get in touch!

https://suresoft.dev

https://matrix.to/#/#suresoft-general:matrix.org

https://zenodo.org/communities/suresoft/

https://lists.tu-braunschweig.de/sympa/info/musen-rse

https://git.rz.tu-bs.de/suresoft

https://suresoft.dev/
https://matrix.to/
https://zenodo.org/communities/suresoft/
https://lists.tu-braunschweig.de/sympa/info/musen-rse
https://git.rz.tu-bs.de/suresoft

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 159

Acknowledgment

The SURESOFT project is funded by the German Research Founda<on (DFG) as part of the “e-Research Technologies”
funding programme under grants: EG 404/1-1, JA 2329/7-1, KA 3171/12-1, KU 2333/17-1, LA 1403/12-1, LI 2970/1-1 and
STU 530/6-1.

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 160

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 161

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 162

Scientific software development is not a Jenga game! - Software Engineering to the rescue | Dr. Jan Linxweiler, Sören Peters | Slide 163

The SURESOFT project is funded by the German Research Foundation (DFG) as part of the “e-
Research Technologies” funding programme under grants: EG 404/1-1, JA 2329/7-1, KA 3171/12-1, KU
2333/17-1, LA 1403/12-1, LI 2970/1-1 and STU 530/6-1.

