
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Introduction to
Test Driven Development

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 2

● Motivation - Traditional vs. Agile Processes
● Benefits of TDD
● Process
● TDD in Action: HVAC - KATA
● Outlook

Agenda

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 3

Traditional vs. Agile Processes

Product
expensiveDesign

cheap

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 4

Evolution of costs for Hardware vs. Software

[Barry W. Boehm, Software and its impact: A quantitative assessment, 1973]

P
er

ce
nt

 o
f t

ot
al

 c
os

t

Software

Hardware

time

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 5

Traditional vs. Agile Processes

Design Product
cheapexpensive

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 6

Analyse Plan Design Build Test Deploy

Plan-Driven (Waterfall)

 Analyse Plan Deploy
 Design Build

 Test

Agile

 Analyse Plan Deploy
 Design Build

 Test

 Analyse Plan Deploy
 Design Build

 Test

Project Timeline

Requirements
Change

Technology
Innovation

Traditional vs. Agile Processes

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 7

Traditional vs. Agile Processes

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 8

● Software Engineering is about designing for change.
● Fast feedback loop
● Low coupling & high cohesion (SOLID Principles)

Design for Change

Software Development is not a Jenga game!!
TDD

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 9

Benefits of TDD

● Supports low coupling & cohesion otherwise testing is hard
● Safety Net – Rapid Response -> eliminates the fear of change
● Reduces debugging time
● Reliable low level documentation
● Shift of perspective: developer to user

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 10

Roots of TDD

● Kent Beck is credited with having developed TDD in 2003
● Has been proven to work (IBM, Microsoft, Sabre..)

defect reduction rate of 2x, 5x even 10x
● Part of all agile software dev. processes (XP, Scrum, etc.)

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 11

● Red - write a test – Write a single test that doesn‘t work, and perhaps even compile at first.
● Green – make it work – Do the simplest thing to make the test work.
● Refactor – make it right – Eliminate all duplication and clean up your code.

The TDD Waltz …

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 12

1. You are not allowed to write any production code until you have first written a failing test.

2. You are not allowed to write more of a unit test that it is sufficient to fail – and not
compiling is failing.

3. Your are not allowed to write more production code that is sufficient to pass the current
failing test.

Three rules of test driven development:

Uncle Bob‘s Three Rules of TDD

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 13

Definition of a Unit Test

A unit test is an automated piece of code that invokes the unit of work

being tested, and then checks some assumptions about a single end

result of that unit. A unit test is almost always written using a unit

testing framework. It can be written easily and runs quickly. It’s

trustworthy, readable, and maintainable. It’s consistent in its results as

long as production code hasn‘t changed.

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 14

• Arrange - sets up system state (Test Fixture) ready to be tested

• Act - does the thing you are testing / acts on the test fixture

• Assert - does the test / asserts the state of the test fixture

• Annihilate - tears everything down

Structure of a Unit Tests – 4 As

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 15

unittest – Unit Testing Framework in Python

unittest is a testing framework form the Python Standard Library that is suitable for
automated testing of single units (mostly classes or methods).

class MathTest(unittest.TestCase):
def test_multiplication():

self.assertEqual(3*3, 9, “3*3 should be 9”)

import unittest

https://docs.python.org/3/library/unittest.html

https://docs.python.org/3/library/unittest.html

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 16

def test_multiplication():

assert 3 * 3 == 9

pytest – Unit Testing Framework

pytest is a unit testing framework for python that is suitable for automated testing of single
units (mostly classes or methods).

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 17

Three Types of Tests

SUT
message

return value

Return Value Verification

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 18

Three Types of Tests

2, 4

6

Return Value Verification

double sum(double a, double b) {
return a + b;

}

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 19

Three Types of Tests

SUT
message

state accessor

State Verification

initial state

result state

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 20

Three Types of Tests

scale(2.0);

getRadius();

State Verification

initial state: r=3

6

radius

Circle

result state: r=

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 21

Three Types of Tests

SUTmessage

Behavior Verification

Test
Double

message

state accessor result state

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 22

The Ontology of Mock Objects

Gerard Meszaros, 2007,
XUnit Test Patterns: Refactoring Test Code

«abstract»
Test Double

Dummy

Stub

Spy

Mock

Fake

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 23

+ temperature()
+ start_heating()
+ stop_heating()
+ start_cooling()
+ stop_cooling()
+ start_blowing()
+ stop_blowing()

<<interface>>
HVAC

+ check_temperature()

Environment
Controller

- desired_temperature
- temperature_delta

OS
«checkTemp - every minute»

HVACImplementation

Environment Controller Kata

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 24

+ temperature()
+ start_heating()
+ stop_heating()
+ start_cooling()
+ stop_cooling()
+ start_blowing()
+ stop_blowing()

<<interface>>
HVAC

+ check_temperature()

Environment
Controller

- desired_temperature
- temperature_delta

OS
«checkTemp - every minute»

HVACTestDouble

Environment Controller Kata

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 25

Tests = Constrains

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 26

Tests = Constrains

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 27

Tests = Constrains

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 28

Tests = Constrains

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 29

Tests = Constrains

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 30

Tests = Constrains

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 31

Tests = Constrains

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 32

Tests = Constrains

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 33

Tests = Constrains

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 34

Tests = Constrains

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 35

● Tests can constrain the behavior but they can’t specify it.
● Test can only proof you program being wrong they can not proof

it being right.

Tests = Constrains

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 36

Benefits of TDD

● Safety Net – Rapid Response -> eliminates the fear of change
● Supports low coupling & cohesion otherwise testing is hard
● Reduces debugging time
● Reliable low level documentation
● Shift of perspective: developer to user

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 37

Why should you write your tests first?

Question

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 38

Why should you write your tests first?

● To achieve 100% test coverage (goal)
● The production code tests your tests
● In case they are optional you probably won’t write them

Question

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 39

● Test Types (integration test, acceptance tests, etc.)
● Mocking Frameworks
● Google Mock & Google Test (C++)
● Magic Tricks of Testing (Sandi Metz)
● Versioning Systems (Git) / Continuous Integration

Outlook

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 40

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 41

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 42

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 43

Introduction to Test Driven Development | Dr. Jan Linxweiler, Sören Peters | Slide 44

The SURESOFT project is funded by the German Research Foundation
(DFG) as part of the “e-Research Technologies” funding programme under
grants: EG 404/1-1, JA 2329/7-1, KA 3171/12-1, KU 2333/17-1, LA 1403/12-1,
LI 2970/1-1 and STU 530/6-1.

