
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Standing on the shoulders of giants
Hands on Software Design Patterns

‘‘The dissemination of knowledge is of obvious value —
the massive dissemination of error-loaded software is frightening.”
Edsger W. Dijkstra at the NATO Software Engineering Conference, 1968

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 2

Who are we?

Dr. Jan Linxweiler
j.linxweiler@tu-braunschweig.de

Sören Peters
soe.peters@tu-braunschweig.de

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 3

Domain Specific Languages

Assembly Language

le
ve

l o
f a

bs
tra

ct
io

n

Structured Programming
Object Oriented Programming

Principles & Practices
Design Patterns

Frameworks
 Libraries / Cloud Services

fle
xib

ilit
y,

co
m

pl
ex

ity

Applications

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 4

Design Patterns

• Reliable solutions / strategies for repeating design problems in software engineering
• don’t reinvent the wheel, but instead build upon experiences of experts

• Independent of a specific programming language
• Enables communication on a more abstract level (discussions)
• Enhances understanding of the solutions for other developers (documentation)
• Origin in architecture (Similarity of structures and styles)

• Christopher Alexander: The Timeless Way of Building, 1979

* Erich Gamma, Richard Helm, Ralph Johnson, John Vlissedes, Design Patterns, 1995

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 5

How familiar are you with Design Patterns?

a) I never heard of them
b) I’ve heard of them, but never used them
c) I use them from time to time
d) I continuously keep my eyes open to spot them
e) The “Gang of Four” are my personal heros
f) other

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 6

Domain Specific Languages

Assembly Language

le
ve

l o
f a

bs
tra

ct
io

n

Structured Programming
Object Oriented Programming

Principles & Practices
Design Patterns

Frameworks
 Libraries / Cloud Services

fle
xib

ilit
y,

co
m

pl
ex

ity

Applications

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 7

Design Patterns

Origin in architecture (Similarity of structures and styles)*

From architectural patterns to patterns of software design:
1995 GoF: “Design Patterns: Elements

of Reusable Object-Oriented Software”**
1. Transferred the idea of patterns to software design.
2. Defined a structure to categorize the patterns.
3. 23 patterns were categorized.
4. Presented object-oriented strategies and approaches

based on design patterns.

* Christopher Alexander: The Timeless Way of Building, 1979
** Gang of Four (GoF) Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 8

Design Patterns

• Reliable solutions / strategies for repeating design problems in software engineering
• The description of a design pattern follows certain rules*:

§ description of a problem
§ description of a solution

§ structure, elements, interactions
§ discussion

§ advantages / disadvantages / dependencies
§ source code examples
§ related design patterns

• independent of a specific programming language

* Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns, 1995

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 9

What Design Patterns are not:

• Not a “one-size-fits-all” solution. You need to adapt it to your context.

• No algorithms - algorithms solve problems (search, sort etc.) and are less flexible in
their implementation

• Design patterns are no magical cure! When applying a pattern creative talent is still
needed

• Design patterns are no frameworks or libraries. Frameworks and libraries provide
reusable code. Design patterns only provide templates for solutions.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 10

Why would you care about design patterns?

Tyranny of the Detail: The Carpenters and the drawers
Try to figure out, what they are talking about!!

Details may cause confusion!

How do you think should we build the drawers?

Well, I think we should make the joint by cutting
straight down the wood, and then cut back up
45 degrees, and then going straight back down,
and then back up the other way 45 degrees, and
then going straight back down, and then …

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 11

Why would you care about design patterns?

Tyranny of the Detail: The Carpenters and the drawers
Try to figure out, what they are talking about!!

How do you think should we build the drawers?

Should we use a dovetail joint or a miter joint?

Their discussion is at a higher level, a more abstract level!

They are discussing differences in the quality of
solutions to the problem. And they avoid getting
bogged down in the details of a particular solution.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 12

Benefits of Design Patterns

Developer

• help with design decisions
• use of proven solutions of experienced developers
• code examples can make it easier to get started
• help in passing on and holding on to your own knowledge

Team
• forming a standardized language
• standardized documentation
• knowledge transfer between colleagues

Community /
Organisation

• standardized documentation of knowledge
• reuse of proven solutions
• common structure of systems

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 13

Classification of design patterns

Categories Task

Structural patterns Composition of classes
and objects

Creational patterns Encapsulation of the
creation process of objects

Behavioral patterns
Manage control flows and
interactions between
classes and objects

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 14

A weather station story

Our company creates a popular
weather station software. It
controls a temperature sensor
that measures the temperature
every second. Whenever the
temperature is measured we
want to update a temperature
display.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 15

Application

+ measure() : void

TemperatureSensor
+ draw(value): void
+ set_color(color): void

ConsoleTableChart

Starting point

The Application class contains an
instance of the TemperatureSensor
and a ConsoleTableChart. The
sensor knows the chart and will
call the chart’s draw() method
whenever it measures a new value.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 16

Stage 1: A second chart

Our glorious overlords (managers) have graced us with a new feature request to keep up with
the competition: adding a bar chart to the application.

The problem
In the current state of the application the sensor can only deal with one specific type of chart
(ConsoleTableChart).

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 17

Core

ConsoleBarChartConsoleTableChart

TemperatureSensor

Application

A first solution

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 18

Core

ConsoleBarChartConsoleTableChart

TemperatureSensor

Application

A first solution

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 19

ConsoleBarChartConsoleTableChart

TemperatureSensor

Application
Core

+ draw(value): void
+ set_color(color): void

<<abstract>>

Chart

The solution

ABer implemenCng the
ConsoleBarChart we extract a
common Chart interface with an
abstract draw() method that both
Charts must implement.
Now the sensor does not depend
on a concrete chart type, but only
the Chart interface, therefore
adhering to the Dependency
Inversion Principle (DIP).

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 20

Stage 2: Mass producing charts

During the next code review session we show our implementation to our colleagues. They point out
that in the Application class we still depend on the concrete chart types ConsoleTableChart and
ConsoleBarChart that change frequently. Also there will be new chart variants in the future so they
ask us to improve our solution.

While we are at it we can also implement a feature request from our clients for a menu that allows
the users to choose a chart from a list of all available chart types.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 21

ConsoleBarChartConsoleTableChart

TemperatureSensor

Application

<<abstract>>

Chart

<<creates>>Core

The problem

Our Application creates
instances of the concrete
chart types to pass them on
to our sensor.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 22

The solution

We’ve heard about the Abstract Factory Pattern that encapsulates the creation of objects and exposes them
only through their common interface afterwards.
Therefore, we decide to implement an abstract ChartFactory that defines abstract create_table_chart() and
create_bar_chart() methods that both return objects of the abstract type Chart.
The ConsoleChartFactory implements this interface and creates and returns ConsoleTableChart and
ConsoleBarChart instances.

We inject this factory into the constructor of the Application class leading to an application core that does not
depend on any concrete chart types anymore.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 23

ConsoleBarChartConsoleTableChart

TemperatureSensor

Application

<<abstract>>

Chart

+ create_table_chart() : Chart
+ create_bar_chart() : Chart

ConsoleChartFactory

Core

Towards the solution…

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 24

Stage 3: Reduce coupling

Our boss informs us that there is still a weakness in our design. Since we will add more charts in the future, we
would have to change the interface of the factory each time. Since interfaces should be stable we need to come
up with a better solution.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 25

The problem

We notice that with our current implementation of the
ChartFactory the Application class still has a dependency to the
specific method name of the specific chart we want to create.
This means we have to add a method call for every new chart
type in our Application class. This violates the Open Closed
Principle (OCP).

chart = chart_factory.create_table_chart()
self.sensor.add_chart(chart)

chart = chart_factory.create_bar_chart()
self.sensor.add_chart(chart)

. . . more to come??

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 26

Towards the solution …

Core

ConsoleBarChartConsoleTableChart

TemperatureSensor

Application

<<abstract>>

Chart

+ create_chart(type: String, name: String) : Chart
+ get_chart_types() : String[]

ConsoleChartFactory

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 27

The solution

We change our ChartFactory interface to contain a single create_chart(chart_type: str) method that accepts the chart
type as a string. By doing this we loose some safety because the methods accepts any string valid or not. But, we also
add another method get_chart_choices() that returns a list of strings with all possible chart types.
In our Application class we can now display the possible choices in our selection menu and select a chart type without
changing anything in that class.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 28

Towards the solution …

Core

ConsoleBarChartConsoleTableChart

TemperatureSensor

Application

<<abstract>>

Chart

+ create_chart(type: String, name: String) : Chart
+ get_chart_types() : String[]

ConsoleChartFactory

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 29

Core

ConsoleBarChartConsoleTableChart

TemperatureSensor

Application

<<abstract>>

Chart

+ create_chart(type: String, name: String) : Chart
+ get_chart_types() : String[]

ConsoleChartFactory

+ create_chart(type: String, name: String) : Chart
+ get_chart_types() : String[]

<<interface>>

ChartFactory

The solution

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 30

a)

b)

c) both

d) none

Question

names: List[str] = ["Lucy", "Paul"]

Which of the following lines in the core of your application
are a violation of the Dependency-Inversion Principle?

chart = ConsoleTableChart()

Hint: The ConsoleTableChart class changes frequently

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 31

Factory - Question

names: List[str] = ["Lucy", "Paul"]

Is the following source code violating the Dependency-Inversion Principle?

No, it’s not violating DIP…
The List class is very unlikely to change (not volatile)?
Depending on the concrete List class is therefor safe.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 32

Abstract Factory Pattern

• Object Creational pattern

• “Intent: Provide an interface for creating families of related or dependent
objects without specifying their concrete classes.”

* Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns, 1995

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 33

Abstract Factory Pattern

CreateProdutA()
CreateProductB()

<<interface>>

AbstractFactory

CreateProdutA()
CreateProductB()

ConcreteFactory2

CreateProdutA()
CreateProductB()

ConcreteFactory1

AbstractProductA

ProductA1ProductA2

AbstractProductB

ProductB1ProductB2

Client

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 34

Abstract Factory Pattern

Benefits and liabilities

• Isolate concrete classes

• Make exchanging product families easy

• Promote consistency among products

• Supporting new kinds of products is difficult

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 35

Stage 4: A second sensor

To stay ahead of the compe..on we decide to add
a humidity sensor as a second sensor type to our
applica.on. Our boss reassures us that the sensors
are known up front and will not be created
dynamically at run.me, so no need for an
addi.onal factory. However, both sensors need to
be able to send updates to a chart.

https://www.freeimages.com/

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 36

Core

ConsoleBarChartConsoleTableChart

Application

<<abstract>>

Chart

- charts: [Chart]

TemperatureSensor

+ add_chart(chart: Chart)
+ remove_chart(chart: Chart)
+ draw_all(value: float)

- charts: [Chart]

HumiditySensor

+ add_chart(chart: Chart)
+ remove_chart(chart: Chart)
+ draw_all(value: float)

The problem …

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 37

The problem

We implement the HumiditySensor class and notice some striking similarities to the TemperatureSensor class.
Also, the Application class depends directly on the concrete sensor implementations, violating the Dependency
Inversion Principle (DIP).

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 38

Core

ConsoleBarChartConsoleTableChart

Application

<<abstract>>

Chart

- charts: [Chart]

TemperatureSensor

+ add_chart(chart: Chart)
+ remove_chart(chart: Chart)
+ draw_all(value: float)

- charts: [Chart]

HumiditySensor

+ add_chart(chart: Chart)
+ remove_chart(chart: Chart)
+ draw_all(value: float)

The problem …

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 39

The solution

We decide to extract a common abstract Sensor base class that both the TemperatureSensor and
HumiditySensor inherit from and therefore adhering to the Don’t Repeat Yourself Principle (DRY) by
eliminaCng duplicaCon. The Sensor class defines an abstract measure() method and contains the logic to
add/remove charts and a draw_all() method that calls the draw() method of every chart aNached to the
sensor. The TemperatureSensor and HumiditySensor can now call this method whenever they measure a new
value without needing to implement the logic themselves.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 40

Core

ConsoleBarChartConsoleTableChartHumiditySensor

Application

<<abstract>>

Chart

TemperatureSensor

- charts: [Chart]

<<abstract>>

Sensor

+ add_chart(chart: Chart)
+ remove_chart(chart: Chart)
+ draw_all(value: float)

The solution

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 41

Stage 5: Logging

Our charts have been showing some weird data. To find out what’s
happening under the hood we want to log the values produced by the
sensors to a file.

https://www.freeimages.com/

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 42

The problem

We need to implement a file logger that is updated along with the charts without
implementing the Chart interface.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 43

A questionable solution …

⚡
Logger does
not behave
like a Chart

Core

ConsoleBarChartConsoleTableChartHumiditySensor

Application

TemperatureSensor Logger

<<abstract>>

Sensor + draw() : void

<<abstract>>

Chart

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 44

The alternative?

Core

ConsoleBarChartConsoleTableChartHumiditySensor

Application

TemperatureSensor Logger

<<abstract>>

Sensor + draw() : void

<<abstract>>

Chart

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 45

The alternative?

Core

ConsoleBarChartConsoleTableChartHumiditySensor

Application

TemperatureSensor Logger

<<abstract>>

Sensor + draw() : void

<<abstract>>

Chart

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 46

The solution

We decide to introduce a new interface called Observer that contains an update() method that both the charts
and the new file logger will implement.
Instead of using Charts our sensors will now talk to Observer instances. At this point we notice that managing
Observers and measuring data are different responsibilities as well. To separate these responsibilities we
extract an abstract Subject class that only contains the code to manage Observers while keeping the measure()
method in the Sensor class.
Finally we make Sensor class inherit from the Subject class.
We now have a generic mechanism to notify interested components of our application about updates. This is
called the Observer Pattern.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 47

The final solution using Observer Pattern

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 48

Core

ConsoleBarChartConsoleTableChartHumiditySensor

<<abstract>>

Chart

TemperatureSensor Logger

+ register(Observer): void
+ unregister(Observer): void
+ notifiy_all(): void

<<abstract>>

Sensor
+ update() : void

<<interface>>

Observer*

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 49

Core

ConsoleBarChartConsoleTableChartHumiditySensor

<<abstract>>

Chart

TemperatureSensor Logger

+ register(Observer): void
+ unregister(Observer): void
+ notifiy_all(): void

<<abstract>>

Subject

+ update() : void

<<interface>>

Observer

<<abstract>>

Sensor

*

The final solution using Observer Pattern

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 50

Observer Pattern

• Object Behavioral pattern

• “Intent: Define a one-to-many dependency between objects so that when objects change state, all its dependents are
notified and updated automatically.”*

* Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns, 1995

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 51

Observer
Purpose
1-to-n-Dependencies between Objects: An object can notify all dependent objects

GUI volatil

non volatil

?
More to come!

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 52

Observer
Solution 1
Pull data instead of pushing it

GUI volatil

non volatil

?
More to come!

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 53

Observer
Solution 2
Dependency Inversion

GUI volatil

non volatil

?
More to come!

«interface»
Observer

+ update() : void = 0

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 54

Observer Pattern

Attach(Observer)
Detach(Observer)
Notify()

Subject

GetState()
SetState()

ConcreteSubject

subjectState

Update()

<<interface>>

Observer

Update()

ConcreteObserver

observerState

observerState =
subject->GetState()

for all o in observers
o->Update()

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 55

Observer Pattern

Benefits and liabilities

• Abstract coupling between Subject and Observer

• Support for broadcast communication

• Push instead of pull mechanism

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 56

Stage 6: Another strategy

Our clients are complaining again. This time it’s the resource consumption of our application. Some of them are
using it on very low power machines. Measuring the sensors and updating the charts every second is too much
for those tiny CPUs. Some want to have the application only display the data once and then exit, others would
like to trigger an update manually and the rest wants to keep the continuous updating we already have.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 57

The problem

We need to implement a mechanism to swap out the behaviour that triggers the measurement. Since some of
our clients want to trigger updates manually we can’t just set a different timer value.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 58

The solution

We could have an if statement in the ApplicaCon’s run() method to determine when to measure and
update our charts. However, that would violate the Open Closed Principle (OCP) since we’d have to
extend that if statement whenever the requirements for measuring change. Instead we decide to apply
the Dependency Inversion Principle (DIP) and encapsulate the algorithm that determines when we
want to call the measure() method into different classes that all implement a common interface that
we’ll callMeasureStrategy.
When starCng our program we inject either a OneTimeMeasureStrategy, a ManualMeasureStrategy
or a ConLnuousMeasureStrategy into the ApplicaCon class. Instead of calling the sensor’s measure
method itself, the ApplicaCon class will delegate that responsibility to the respecCve Strategy. We call
this the Strategy PaMern.

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 59

The solution

Manual
MeasureStrategy

Continuous
MeasureStrategy

<<interface>>

Sensor
<<interface>>

MeasureStrategy

Application

OneTimeMeasure
Strategy

Core

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 60

Strategy Pattern

• Object Behavioral pattern

• “Intent: Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets the
algorithm vary independently from clients that use it.”*

* Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns, 1995

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 61

Strategy Pattern

AlgorithmInterface()

<<interface>>

Strategy

AlgorithmInterface()

ConcreteStrategyA

Context

AlgorithmInterface()

ConcreteStrategyB
AlgorithmInterface()

ConcreteStrategyC

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 62

Strategy Pattern

Benefits and liabilities

• Families of related algorithms

• Alternative to subclassing

• Eliminates conditional statements

• Communication overhead between context and strategy

• Increasing number of objects

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 63

Bibliography

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 64

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 65

https://forms.gle/Ld56WrTS3iqpynQg6

https://forms.gle/Ld56WrTS3iqpynQg6

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 66

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 67

McCall,J.: Factors in Software Quality: Preliminary Handbook on Software Quality for an
Acquisiton Manager, Bd. 1-3. General Electric, November 1977.
Meyer, B.: Object-Oriented Software Construction, Prentice Hall PTR, 1988.
McConnell, S.: Code Complete, Second Edition. Microsoft Press, Redmond, WA, USA, 2004.
Dijkstra,E.W.:The humble programmer. Commun. ACM, 15(10):859–866, 1972.
Booch, G., Maksimchuk, R.A., Engle, M.W., Young, B.J., Connallen, J. und Houston, K.A.:
Object-oriented analysis and design with applications. Addison Wesley, 3. Aufl., 2007.
Yourdon, E. und Constantine, L. L.: Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design. Yourdon Press computing series. Prentice-Hall, Inc,
Upper Saddle River, NJ, USA, 1979.
Ingalls,D.H.H.:Design Principles Behind Smalltalk. Byte,6(8):286–298,1981.
Brooks, Jr., F.P.: No Silver Bullet - Essence and Accidents of Software Engineering. Computer,
20(4):10–19, 1987.
Jack W. Reeves:, What is software design?. C++ Journal, 1992,
http://www.developerdotstar.com/mag/articles/reeves_design.html

References

http://www.developerdotstar.com/mag/articles/reeves_design.html

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 68

Standing on the shoulders of giants - Hands on Software Design Patterns | Dr. Jan Linxweiler, Sören Peters | Slide 69

The SURESOFT project is funded by the German Research Foundation (DFG) as part of the “e-
Research Technologies” funding programme under grants: EG 404/1-1, JA 2329/7-1, KA 3171/12-1, KU
2333/17-1, LA 1403/12-1, LI 2970/1-1 and STU 530/6-1.

