
THE EFFECT OF DISCOUNTING FAILURES AND WEIGHTING DATA ON 
THE ACCURACY OF SOME RELIABILITY GROWTH MODELS 

W. Max Woods; Naval Postgraduate School, Monterey 

Key Words: Reliability growth, Failure discounting, weighting data 

ABSTRACI 

Failure discounting is the practice of removing fractions of previous 
failures after corrective action has been taken and no failures for the same 
cause reoccur in subsequent testing. This paper analyzes the effect of two 
parametric failure discounting methods on the accuracy of three discrete and 
two continuous reliability growth models. It makes similar comparisons for 
two data weighting methods. Graphs are used to make comparisons on the 
accuracy of these models without discounting or weighting, with discounting 
only, and with weighting only. The accuracy comparisons are made using 
Monte Carlo methods. The results show that cumulative growth models 
such as the AMSAA and Maximum Likelihood models have greater bias 
than the noncumulative regression models for the cases simulated. The 
results also show that the cumulative models appear to be more sensitive to 
failure discounting and thus more susceptible to yielding optimistic estimates 
of reliability than the regression type models when failure discounting is 
employed. Failure discounting applied too frequently (e.g., after each 
successful test) can adversely affect the accuracy of any of the models 
analyzed. 

INIRODUCITON 

As a product is developed, cycles of test-analyze-fix actions yields groups 
of test data. Each data group corresponds to tests on similar hardware that 
differ from the previous group of tests due to changes that have been made to 
correct determined failure causes. It would appear to be reasonable to remove 
fractions of previous failures for which corrective actions have been taken 
when subsequent tests show that no failures for the same causes have 
occurred. Removing fractions of failures in this manner is labeled failure 
discounting. If performed under a specific scenario, the effect of failure 
discounting on the accuracy of speafic reliability growth models can be 
analyzed using Monte Carlo simulations. Weighting data is an alternative to 
failure discounting. It has been employed in numerous statistical settings. In 
this paper we compare the accuracy of several reliability growth models and 
assess the effect of failure discounting and weighting on their accuracy. 

FAILURE D I S C 0 U " G  MEIHODS 

Two failure discounting methods are used in this paper. For each failure 
cause, the Fraction Discount (FD) method removes an additional fraction 
from the current fractional value of a previous failure, each time that an 
additional number, N, of tests are accumulated without a failure for the same 
cause. After M successful tests without failure for the same cause, the current 
value of the failure is (1 - F)' (N/M'  where I ( N  / M )  is the integer value of 
N / M .  

The number of failure causes and associated probabilities of each failure 
occurrence are input parameters to the computer program which maintains a 
running tab on the number of successful tests since the previous failure for 
each failure cause. 

For each failure cause, the Upper Confidence Bound (UCB) discounting 
method takes the upper confidence bound for the probability of failure of that 
cause to be the fraction of failure that remains. The confidence level is 
denoted by 1 O O f i .  The UCB is computed for each failure cause using 
attributes data. The UCB procedure is applied to obtain a new fractional 
failure value at the end of each additional group of N successful tests without 
failure for the same cause. UCB(y) is given by 

UCB(y) = 1 - (1 - y)lJM 

where M is the total number of successful tests without failure for the 
specified cause at the time the discounting is applied. 

failure is restored to 1. 
When a failure for the same cause reoccurs, the associated fractional 
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DISCRFIFMODELS 

1. Background 

A system under test has several failure causes. Attributes testing is 
performed until a predetermined number, r, of failures occur at which time 
the failure causes are determined. Corrective action is '-ken and the next 
phase of testing is performed. RK denotes system reliability in phase K. The 
number of tests N,(r) in phase K has a negative binomial distribution which 

we designate by N,(r) = NB(r,R,). We drop the subscript K and suppose 

N(r) is NB(r,R). In this case, it is well known that the MLE 8', for R, and the 
MWBE 8' for R are given by 

[ 0 if N(r)=r  whenr> l  

In development programs r may be equal to 1. In thii case 

i q  ={I ifN(1)>1 
0 ifN(1) = 1 

This is not a satisfactory estimate of R. A more desirable estimator for R is 
obtained by writing R = 1 - e?"' Then 

J? = 1 - E ? ,  where (3) 

d is unbiased for A. For the case r=l  (see Reference 9) 

For the case r > 1, the minimum variance unbiased estimator for A is 
(Reference 9), 

Table 1 displays values of R* and R for values of NU) 

TABLE 1. VALUES OF I?*, k, N 

,900 
20 ,950 ,971 

150 993 .996 

It is shown in Reference 9 that 

a) E(R*) = i+I-Rh(i-~) 
b) 1. < i for all N > 1 
c)  E(8') < E ( R )  c R 

d) MSE( 8 *) c MSE( R *) where MSE is mean squared error 

Consequently, R appears to LW a better estimator for R than the MLE, R*  
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2 Exponential Regression (ER) Model 3. AnMLEModel 

Some RG models accumulate all of the test data into one group to form 

an estimate & for the current system reliability. Both the A M S A A  discrete 
and continuous models do this. Other models in use today also have this 
feature. It is appealing to accumulate data when failures are discounted, 
because the act of discounting failures suggests that the data has been adjusted 
so that it all comes from the same.population. 

In this model R, denotes system reliability in phase K. The ER model is 

R, = 1-exp{-(a+BK)}. (6) 

& denotes system reliability prior to any corrections. 

Let r, = number of failures in phase K (fixed in advance). L e t  Nk denote 
the number of tests between failure number j-1 and j in phase K .  An 

unbiased estimator for a + p K  using the jth sequence of these tests is 

for j = 1,2 ,..., r,. Therefore 

IJK =(~ix+.-+~,,x)/rK (8) 

is unbiased for ( a + p K ) .  Alternatively, one can use the minimum variance 
unbiased estimator yk' given by (reference 9) 

(9) 1 1  
r, r,+l N,(r,)-l 

yt'5 -+-+...+1 

The model labeled MLEFD in this paper estimates current reliability by 
the expression 

- N,-F, 
K -  " 

where Nm = total number of tests across phases 1,2, ..., K and 

F, = current sum of all failures across phases 1,2, ..., K 
Fm may Oe adjusted to account for t a u r e  dmounting. They are adjusted the 1 

same way in this model as discussed for the ER Model for simulation I 
purposes. 

WEIGHTING MLTHODS 

Two weighting methods were applied to the discrete models. In both 
methods 

W, = weight allotted to data in phase K. 

w, =(I/ %)/f(l /  8). For r, = 1, JK and yk' are identical. For r, 5 3, , and y, have nearly equal 

mean square errors. The least squares estimates 2, and b, for a and f3 at the 
end of testing in the Kth phase are given by 

In Method I 
I.0 

The resulting ER estimate for R, is given by 

li, = 1 -q{-(SK + &K)} for K 2 1. 
for K = 0. 1 - exp{-y,} 

(11) 

The term yj denotes either unbiased estimator vi or yj from phase j defined 
in equations (8) and (9). 

The ER model has compared favorably with other discrete RG models in 
a study by Cormran and Read (3). It was found to be superior in some respects 
to an AMSAA discrete model (reference 5) by Thailieb (8). 

Equations (8) and (9) assume that N,(r,) is the number of Bernoulli trials 
to r, failures. The number r, of system failures gets reduced under failure 
discounting and can become a fraction or mixed fraction as more successful 
testing is performed. Failure discounting occurs within a phase and across 

phases. When this happens, and the current phase is K, the values of Nl(r,) 

are adjusted in all previous phases to get integers r,* and an N;(rl:) so that 

where rl: = smallest integer greater than rj the current discounted (fractional) 
value of a failure. 

X 
In Method U W, = 3 / xe. 

i-o 

In the discrete models = r,k, / (1 - k,), consequently, if R, increases in K, 
Method I assigns greater weight to early data and Method II assigns greater 

weight to more recent data. Equations for &, and b, using weighted data are 
supplied in reference (6). 

RESULTS FOR DIS(31FTr MODELS 

Figures 1 through 5 display results of some of our computer simulations. 
There are 10 test phases in each case simulated. For each model, each scenario 
(set of input parameters) was replicated 500 times to obtain 500 values for each 
of the ten phase reliability estimates. The values of reliability along the 

vertical axis of the curves are the averages of these 500 values; that is, k,, &, 
&, ..., $,. Sample standard deviations were also computed. One standard 
deviation curve is provided in this report, but the computer program always 
makes these computations. For example in Figure 1, No Discounting, the 

average reliability estimate, & in phase 6 for the Exp REG model is about .59. 
The true reliability assigned to the system for this phase of testing was about 
.64. the value of .64 is obtained by multiplying the probabilities assigned to 
the five failure causes for phase 6. All cases displayed in Figures 1 through 5 
have five failure causes in each of 10 phases. System go-no-go tests are 
performed until the first failure occurs (r = I), at which time testing in that 
phase terminates. The symbol I in the case title below each graph denotes the 
discount interval; i.e., the number of successful tests required between 
discounting. F denotes the discount rate; the fraction of the current failure 
value removed each time a discounting is performed. Figure 1 includes a 

graph of the sample standard deviations of the 500 values of 4 for i = 1,2, ..., 
10 for each of the three models. Standard deviation curves like this one were 
computed for each of the 150 cases simulated. The expression CI = .8 refers to 
the 80% confidence interval discounting method. Figures 1 4  display the 
optimistic effects of discounting frequently I = 1, I = 3 for a cumulative model 
such as the MLEFD model. They also give a dearkdication that the ER 
model is not affected nearly as much by failure discounting as in the ML.EFD 
model. 

Figure 5 displays two sample results of simulation on the ER model a) 
without weighting and b) with weighting by methods I and U described 
earlier. In general, the weighted simulation runs indicate that method 11 is 
superior to method I for weighting data for the ER model. 

- -  
- -  

- 
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The graphs in Figure 1-4 were selected from Chandler (2) which includes 
a listing of the computer program that was used to perform the simulations 
depicted in Figures 1-4 and a set of users instructions for his computer 
program. The graphs in Figure 5 were selected from Markiewiu (6) which 
includes a listing of hex computer program with users instructions. 

:- 

:- . - . 

E :  

P, 
i 

F i g u r e  3 

F i g u r e  1 
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1. WeightingData 

For simulations of the Modified AMSAA Model, two weighting methods 
were used. One method permits the user to choose a value p in (OJ) for 

which the computer generates weights wi = (w:) / where w; = 5. The 

RInID RELE:Lli.( cRw.7~ PLZRN : o w ~ h r  z z -m  P A Y R Y  

yi 
1 

1 

X 

second method computes the weights from the data using wi = q / 

where 8 = 1/ n f ,  ii given by equation 15, and the index i refers to test phase 

1 

I ' 8 8 t O .  

Y.IOh..-iZi 11.Z"e.d. 0". U I d  =o .d U. 
PHIS: ( I  C U " L  PER P W F )  

C 0 l n l . x  h l L . t i l i t ,  ,.lt.rz 

1 . 6 1 I O  

Y. lmtxDO I.Ulb on. .nd .Dd 
a m a  nciiabiiir, cI- 

PIUSE I1 T U U E  PER PIUS3 

With weighting, equation (16) changes as follows: 
F i g u r e  5 

CONTINUOUS MODELS 

Two continuous RG models were analyzed. One model is the well- 
known AMSAA instantaneous model 

= (1 - a)b(n)-'  (12) 

where TT is the total test time. This is a cumulative RG Model. All test time 
is accumulated to obtain the instantaneous estimate of the failure rate. 
Equations for i and 6, the estimates of a and b, in this standard AMSAA 
model are as follows 

where N = total number of failures and X, = total test time up to the ith 
failure. X, denotes 77'. 

The second continuous model is not cumulative. It obtains estimates of 

i, for Phase K using test data in phase K only and uses similar estimates 

from previous phases to obtain regression estimates i, and 6, for a and b. 
We call it the Modified -AA Model. We assume N, items are tested until 
r, fail in phase i. Early in development, thii test plan is often the one used 

( w i t h N ,  =l).  Let 77'' = zT, where T, denotes total test time in test phase i. 

The model is 

K 

I-0 

For each phase i compute 

(15) 

(17) 

where ??-X and EX are the averages of the w,X, and w,x. The standard 
AMSAA Model was not evaluated for data weighting. 

2 FailwDiscounting 

Failure discounting applied to the AMSAA Model was very simple. 
Other discounting methods have been proposed; e.g., see Crow (4). The 
equations for 6 and b in the AMSAA model are given in equation (13). 

Discounting of the AMSAA model was performed by replaang N in 
equation (13) by the sum of al l  of the current discounted failure values each 

time & was computed during the evaluation process. This provides a 

sequence of estimates, &,, L2, ... as testing is completed in each phase and 

failures are discounted and current estimates P, , 6, are computed 

The failure discounting method for the Modified AMSAA Model is more 
complex. For this model, a fraction, f, of a current value of a failure is 
removed for each specified amount of additional test time, TR, without 
failure for the same cause. If F was the last updated value of a failure and a 
total of TSF time has been accumulated since the last update, then the new 
adjusted value of F, say F,, is given by 

where INTQ is the largest integer less than or equal to x .  

RESULTS FOR CONTlNUOUS MODELS 

Figure 6 shows the results for some failure rate patterns that were 
simulated. In each case, there were five failure causes and 10 test phases. In 
each phase, five items were tested until two failed assuming an exponential 
distribution. The code letter E in Pattern lE, 2E, 7E refers to discounting 
parameters f = .50 and TR = 3 which is the greatest level of discounting 
simulated. Figure 6 shows the results of the simulations for failure rate 
pattems 1,2, and 3 under this E level of discounting. 

The results in Figure 6 indicate the following: 

where r; denotes current number of failures in phase i. If no failure 
discounting is done then F, = r,. 

a) For all of these failure rate pattems, the Modified AMSAA without 
weighting or discounting appears to track failure rate decrease more 
closely than the A M S A A  model. 

/ ( K + l ) , i = O . L , , , . K .  The least squares estimates iX,iK are 

given by 

6, = +Xp(C + i,TK) 
1 - a  

for K = 1,2, ... . n e  equations for P, and 6, can be readily programmed on a 
hand-held calculator or a microcomputer. 

b) Failure discounting appears to improve the AMSAA Model slightly for 

c) Failure discounting does not consistently improve the Modified 

Patterns 1 and 2, but is optimistic for pattern 7 in the later phases. 

AMSAA Model. 
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Figure 6 

SUMMARY AND CONCLUSIONS 

The results of the research reported here indicate the following for the 
models analyzed: 

a) The non-cumulative growth models tended to track different growth 
pattems better than did the cumulative models. 

models than on the non-cumulative models. 

c) Weighting the data can have a significant impact on both cumulative 
and non-cumulative growth models. 

b) Failure discounting has a greater impact on the cumulative growth 

d) Requiring five or more successful tests between failure discounting 
substantially reduces the hazards of failure discounting. 

Computer programs exist that can be used to evaluate the impact of 
proposed weighting or failure discounting scenarios on the accuracy of 
reliability growth models. these and other simulation methods can be used to 
answer "what if' questions pertaining to the accuracy of reliability growth 
models. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

Drake, J. E., Discrete Reliability Growth Models using Failure Discounting, 
M.S. Thesis, Naval Postgraduate School, Monterey, CA, September 1987. 

Chandler, James D., Jr., Estimating Reliability with Discrete Growth 
Models, M.S. Thesis, Naval Postgraduate School, Monterey, CA, March 
1988. 

Corcoran, W. J. and Read, R. R., Comparison of Some Reliability Growfh 
Estimation and Prediction Schemes, United Technology Center Report 
Addendum UTC2140, 1967. 

Crow, L. H., "Reliability Growth Prediction from Delayed Fixes," 
Proceedings of the Annual Reliability and Maintainability Symposium, 
1983. 

Crow, L. H., AMSAA Discrete Reliability Growth Model, US. Army 
Material Systems Analysis Activity, Aberdeen Proving Ground, MD, 1983. 

204 

6. Markiewicz, Pamela A., Discrete Rebability Growth, M. S. Thesis, Naval 
Postgraduate School, Monterey, CA September 1988. 

Negus, Scott, Evaluation of a Modified AMSAA Continuous Reliability 
Growth Model using Failure Discounting and Weighting Factors, M.S. 
Thesis, Naval Postgraduate School, Monterey, CA, September 1989 (in 
preparation). 

Thalieb, Rio M., An Accuracy Analysis of Army Material Systems 
Analysis Activity Discrete Reliability Growth Model, M.S. Thesis, Naval 
Postgraduate School, Monterey, CA, March 1988. 

Woods, M., Chandler, J. and Drake, J., (1988), Analysis und Evaluation of 
Discrete Reliabili ty Growth Models W i t h  . an Without Failure 
Discounting, Naval Postgraduate School Technical Report NPS55-88-013. 

7. 

8. 

9. 

BIOGRAPHY 

Prof. W. M. Woods (55Wd) 
Department of Operations Research 
Naval Postgraduate School 
Monterey, CA 93943 

W. M. Woods has taught numerous courses in reliability, product 
assurance, statistical quality control and statistics. He has supported DoD 
agencies in various product quality areas through his research since 1962 
when he first joined the Naval Postgraduate School. Some of his methods 
for system reliability confidence intervals, sampling inspection, reliability 
growth and 643' analysis are still in use today. 

1990 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium 


