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Preface  
This volume contains the abstracts of the posters accepted and presented at the EuroS&P 2024 
conference, which was held on July 8-12, 2024, in Vienna. Following the tradition initiated with the 
2022 edition of the conference, these proceedings are published on Zenodo (https://zenodo.org), an 
open research repository operated by CERN, which enables sharing and preserving of research 
outputs.  

The poster session of Euro S&P is conceived as an opportunity for security and privacy researchers 
to share their recent results, and to obtain valuable feedback on their ongoing work from participants 
at the conference. In total, 10 abstracts were submitted to the poster session, which underwent a 
lightweight review process. In particular, reviews were aimed at checking the coherence of the 
abstracts with the scope of Euro S&P, rather than providing in-depth technical feedback as for a 
regular submission. Each abstract was reviewed by at least two members of the program committee. 
After the review phase, the program committee decided to accept all submitted abstracts.  

We would like to thank all the authors for the creativity and effort that went into their submissions, 
and especially the poster presenters (including the invited posters’ presenters), for their tireless 
engagement with the attendees during the lively poster session. We are also grateful to Edgar Weippl 
and Matteo Maffei, the general chairs; Sebastian Schrittwieser and Victoria Buchsbaum, the 
publication chairs; Herbert Bos and Ben Stock, the program chairs; Sandra Wotawa and Yvonne Poul, 
the financial chairs; and to everyone else who helped facilitate the poster session. Finally, we are also 
grateful to Ivan Liang for setting up the HotCRP platform for managing the submission process, and 
to the web chair Sandra Wotawa for updating the website with the updates related to the call for 
posters.  
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Abstract—While the utilization of large language models
(LLMs) is expected in various industries, concerns have been
raised regarding information leakage and privacy issues related
to training data. The application of differential privacy has been
actively researched as a solution to the problem. Differential
privacy has been applied during the fine-tuning stage of pre-
trained LLMs, and the information leakage risk concerning
training data has been evaluated through membership inference
attacks (MIAs). Although parameter-efficient fine-tuning (PEFT)
has recently gained attention, it has also been studied for the
application of differential privacy. An evaluation of information
leakage risk through MIAs has not yet been reported. Therefore,
in this paper, we focused on the representative PEFT method
Low-Rank Adaptation(LoRA) , and performed an MIA evalua-
tion of a model trained with differential privacy-enhanced LoRA.
We demonstrate the effectiveness of applying differential privacy
to LoRA through MIA evaluations. Through the experiments, it
was revealed that fine-tuning via LoRA has an effect in mitigating
privacy risks. However, no distinct impact on privacy risk
reduction was observed through the application of differential
privacy. This was consistent even when varying the privacy
parameter ϵ in the validation.

Index Terms—Large Language Model, PEFT, Differential Pri-
vacy, Membership Inference Attack

I. INTRODUCTION

Transformer-based large language models (LLMs), such as
BERT and GPT [1] have been developed and have achieved
state-of-the-art performance in various natural language pro-
cessing tasks. Generally, such models are pre-trained on large
and diverse publicly available datasets and then fine-tuned
for specific tasks. Fine-tuning is a technique in which a pre-
trained model is retrained on a new dataset to improve the
task performance. Recently, as the models become larger,
parameter-efficient fine-tuning (PEFT) has gained attention.
PEFT is a technique used to customize the LLM, where a small
number of parameters or layers are added to the original LLM
and trained with case-specific data. The weights of the original
LLM remain fixed, resulting in significantly fewer parameters
being updated during training. This improves performance in
specific cases with limited computational resources.

LLMs have a high capacity to memorize training data,
leading to concerns regarding the information leakage risks
associated with training data [2]. Recently, membership in-
ference attacks (MIAs) have been regarded as an information
leakage evaluation tool that reveal the extent to which a model

memorizes individual samples from a training dataset and the
associated risks.

Ensuring differential privacy (DP) in the training of LLMs
has gained attention as a countermeasure to address the
information leakage risks associated with training data. DP
is a powerful theory in data privacy and a technology that
was originally proposed for statistical data. Recently, it has
been commonly employed when applying privacy guarantees
to machine learning models. Research is underway to apply
DP to the training methods of pre-training, fine-tuning, and
PEFT in LLMs.

MIA evaluations have begun to be performed on large-scale
language models that apply differential privacy, but PEFT has
not been evaluated. Du et al. conducted information leakage
risk evaluations of training data using MIAs on full fine-tuned
models with DP [3]. However, models that are fine-tuned by
DP-enhanced PEFT have not been evaluated.

In this study, we investigate whether applying DP to repre-
sentative PEFT, LoRA can mitigate information leakage risks
associated with training data. In the evaluation experiments,
we refer to the experiments of Yu et al. [4] and use the LLM
GPT-2 and two datasets. We fine-tune the models using DP-
enhanced LoRA. Subsequently, we conduct MIA evaluations
on the fine-tuned models. Through these experiments, we aim
to determine whether applying DP to LoRA method could
effectively reduce the information leakage risks associated
with the training data.

Contributions. We conduct MIA evaluations on DP-
enhanced LoRA, which has not been previously explored. In
the experiments, we utilize the GPT-2 which is an LLM for
sentence generation and the two datasets; E2E and WebNLG
Challenge 2017. We evaluate models fine-tuned with DP-
enhanced LoRA. The experimental results reveal that fine-
tuning via LoRA has an effect in reducing privacy risks.
However, no distinct impact on privacy risk reduction was
observed through the application of DP. This was consistent
even when we set the privacy parameter ϵ to 0.1, 1, 3, 6 in
the validation.

II. RELATED WORK

A case of applying DP to PEFT was reported. Yu et al.
reported the accuracy of models fine-tuned with DP using
PEFT [4]. Although the accuracy of models fine-tuned with



DP using PEFT has been discussed, the information leakage
risks associated with the training data have not been evaluated.
Du et al. conducted an information leakage risk evaluation of
training data using the MIA for models that trained via DP-
enhanced full fine-tuning [3]. To the best of our knowledge,
there has been no information leakage risk evaluation of
training data for fine-tuning models using PEFT with DP.

III. PRELIMINARIES

In this section, we provide an overview of LoRA, DP, and
information leakage related to the training data.

A. LoRA

Hu et al. proposed LoRA which is one of the PEFT method
[5]. In our study, we implemented LoRA with DP using the
method followed Yu et al. [4]. Within each pre-trained model,
there exists a size of dense weight matrix, to which a low-rank
matrix is added. Typically, small value is chosen as a rank.
This is because most of the parameters in the Transformer
architecture are dense weight matrices, and selecting a small
rank can dramatically reduce the number of parameters. Hu et
al. applied this reparameterization only to the attention weights
that constitute the Transformer, while the weights in other
feed-forward layers remained fixed.

B. Differential Privacy (DP)

DP is a privacy-protection metric based on indistinguisha-
bility [6]. Data which satisfy the DP criterion will preserve
security even in the event of new attack methodologies being
discovered post data creation, or the emergence of attackers
possessing unforeseen background knowledge.

DP is defined as follow.

Pr[M(D) ∈ O] ≤ eεPr[M(D′) ∈ O] + δ. (1)

When a randomization function M : D → R satisfies the
above formula for any adjacent databases D and D′, M
satisfies ϵ-δ DP. O represents any subspace of the output space
R. The privacy parameter ϵ represents the maximum distance
between the responses when resemble databases the same
query. δ represents the probability of unintentional information
leakage.

C. Membership Inference Attacks (MIAs)

MIAs determine whether a specific sample is used to train a
target model. Recently, it has also been used as an evaluation
metric for information leakage risks associated with the train-
ing data of machine learning models. The MIA method used
in this paper is proposed by Carlini et al [2]. We utilize the
percentage of training samples correctly classified as members
of the training set as an indicator of privacy risk. Next is how
to operate MIA. Samples are fed into both a fine-tuned model
and a reference model, and a likelihood ratio is calculated. If
this ratio is less than a predetermined threshold, the sample is
classified as a member of the training set. This threshold is set
such that 10% of validation samples are mistakenly classified
as members.

TABLE I
PERPLEXITY AND MIA RECALL OF MODELS TRAINED ONLY

PRE-TRAINING, FULL FINE-TUNING AND LORA USING E2E DATASET.

Model Size method Perplexity MIA Recall

Pre-trained 124 0.00
GPT-2-Small Full-FT 2.14 1.00

LoRA 3.65 0.167

IV. EXPERIMENT

In this section, we present the datasets, model architecture,
training method, and MIA evaluation.

A. Setup

In this study, experiments were conducted from two per-
spectives. One is the perspective of the dataset, and the other
is the perspective of the model size. Two datasets from natural
language generation tasks, WebNLG Challenge 2017 and E2E
are used. The WebNLG Challenge 2017 dataset is composed of
18,025 training samples, 2,258 validation samples, and 4,928
test samples. The E2E dataset is composed of 42,061 training
samples, 4,672 validation samples, and 4,693 test samples. The
models employed in the experiments are GPT-2-Small and
GPT-2-Medium. These models excel in language generation
and differ in size. GPT-2-Small comprises 12 layers with
110 million parameters, while GPT-2-Medium comprises 24
layers with 336 million parameters. Currently, no established
method exists for making appropriate decisions regarding the
privacy parameter ϵ settings for mitigating privacy risks when
training LLMs. Thus a broad range was set and experiments
were conducted. The settings for the privacy parameter ϵ were
established as 0.1, 1, 3, and 6. The parameter δ was set as
1e − 5. The dimension of the matrix added by LoRA was
set to 4. By using above contents trained for 20 epochs using
LoRA with DP, and privacy risk was evaluated using MIAs.
We use the MIAs based on the likelihood ratio described
in the previous section. The indicators used for evaluation
were perplexity, five scores, and MIA Recall. Perplexity is
a measure of how accurately a language model can predict
the next word. But it does not fully capture the performance
of a language model. The score represents the performance of
the model based on each method. MIA Recall indicates how
successful the attack is. In this research it is used as an index
to evaluate how much training data has been leaked.

B. Results And Discussion

Table 1 shows the results of perplexity and MIA Recall
for GPT-2-Small that underwent only pre-training, the model
that used E2E for full fine-tuning, and the model fine-tuned
via LoRA. Both full fine-tuning and fine-tuning via LoRA
demonstrated a significant reduction in perplexity, indicating
successful training progression. Regarding MIA Recall, the
pre-trained model observed 0.00, and full fine-tuning observed
1.00, suggesting that MIA was appropriately implemented.
The model fine-tuned via LoRA saw a decrease in MIA Recall



TABLE II
SCORES AND MIA RECALL OF TWO MODELS, FINE-TUNED VIA DP-ENHANCED LORA USING WEBNLG CHALLENGE 2017 AND E2E DATASET ON

GPT-2-SMALL AND GPT-2-MEDIUM.”W/O DP” INDICATES THE ABSENCE OF DP APPLICATION.

Score
Model Size ϵ Perplexity BLEU NIST MET ROUGE-L CIDE-r MIA Recall

w/o DP 37.9 49.2 9.74 38.1 63.18 3.24 0.124
0.1 16.5 1.08 1.07 19.4 41.3 1.04 0.137

WebNLG Challenge 2017 GPT-2-Small 1 28.6 20.1 1.26 21.8 45.1 1.24 0.162
3 29.9 25.9 2.79 25.1 48.8 1.47 0.138
6 28.0 29.5 4.05 26.8 51.0 1.69 0.154

w/o DP 3.65 69.6 8.78 46.4 70.9 2.49 0.167
0.1 7.01 40.9 1.56 30.4 30.4 0.93 0.166

GPT-2-Small 1 5.77 57.2 5.01 36.1 62.9 1.46 0.155
3 5.48 53.9 6.40 33.9 59.8 1.56 0.157

E2E 6 5.38 60.6 6.69 37.6 64.6 1.69 0.156
w/o DP 3.47 70.2 8.91 46.4 71.2 2.46 0.173

0.1 9.33 25.0 0.250 23.6 50.9 0.568 0.167
GPT-2-Medium 1 6.60 51.8 4.18 33.6 60.6 1.28 0.157

3 5.82 56.5 6.21 35.1 62.2 1.56 0.162
6 5.59 59.1 5.83 36.3 64.6 1.56 0.149

to 0.167. This suggests that LoRA has the effect of reducing
privacy risks related to training data. A possible reason is
that the number of parameters altered during fine-tuning using
LoRA is minimal.

Table 2 presents the experimental results using WebNLG
Challenge 2017 and E2E datasets fine-tuned via LoRA with
DP. When not applied DP (w/o DP), the model scores are
maximized in all categories. Even when utilizing the WebNLG
Challenge dataset on GPT-2-Small, the model’s score has
been observed to decline due to the application of DP. No
discernible decreasing trend was identified in relation to MIA
Recall due to the application of DP.

Next, we analyze the results using the E2E dataset on GPT-
2-Small. When not applied DP (w/o DP), the model scores
are maximized in all categories. Furthermore, when altering
the privacy parameter ϵ, which regulates the intensity of DP,
the model score increases as ϵ becomes larger in all score-
related categories, with the lowest score when ϵ is smallest.

A experiment was conducted on models of different sizes.
Similarly for GPT-2-Medium, as ϵ larger, the model score
also improved. Regarding MIA Recall, 0.012 decrease can be
observed with the application of DP, but no significant change
in MIA Recall due to DP was detected in GPT-2-Small. In
GPT-2-Medium, the application of DP resulted in the MIA
Recall decreased by a maximum of 0.023. Upon comparison
between GPT-2-Small and GPT-2-Medium, it is discernible
that the model with a greater number of parameters, GPT-
2-Medium, yields a higher score. Moreover, the degree of
degradation due to DP noise is also amplified. In terms of
MIA Recall, the proportion of decline due to DP is escalating.
Furthermore, in the case of fine-tuning with LoRA, the larger
the model size, the greater the effect of applying DP on the
risk of information leakage regarding LLM training data by
comparing with and without DP. This can be attributed to the
increase in the number of parameters to be modified as the

model size enlarges.

V. CONCLUSION AND FUTURE WORKS

From the results, it has been elucidated that when fine-tuned
with LoRA, it becomes challenging to achieve the effect of
reducing privacy risks related to the training data through the
application of DP.

In this experiment, we utilized the GPT-2 model. However,
it is necessary to conduct similar validations with different
models, such as BERT, which excels in language understand-
ing. Additionally, while we evaluated the LoRA method, it is
also necessary to apply DP to other PEFT methods and assess
their privacy risks.

DP has a trade-off with model accuracy, presenting the
disadvantage of performance degradation. Given the results of
this study, it appears that the protective effects do not justify
the degradation of the model, suggesting the need to consider
alternative countermeasures distinct from DP.
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Abstract—In today’s interconnected world, specialized mem-
ory isolation mechanisms for low-end embedded micro-
controllers are becoming vital. Responding to this need,
Texas Instruments has developed the promising Intellectual
Property Encapsulation (IPE) feature for their popular ultra-
low-power MSP430 microcontrollers. Academic researchers
have, furthermore, implemented many trusted execution
prototypes on the related openMSP430 open-source softcore.
Recent research has shown, however, that these diverging
code bases suffer from critical hardware and software vul-
nerabilities that we believe could have been avoided with
more coordination. Hence, we present our work in progress
on an openly accessible and extensible research platform
based on the specification of the proprietary IPE feature.
We implement mature hardware support for IPE on open-
MSP430, extending it with a fully configurable firmware
layer, striving for extensible open-source building blocks that
provide a solid foundation for future research.

1. Introduction

In contrast to high-end servers and desktops, special-
ized memory isolation features for ubiquitous ultra-low-
end embedded devices are generally not as widespread and
more limited in functionality. Specifically, some vendors
are shipping limited hardware features for code protection
and, in certain cases, data isolation in selected microcon-
trollers. At the same time, a long line of academic research
prototypes has explored specialized isolation mechanisms
for trusted execution environments (TEEs) specifically
aimed at low-end microcontrollers.

A key driver behind these academic innovations has
been the availability of open-source softcore implemen-
tations, facilitating the rapid prototyping of hardware-
software co-designs. OpenMSP430 [8], an open-source
reimplementation of the popular line of ultra-low-power
MSP430 microcontrollers from Texas Instruments (TI),
is such a platform. While openMSP430 itself lacks any
built-in security features, it has served as the basis for
numerous academic TEE prototypes [6], [7], [12], [13].
Interestingly, newer MSP430 devices produced by TI ship
with advanced security features that are not implemented
by openMSP430, including a memory protection unit and
Intellectual Property Encapsulation (IPE) [18]. IPE utilizes
a capable program-counter-based hardware memory iso-
lation mechanism to establish a secluded enclave memory
region for confidential code and data. This approach has
drawn explicit comparisons to the isolation guarantees
offered by TEEs [3], and IPE itself has been used as a

building block of academic proposals on secure intermit-
tent computing [10], [11].

The emergence and popularity of these security fea-
tures point to the importance of including hardware mem-
ory isolation mechanisms in low-end microcontrollers.
Unfortunately, however, current systems have been shown
to suffer from critical vulnerabilities, including design
flaws and implementation errors [4], improper input sani-
tization [4], [19], and microarchitectural side channels [4],
[20]. Even TI’s IPE has been shown vulnerable to different
code and data extraction attacks [3], [14], [15], ultimately
compromising the security of systems building on it.

Crucially, we observe a large overlap in the impacted
security features and hypothesize that many attacks could
have been avoided with more coordination. For example,
the most crucial vulnerability on IPE, controlled call
corruption [3], assigned high severity by TI, was found
to be already mitigated via a minimal hardware change
in both Sancus and VRASED, two research systems built
on openMSP430. Similarly, IPE does not enforce a sin-
gle entry point, a well-understood design requirement
for embedded TEEs [7], [9], [12], [13], [16]. IPE has,
furthermore, been shown to straightforwardly leak register
contents on interrupts [3], [14], which is avoided in Sancus
and VRASED via custom secure interrupt extensions or
guaranteed atomic execution [1], [5], [6], [13]. Conversely,
VRASED’s direct memory access (DMA) access control
check was shown to suffer from a subtle implementation
bug that is not present in either Sancus or IPE [4].
Given these remarkable overlaps, we can only assume
that other closed-source (openMSP430-based) implemen-
tations likely suffer from similar recurring vulnerabilities.

Our vision. In general, we observe that there is a niche for
low-end embedded TEE research prototypes, which often
share remarkably similar base functionality. However, the
current practice is to reimplement this functionality, com-
monly introducing (known) vulnerabilities or overlooking
pitfalls. Moreover, ongoing efforts on vetting [4], [19]
and formal verification [5], [13] are necessarily specific
to particular prototype implementations. We hypothesize
that having a common base implementation of an isolation
feature that can easily be extended to provide more com-
plex security guarantees is beneficial for the community.

Our contributions. We propose an extensible hardware-
software co-design that closely mimics and extends the
base specification of TI’s proprietary IPE, including a fully
configurable trusted firmware layer that is transparently
executed on reset and remains immutable during program
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Figure 1. Simplified schematic overview of our design extending the
openMSP430 core. Two new components are added: firmware memory
and IPE control, the peripheral implementing the access control logic
based on the highlighted added connections.

execution. Our envisioned unified framework will provide
strong and flexible building blocks for rapid prototyping
of novel embedded memory isolation security mecha-
nisms. Importantly, an eventual open-source implemen-
tation means that efforts will not have to be duplicated,
and improvements, tests, and verification efforts of the
common parts will be reusable in all derived designs.

Furthermore, we plan to streamline software devel-
opment via a tailored open-source toolchain providing
source-level compatibility with current IPE projects. This
will also enable research on compiler modifications [21],
currently restricted by TI’s proprietary IPE compiler.

2. Design and implementation

Like numerous academic prototypes [2], [6], [7],
[12], [13] discussed above, we implement our design
on the open-source openMSP430 [8] softcore. Figure 1
overviews the main components and connections we
added to the base openMSP430 architecture. The main
changes (highlighted in orange) are a new IPE control
peripheral that implements the access control logic and a
firmware layer that is securely executed on device reset.

Threat model. For our design, we start from the threat
model of IPE, designed to protect intellectual property on
a device that is controlled by an untrusted party. In this
original model, the attacker controls external interfaces
such as the DMA controller and the JTAG debug unit,
and all untrusted software on the device except the IPE
region and a small firmware layer (bootcode). In addition,
the FRAM technology used in these devices offers certain
protections [17] against attackers with physical access.

With our implementation, we try to stay as close
as possible to this model. Particularly, we consider all
untrusted software, the DMA controller, and the open-
MSP430 debug unit to be compromised. As our prototype
implementation is not a physical design, protecting against
physical attacks on the memory is outside our scope. It is,
however, possible to implement our design on an FPGA

TABLE 1. ACCESS CONTROL RIGHTS. PERIPHERALS AND DMEM
ARE OMITTED FROM THE ROWS, AS THEY CANNOT EXECUTE CODE.
IPE ENTRY IS AN EXTENSION OF THE ORIGINAL SPECIFICATION [3].

Peripherals DMEM Firmware PMEM IPE IPE entry

Firmware rw- rw- rwx rwx --- --x
IPE + entry rw- rw- r-- rwx rwx rwx
PMEM rw- rw- r-- rwx --- --x
DMA rw- rw- r-- rw- --- ---
Debug unit rw- rw- r-- rw- --- ---

and connect an external memory chip with the same prop-
erties as TI’s FRAM. Likewise, similar to IPE, we rely on
the correct functioning of a small trusted firmware layer,
which can also be implemented as an external memory
unit, in which case adding physical protections to this
external chip may be appropriate.

Address space. In openMSP430, the 16-bit memory ad-
dress space is divided into three partitions: read-only
program memory (PMEM), non-executable data mem-
ory (DMEM), and memory-mapped peripherals. The size
of the memory partitions is configurable, and they are
connected with separate buses to the memory backbone
handling the arbitration (cf. Figure 1). We base our imple-
mentation on the MSP430FR5969, which places the IPE
configuration registers at base address 05A0h, making
it necessary to extend the openMSP430 peripheral space
to 4 kB. Similarly, to better align with the writeable and
executable FRAM memory in TI devices, we modified
the memory backbone and two-stage pipeline to support
write operations to program memory, enabling dynamic
data updates for the secluded IPE region inside PMEM.

Memory access control. An important aspect of our sys-
tem is the implementation of memory access control based
on the IPE specification. The IPE region, determined
by the value of two boundary configuration registers, is
protected from outside software, DMA, and debugger ac-
cesses, as summarized in Table 1. On TI devices featuring
a 20-bit address space, these configuration registers store
the most significant 10 bits of the boundaries, aligning
the region to 1 kB boundaries. In our implementation,
we adhere to this design for compatibility reasons, but
as openMSP430 only has a 16-bit address space, storing
full boundary addresses and implementing byte-granular
protection boundaries is a feasible alternative.

The access control is handled largely by the IPE
control peripheral (cf. Figure 1), which stores the config-
uration registers and is connected to the CPU by several
monitoring and control signals, signaling access violations
to the memory backbone. Illegal reads immediately return
the value 3FFF without forwarding the operation to the
memory, preventing possible microarchitectural leakage
by the resulting value’s propagation. Illegal stores are also
suppressed, while illegal jumps trigger a non-maskable
interrupt. The access control checks are also performed for
accesses by the debug unit and DMA requests. Moreover,
during the execution of IPE, the debug unit is disabled,
preventing it from leaking or corrupting register values.

Secure firmware. In TI devices, special bootcode is
responsible for setting up the IPE protection before un-
trusted code can execute or the debugger can attach.
While TI did not release its source code and it is not



stored in an accessible memory location on the microcon-
trollers, we reimplemented this bootcode as a modifiable
firmware layer based on TI documentation. We will open-
source the bootcode and make it readable from software
on the device, as we believe that availability leads to
more scrutiny and better security down the line. When
implementing extensions to our system, open access also
allows the extension and modification of this firmware
layer, possibly implementing more complex functionality
leading to different security guarantees.

Interestingly, this firmware memory needs to enjoy
similar protections as the IPE region itself (cf. Table 1),
as it needs to be protected from tampering by the attacker,
which could undermine the security of the system, such
as the correct setup of the IPE region. We implemented
these protections in an analogous way to the IPE access
rights explained earlier.

3. Ongoing and future work

Hardware extensions. IPE Exposure [3] proposed mini-
mal hardware extensions to IPE-enabled microcontrollers
to mitigate the issues discovered in their analysis. These
fixes enforce a single entry point to the IPE region and
eliminate the controlled call corruption vulnerability.
We have already implemented these hardware fixes in our
prototype, and we will evaluate their cost and performance
as compared to software workaround fixes [3].

Additional efforts could focus on extending IPE’s ac-
cess control policies, e.g., by supporting more than one
protected region [12], securing I/O devices [7], [12], or
interruptible protected execution [1], [5], [6].

Software toolchain and extensions. While we cannot
offer full binary compatibility with TI IPE due to its 20-
bit address space and extended instructions, we aim to
provide full software compatibility of C projects, only
requiring recompilation of code written for TI. We base
our toolchain on TI’s example IPE project [18] and the
software mitigation framework introduced in IPE Expo-
sure [3], the latter of which already provides some pro-
tection against interface sanitization attacks [19]. At the
application level, generic hardware support for secure IPE
code and data regions on openMSP430 enable new use
cases, e.g., secure intermittent computing [10], [11], real-
time guarantees [1], or software-based attestation [13].

Security tests. To systematically validate the correct
workings of the IPE bootcode and the memory access
control logic, we are developing an extensive unit test
framework running in the iverilog simulator. Future
work may strengthen security guarantees via more com-
plex test cases or even formal verification [5], [13].
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Abstract—We propose a privacy-preserving billing protocol
for local energy markets (PBP-LEMs) that takes into account
market participants’ energy volume deviations from their bids.
It enables a group of market entities to jointly compute partic-
ipants’ bills in a decentralized and privacy-preserving manner.
It also mitigates risks on individuals’ privacy arising from any
potential internal collusion. We first propose a novel, efficient,
and privacy-preserving individual billing scheme, achieving
information-theoretic security, which serves as a building block.
PBP-LEMs utilises this scheme, along with other techniques such
as multiparty computation, Pedersen commitments and inner
product functional encryption, to ensure data confidentiality and
accuracy. We present three approaches, resulting in different
levels of privacy and performance. We also show that PBP-LEMs
is feasible for deployment in real LEMs.

Index Terms—Security, Privacy, LEM, MPC

I. INTRODUCTION

Local energy markets (LEMs) enable prosumers – individ-
uals who consume and produce – to actively participate in
open markets, supporting direct trading of surplus energy with
others. This contrasts with the traditional practice of selling
to suppliers at feed-in-tariff (FiT), which is lower than retail
market price (RP).

LEMs typically require participants to submit bids before
the actual trading period (e.g., 1 hour in advance). There-
fore, market participants need to forecast their bid volumes,
indicating the amount of energy they intend to trade. This
prediction relies on historical data and estimated consumption,
making it inherently prone to errors. As a result, participants
may commit to trade specific energy volumes but subsequently
fail to fulfill these commitments. As this failure can disrupt
grid stability and increase costs, market participants should
be accounted for their deviations from their committed bid
volumes during the billing process. Furthermore, a market
participant’s deviation may cause a different level of effect
on the grid depending on what part of the grid the participant
resides in. As a result, some might bear higher costs than
others, not only due to their deviation amounts but also
because of their specific locations on the grid.

The computation and settlement of bills/rewards for partic-
ipants in LEMs, while considering their deviations, requires
critical private information, including individual bid volumes
and meter readings per trading period. These are closely
associated with individuals’ consumption patterns, posing
risks to their privacy.

This work was supported by EPSRC through EnnCore [EP/T026995/1]
and by the Flemish Government through FWO-SBO SNIPPET [S007619].

Previous studies have addressed the privacy concerns dur-
ing billing and settlement, employing techniques such as
anonymization, perturbation , and homomorphic encryption.
Nevertheless, only a few have considered establishing a
billing mechanism based on the actual amount of energy pro-
duced/consumed by LEM participants [1, 2] or to additionally
account for deviations [3–5]. However, the billing process is
coordinated or executed by a single honest party [1, 2, 4],
disclosing some or all of the individuals private data to the
party and potentially imposing a high computational cost on
a single party. This raise questions about the applicability or
scalability of their solutions in realistic scenarios. In contrast,
solutions [3, 5] rely on a group of entities working together to
compute individual bills/rewards privately. However, they are
vulnerable to the risk of internal collusion, potentially leading
to the disclosure of highly sensitive data.

To address these limitations, we propose a privacy-
preserving billing protocol for LEMs (PBP-LEMs), consid-
ering participants’ deviations. Our contributions are:
• We propose a novel efficient and privacy-preserving

individual billing scheme (EPIBS).
• We design a privacy-preserving billing protocol (PBP-

LEMs) considering participants’ energy volume devia-
tions and their locations on the grid, by utilising EPIBS,
Pedersen commitments, multiparty computation (MPC),
and function-hiding inner product encryption (FHIPE).
PBP-LEMs involves a collaboration of different enti-
ties performing bill computation without revealing any
individual participant’s private data. It also mitigates
the potential impact on individuals’ privacy resulting
from internal collusion. We propose three approaches,
resulting in different levels of privacy and performance.

• We evaluate the computation and communication com-
plexity of PBP-LEMs.

II. PRELIMINARIES

System Model (Fig. 1): Users, supported by smart meters
(SMs), engage in a LEM by submitting bids (consisting
of energy volume and offered price). Local Energy Market
Operator (LEMO) executes the LEM, identifying the trading
price and the accepted bids. Suppliers provide energy to their
customers in the retail market at RP and purchase electricity
injected by their customers that is not traded in the LEM at
FiT. They also generate and manage their customers’ (i.e.,
users) bills based on their participation in the LEM. Distri-
bution System Operator (DSO) divides the LEM area into



Fig. 1: System model.

zones and sets energy importing/exporting fees for each zone.
Computational Severs (CS) calculate the required deviation
cost information according to the zone-based billing model
with universal cost split (ZBUCS) [5]. Key Authority (KA)
generates the keys.

Threat Model: LEMO, RMRs and suppliers are semi-
honest. Users and external entities are malicious. We assume
two security settings for CS: honest majority (HM) and
dishonest majority (DM) with active adversaries. We assume
that the communication channels are private and authentic,
entities are time-synchronized and SMs are tamper-proof.

Functional Requirements: (i) Each supplier learn each of
their customers’ aggregated bills/rewards generated from their
participation in LEM per billing period (ii) Each supplier
learn its income balance incurred from selling (buying) the
deviation shares to (from) their customers per trading slot (iii)
Each user learn their own LEM bill/reward per billing period.

Security and Privacy Requirements: (i) Privacy preserva-
tion: exact users’ locations and their type of participation (sell-
ing or buying) should be hidden. (ii) Confidentiality: users’
bid volumes, meter readings, deviations, and bills/rewards per
trading period from LEM should be hidden. (iii) Collusion
Impact Mitigation: users’ highly sensitive data should not be
revealed in the event of internal collusion.

Building Blocks: MPC PBP-LEMS utilises the following
building blocks: (i) MPC protocols proposed by [6] and [7]
for honest-majority dishonest-majority settings, respectively;
(ii) Pedersen Commitment [8]; (iii) FHIPE [9] (details below);
• IPE.Setup(1λ, S) → (pp,msk) given a security parame-

ter λ, Setup initializes the system and outputs the public
parameters pp and master key msk.

• IPE.LeftEncrypt(msk, α, x) → Ctx given the master
key msk, a vector x and a uniformly random element α,
LeftEncrypt outputs a ciphertext Ctx.

• IPE.RightEncrypt(msk, β, y) → Cty given the master
key msk, a vector y and a uniformly distributed element
β, RightEncrypt outputs a ciphertext Cty .

• IPE.Decrypt(pp, Ctx, Cty) → z given pp, ciphertexts
Ctx and Cty , Decrypt outputs z such that z =< x, y >.

and (iv) Dual binary encoding scheme for integer comparison
using inner products [2] which converts two numbers, x and

TABLE I: Notations

Symbol Description

bpu, tpk u-th billing period, k-th trading period, k ∈ {1, ..., Nk}.
Idi Unique identifier of user i, i ∈ {1, ..., Nu}.
SIdj , ZIdz Unique identifier of supplier j, zone z.
b
tpk
i ,m

tpk
i ,

d
tpk
i , stpki

Bid volume, meter reading, type of participation (binary),
deviation cost inclusion state (binary, i.e., 1 if the user has
to pay a deviation cost and 0 otherwise) of user i at tpk .

C
tpk
i,p , Ctpk

i,c Condition that requires user i to pay/get paid to/by supplier
due to his/her deviation at tpk .

dev
tpk
p /dev

tpk
c cost/compensation to be paid/received by certain pro-

sumers/consumers to/from their suppliers due to deviations
based on a condition, Ctpk

i,p p/Ctpk
i,c .

T tpk , W tpk Total deviation, zonal deviation weight at tpk .

t
tpk
z , np

tpk
z , nc

tpk
z Total deviation, number of prosumers, number of consumers

in zone z at tpk .
NF

z,tpk
p /NF

z,tpk
c Network fee for exporting/importing in zone z at tpk .

Algorithm 1 EPIBS
• EPIB.Setup()

1) Generate three sets of encryption keys Si = {sktp1i , . . . , sk
tpNk
i },

Sp
i = {sktp1i,p , . . . , sk

tpNk
i,p } and Sc

i = {sktp1i,c , . . . , sk
tpNk
i,p }

• EPIB.MeterEncrypt(m
tpk
i )

1) Compute mc
tpk
i = m

tpk
i + sk

tpk
i .

• EPIB.TypeEncrypt(d
tpk
i )

1) Encode d
tpk
i into d

tpk
i,p and d

tpk
i,c , each representing a binary state of

the user’s type participation at tpk (e.g., if the user is buying energy,
then d

tpk
i,p = 1 and d

tpk
i,c = 0).

2) Compute dc
tpk
i,p = d

tpk
i,p + sk

tpk
i,p and dc

tpk
i,c = d

tpk
i,c + sk

tpk
i,c .

• EPIB.BillCompute(mc
tpk
i , dc

tpk
i,p , dc

tpk
i,c )

1) Compute bc
tpk
i = mc

tpk
i ∗ (TP tpk + (dc

tpk
i,p ∗NF

tpk
p ) + (dc

tpk
i,c ∗

NF
tpk
c )) + [C

tpk
i,p ](dc

tpk
i,p ∗ dev

tpk
p ) + [C

tpk
i,c ](dc

tpk
i,c ∗ dev

tpk
c )

2) BLcbpui =
∑Nk

k=1 bc
tpk
i

• EPIB.DecKeyGen(Si, Sc
i , Sp

i , )

1) Compute dk
dev,tpk
i = [C

tpk
i,p ](sk

tpk
i,p ∗ dev

tpk
p ) + [C

tpk
i,c ](sk

tpk
i,c ∗

dev
tpk
c )

2) Compute dk
tpk
i = (sk

tpk
i ∗TP tpk )+ (sk

tpk
i,p ∗NF

tpk
p )+ (sk

tpk
i,c ∗

NF
tpk
p ) + dk

dev,tpk
i

3) Compute DKbpu
i =

∑Nk
k=1 dk

tpk
i

• EPIB.Decrypt(DKbpu
i , BLcbpui )

1) Compute DKbpu
i =

∑Nk
k=1 dk

tpk
i

y, into arrays of vectors to enable comparing them by means
of multiple inner products:
• fx(x) → (Xvl , Xvg ): on input a number x, fx output two

encoded arrays of vectors Xvl and Xvg .
• fy(y) → Yv: on input a number y, fy output one encoded

array of vectors Yv .

III. PBP-LEMS

Operating over a finite field modulo q(zq), EPIBS consists
of the methods shown in Algorithm 1. PBP-LEMs consists of
four steps shown in Algorithm 2. [x] denotes a secret sharing
of x and <x> represents a Pedersen commitment to x.

IV. PERFORMANCE EVALUATION

Suppliers and CS were implemented on a Linux server
with 16-core Intel Xeon and 64 GB of memory. Tests were
preformed on realistic dataset. Bills computation in all ap-
proaches, can be completed maximally in less than 5 minutes



Algorithm 2 Privacy-Preserving Billing Protocol

. . . . . . . . . . . . . . . . . . . Prerequisites . . . . . . . . . . . . . . . . .
1) User sends a registration request along with (Idi, SIdj , ZIdz) to KA.
2) KA generates (Si, Sc

i , Sp
i )← EPIBS.Setup() and (ppi,mski)←

IPE.Setup(1λ, S); and sends (Si, Sc
i , Sp

i , ppi,mski) the user.
3) We assume that users have performed the following before the market

execution ⟨−btpki ⟩ ← Commit(−btpki , r
tpk
i,b ) , (dc

tpk
i,p , dc

tpk
i,c ) ←

EPIBS.TypeEncrypt(d
tpk
i ), (B

tpk
i,j,vl, B

tpk
i,vg) ← fx(b

tpk
i ),

Bc
tpk
i,vl ← (IPE.RightEncrypt(mski, β, B

tpk
i,j,vl) for all vectors of

Bc
tpk
i,vl), Bc

tpk
i,vg ← (IPE.RightEncrypt(mski, β, B

tpk
i,j,vg) for all

vectors of Bc
tpk
i,vg) and sent (Idi⟨−btpki ⟩, dctpki,p , dc

tpk
i,c Bc

tpk
i,vl

, B
tpk
i,vl

)
to LEMO.

. . . . . Step 1: Input Data Generation and Distribution Per tpk . . . . . .
1) Every user calculates their deviation: vtpki = b

tpk
i −m

tpk
i and sends

(Idi, SIdj , ZIdz , [v]
z,tpk
i , [d]

z,tpk
i ) to CS.

2) Each SM computes M
tpk
i ← fy(m

tpk
i ), Mc

tpk
i ←

(IPE.LeftEncrypt(mski, α,M
tpk
i,j ) for all vectors of M

tpk
i ),

mc
tpk
i ← EPIBS.MeterEncrypt(m

tpk
i ), ⟨mtpk

i ⟩ ←
Commit(m

tpk
i , r

tpk
i,m) and sends (Idi, ZIdz ,mc

tpk
i ,Mc

tpk
i ,

⟨mtpk
i ⟩) to the supplier.

3) LEMO forwards (Idi, Bc
tpk
i,vr

, Bc
tpk
i,vl

, ⟨−btpki ⟩, dctpki,p , dc
tpk
i,c ) for

each user to the supplier.
. . . . . . . . . . Step 2: Bills Computation Per tpk . . . . . . . . . . . .

1) CS execute algorithm 3 for each zone using MPC protocols.
2) CS reconstruct t

tpk
z , nc

tpk
z and np

tpk
z for each zone, com-

pute (T tpk ,W tpk ) based on ZBUCS [5]; and publish ZN =
(t

tpk
z , nc

tpk
z , np

tpk
z ) tuples and (T tpk ,W tpk ).

3) Determining the deviation cost inclusion state, s
tpk
i for each user,

utilising (t
tpk
z , T tpk ), using one of three approaches.

• Approach 1: Each supplier identifies s
tpk
i for their customers in

oblivious fashion using the encoding and comparison scheme of [2];
and IPE.Decrypt() over (Bc

tpk
i,vl

, Bc
tpk
i,vg

,Mc
tpk
i ).

• Approach 2: CS identify [s
tpk
i ] by executing MPC comparison

operations on [v
tpk
i ].

• Approach 3: vtpki are disclosed to customers’ suppliers.

4) Each supplier computes bc
tpk
i for their customers (Algorithm 4).

. . . . Step 3: Bills Computation and Distribution per bpu . . . . . . .
1) Each supplier computes BLcbpui =

∑Nk
k=1 bc

tpk
i

2) KA computes DKbpu
i ← EPIBS.DecKeyGen(bc

tpk
i , dc

tpk
i,p , dc

tpk
i,c )

3) The supplier computes BLbpu
i ←

EPIBS.Decrypt(DKbpu
i , BLcbpui ) and sends it to the user.

. . . . . . . . . Step 4: Individual Deviations Verification . . . . . . . . .
1) For every tpk , the supplier computes ⟨vtpki ⟩ = ⟨mtpk

i ⟩.⟨−btpki ⟩.
At the end of bpu:

2) The supplier computes <
∑Nk

k=1 v
tpk
i >=

∏Nk
k=1⟨v

tpk
i ⟩.

3) CS compute [V bpu
i ] =

∑Nk
k=1[v

tpk
i ]. and send it to the supplier.

4) Each SM computes Rbpu
i =

∑Nk
k=1(r

tpk
i,m + r

tpk
i,b ).

5) Supplier verifies Open(<
∑Nk

k=1 v
tpk
i >, V bpu

i , Rbpu
i )→ true.

for 4000 users, showing the feasibility of our protocol for real
LEM deployment (Fig. 3).

Fig. 2: Total bills computation cost per trading period

Algorithm 3 Zone-based Deviations Aggregation
Input: Set of Nz

u user tuples U = ([v], [d]) who belong to zone z
Output: Zone z tuple ZN = ([t], [np], [nc])

for i = 0 to Nz
u do

[t]
tpk
z ← [t]

tpk
z + [v]

tpk
i

[p]
tpk
z ← [p]

tpk
z + [d]

tpk
i

[c]
tpk
z ← [p]

tpk
z + 1− [d]

tpk
i

end for

Algorithm 4 Individual Bill Computation Per Trading Period
Input: mc

tpk
i , s

tpk
i , dc

tpk
i,p , dc

tpk
i,c , (T tpk ,W tpk ), zone z tuple ZN =

(t
tpk
z , nc

tpk
z , np

tpk
z ) to which the user belongs.

Output: bctpki , Ctpk
i,p , Cc,tpk

i

bc
tpk
i ← mc

tpk
i ∗ (TP tpk +(dc

tpk
i,p ×−NF

z,tpk
p )+ (dc

tpk
i,c ×NF

z,tpk
c ))

C
tpk
i,p ← (T tpk > 0 and s

tpk
i )

C
tpk
i,c ← (T tpk < 0 and s

tpk
i )

dev
tpk
p ← C

tpk
i,p × (t

tpk
z ×W tpk/np

tpk
z )× (FiT tpk − TP tpk )

bc
tpk
i ← bc

tpk
i + dc

tpk
i,p × dev

tpk
p

dev
tpk
c ← C

tpk
i,c × (t

tpk
z ×W tpk/nc

tpk
z )× (RP tpk − TP tpk )

bc
tpk
i ← bc

tpk
i + dc

tpk
i,c × dev

tpk
c

Communication cost varies significantly based on the ap-
plied approach as shown in Fig. 2.

Fig. 3: Total communication cost per trading period

V. CONCLUSIONS

We introduced a privacy-preserving billing protocol for
LEMs and demonstrated its feasibility in real-world settings.
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Abstract—In this poster, we start the discussion of the poten-
tials and challenges of digital payment systems to advance
digital services in the Internet of Things. We specifically
focus on devices with constrained hardware resources. To
enable multi-stakeholder machine-to-machine scenarios, we
propose an e-cash approach that is privacy-friendly and al-
lows for autonomous payment. We implement our approach
using GNU Taler, a free-software e-cash implementation, and
RIOT, a free and open-source operating system for the IoT.
Our preliminary findings suggest that the deployment of e-
cash systems is feasible in constrained IoT scenarios. They
underscore the importance of concise, standard-compliant
data encoding over computationally intensive compression
techniques.

1. Introduction

The Internet of Things (IoT) is projected to consist
of 30 billion interconnected devices by 2030 [1]. Most of
them will be constrained in terms of hardware resources
to reduce manufacturing costs, enabling mass deployment
of many different new applications. In principle, each of
these IoT devices provides a service (e.g., sensing data,
acting to external input), often in multi-stakeholder envi-
ronments in which not all stakeholders necessarily collab-
orate in a peer-to-peer manner. How to seamlessly offer
advanced services in such networks is still an open topic.

Providing an economic incentive could be one reason
for cooperation. To enable, for example, data sharing
between different stakeholders then requires autonomous
machine-to-machine (M2M) payments such that the pay-
ment is integrated with and running directly on the (con-
strained) IoT devices, keeping the overhead of accounting
and payment processing low. Additionally, such an IoT
payment system must prioritize (meta-)data privacy pro-
tection due to the sensitivity and scale of data involved.

In this poster, we propose payments in the IoT based
on blind signatures and a centralized architecture. Such a
token-based approach allows for payer privacy and enables
autonomous usage by design, thereby meeting two funda-
mental requirements. Section 2 gives some examples of
payment scenarios and typical constraints in the IoT, and
shows that other approaches to digital payments do not
fit the IoT use-case well. Section 3 discusses the required
functionality to participate as a constrained device in such
a system, elaborates on design choices for data transmis-
sion formats, and briefly evaluates the proposed design
using a proof-of-concept implementation of GNU Taler

Internet

Figure 1: A distributed IoT economy needs autonomous
and privacy-respecting machine-to-machine payments.

on RIOT. Section 4 concludes the poster by presenting
challenges left for future work.

2. Background and Problem Statement

This section discusses some common IoT scenarios
depicted in Figure 1, how these scenarios benefit from IoT-
integrated payments, and the requirements and challenges
imposed by limited hardware resources. We also analyze
currently available or proposed digital payment systems.
IoT Scenarios. The vision of the Internet of Things (IoT)
revolves around the seamless cooperation of intercon-
nected devices, operating autonomously without direct
human intervention. These devices exchange data or, more
generally, services, often involving sensitive information
regarding privacy. For instance, smart household appli-
ances such as refrigerators can autonomously order sup-
plies. Industry scenarios may involve the cooperation of
many entities, for example, when goods are tracked from
manufacturing to warehouse until hand-over to the end-
customer, including automatic ordering of new supplies.
Similarly, vehicles can autonomously handle payments for
parking, tolls, and fuel, benefiting both autonomous and
conventional car users. Furthermore, smart grid energy
trading relies on IoT devices to coordinate local electricity
sharing among buildings equipped with renewable en-
ergy sources, ensuring efficient energy management within
communities. Even scenarios involving human interven-
tion, such as pay-as-you-go public transportation, can
benefit from compact and cheap IoT-based wallets which
improve the user experience.



TABLE 1: Comparison of digital payment approaches.

Approach

Features Traditional Crypto-
currencies

Our:
E-Cash

Autonomy ✘ ✓ ✓
Privacy ✘ pseudonymity payer

Resources • •••• ••

IoT Payment Requirements. The provision of services
(e.g., data sharing) among diverse stakeholders based on
an economic incentive model requires economic remu-
neration. While subscription models suit static scenarios,
they fall short in dynamic environments in which IoT
devices interact only sporadically. Autonomous machine-
to-machine payment might offer a solution by enabling
billing and transactions without human intervention. How-
ever, concerns about privacy arise due to possible payment
observations by third parties, either directly [2] or through
metadata analysis [3]. Ensuring payment privacy becomes
crucial in scenarios lacking mutual trust among devices.
Having an openly standardized privacy-preserving pay-
ment system at hand would also counteract monopolies
and discriminatory treatment against devices of a certain
owner or manufacturer, and allows for true competition
and interoperability across devices.

IoT Device Constraints. In scenarios requiring large-
scale deployments at minimal cost, devices are typically
selected to precisely match the use-case, resulting in a
significant number of highly constrained devices. These
devices face severe limitations in available memory, in-
cluding RAM, ROM, and persistent mass storage, which
impacts system design in terms of storage requirements
and processing overhead. Several IoT scenarios also in-
volve off-the-grid deployments and battery-powered de-
vices, which require the use of low-power wireless net-
working protocols with small packet sizes and low data
rates. A universal IoT payment system must account
for these constraints, minimizing storage, processing, and
transmission requirements to ensure compatibility with
low-end devices.

Payment Options for the IoT. Traditional payment
systems, such as credit card payments, bank transfers,
and third-party payment providers, are widely utilized
by the public for in-store and online transactions. These
systems rely on centralized databases storing the account
balances, allowing transactions to be initiated through
simple means like NFC interactions. However, authenti-
cation mechanisms typically require human confirmation,
hindering autonomous payments. [4] Moreover, access to
the central databases compromises transaction privacy,
violating payment privacy requirements. On the other
hand, cryptocurrencies offer digital payment alternatives
with their decentralized design, seemingly suitable for IoT
scenarios. Yet, their reliance on resource-intensive con-
sensus mechanisms and transaction confirmation delays
pose challenges. Verifying transactions independently is
unfeasible for constrained IoT devices using such ap-
proaches. [5] Furthermore, while cryptocurrencies offer
pseudonymity, transaction traceability and potential ac-

Internet

Figure 2: Architecture of an e-cash payment system:
Participating devices ( ) need to perform cryptographic
operations, store tokens, and communicate with a central
service provider ( ) over the Internet.

count identity associations remain concerns.
Our approach: E-Cash. A third approach to digi-
tal payments, based on the e-cash scheme pioneered by
Chaum [6], offers cash-like anonymity for payers through
blind signatures of tokens by a central authority. Each
token, signed and backed by a certain value held by the
central authority, can be redeemed once by a payee for an
authorized payment. Utilizing tokens instead of identity-
bound accounts facilitates autonomous operation and hin-
ders transaction linkability. However, the self-custody as-
pect of e-cash schemes entails token storage requirements
for the users, a crucial consideration for deployment on
resource-constrained IoT devices. The original design pro-
posed by Chaum could not give unlinkable change and
thus had linear complexity for variable amounts. Dold [7]
solved this critical issue, allowing for logarithmic com-
plexity in GNU Taler.

Table 1 summarizes our comparison of traditional pay-
ment systems, cryptocurrencies, and e-cash concerning the
essential requirements identified for the IoT. To the best of
our knowledge, this poster represents the first exploration
of integrating an e-cash-based payment system with the
constrained IoT.

3. Design and Implementation

Design Aspects. Figure 2 shows a typical e-cash system
consisting of two basic components: a central provider,
which issues blind signatures on cryptographic tokens,
and users, which hold these tokens in self-custody. IoT
devices operate as users. Therefore, they need to support
three basic functions: (i) cryptographic operations such
as blinding and signature verification, (ii) the storage of
signed tokens and metadata, and (iii) the communication
with the provider via the Internet. We propose to build
the payment system integration on top of an IoT oper-
ating system with a universal API, abstracting hardware
details such as hardware-based cryptographic acceleration,
storage, and physical-layer protocols. This approach en-
ables a hardware-agnostic implementation for diverse IoT
devices, promoting reusability across deployments.

Currently, our focus has been on efficient data formats
for the transmission protocol. In the IoT, reducing packet
sizes is crucial because (i) low data rates and small
Maximum Transfer Units (MTUs) are prevalent in the IoT,
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Figure 3: GNU Taler withdraw request payload sizes
composed of cryptographic information (left) and meta-
data overhead depending on the encoding (right): Packed
CBOR achieves the smallest format overhead, still fitting
one 802.15.4 MTU of 127B for a withdrawal of up to
4 tokens, while avoiding the additional, computationally-
intensive compression step of JSON+gzip.

and because (ii) fragmentation may lead to additional de-
lay [8]. While the encoding of cryptographic data such as
tokens and signatures cannot be reduced below their infor-
mation content, the accompanying metadata may contain
redundant information. Human-readable formats such as
JSON or XML may be effective for the broader Internet,
where they can be compressed efficiently with methods
such as gzip or brotli. Compression, however, introduces
complexity on end devices, leading to larger code sizes,
higher energy consumption, and additional computation
time—all of these characteristics conflict with low-end-
device constraints. Introducing a custom binary format
containing only the raw cryptographic data in a prede-
fined order is not an option either since it challenges
debugging, protocol updates, and forward compatibility.
To balance resources and flexibility, we advocate for using
CBOR [9], a concise binary data format standardized
by the IETF. CBOR efficiently accommodates metadata
alongside the data and provides streaming capabilities.
Packed CBOR [10], an extension of CBOR, further en-
hances this efficiency by minimizing metadata redundancy
through optimized encoding of repeated information.
Implementation and Evaluation. To evaluate our pro-
posal, we have picked GNU Taler, a free and open-source
digital payment system implementing a logarithmic e-cash
scheme [7], and RIOT, an free and open-source operating
system for the constrained IoT, which provides support for
over 270 IoT platforms [11]. Compared to other operating
systems, RIOT offers a standardized API for cryptographic
operations that can flexibly make use of hardware accel-
eration and secure key storage where available [12]. The
Taler APIs1 are specified as HTTP-based RESTful proto-
cols using JSON as a data format, with cryptographic data

1. https://docs.taler.net/core

encoded in base32. Figure 3 compares the payload lengths
for Taler withdrawal requests encoded in various formats,
including JSON, compressed JSON, CBOR, and packed
CBOR. Regardless of the number of digital coins ac-
quired, packed CBOR encoding consistently outperforms
other schemes, exhibiting approximately half the relative
overhead compared to compressed JSON encoding.

4. Conclusion and Outlook
In this abstract, we argued that the IoT will bene-

fit from autonomous and privacy-friendly payments as
a common service. Our approach, unlike prior work,
suggests a centralized system architecture inspired by
the e-cash model. We introduced design choices of our
proof-of-concept, which suggest that digital payment is
doable even if memory and CPU are constrained. We
proposed an efficient standard-compliant data encoding
for the communication between user and provider. Future
work should focus on token storage efficiency and user-
friendly provisioning of IoT devices with digital coins.

References
[1] L. S. Vailshery, “Number of Internet of Things (IoT) connected

devices worldwide from 2019 to 2023, with forecasts from 2022
to 2030,” Jul. 2023. [Online]. Available: https://www.statista.com/
statistics/1183457/iot-connected-devices-worldwide/

[2] J. Lauer, “Plastic surveillance: Payment cards and the history of
transactional data, 1888 to present,” Big Data & Society, vol. 7,
no. 1, pp. 1–14, Jan. 2020.

[3] Y.-A. De Montjoye, L. Radaelli, V. K. Singh, and A. S. Pentland,
“Unique in the shopping mall: On the reidentifiability of credit card
metadata,” Science, vol. 347, no. 6221, pp. 536–539, Jan. 2015.

[4] M. N. M. Bhutta, S. Bhattia, M. A. Alojail, K. Nisar, Y. Cao,
S. A. Chaudhry, and Z. Sun, “Towards Secure IoT-Based Payments
by Extension of Payment Card Industry Data Security Standard
(PCI DSS),” Wireless Communications and Mobile Computing, vol.
2022, pp. 1–10, Jan. 2022.

[5] S. Mercan, A. Kurt, K. Akkaya, and E. Erdin, “Cryptocurrency
Solutions to Enable Micropayments in Consumer IoT,” IEEE Con-
sumer Electronics Magazine, vol. 11, no. 2, pp. 97–103, Mar. 2022.

[6] D. Chaum, “Blind Signatures for Untraceable Payments,” in Ad-
vances in Cryptology, D. Chaum, R. L. Rivest, and A. T. Sherman,
Eds. Boston, MA: Springer US, 1983, pp. 199–203.

[7] Florian Dold, “The GNU Taler System: Practical and Provably
Secure Electronic Payments,” Ph.D. dissertation, Université
de Rennes, Rennes, France, Feb. 2019. [Online]. Available:
https://taler.net/papers/thesis-dold-phd-2019.pdf

[8] M. S. Lenders, T. C. Schmidt, and M. Wählisch, “Fragment
Forwarding in Lossy Networks,” IEEE Access, vol. 9, pp.
143 969–143 987, 2021. [Online]. Available: https://doi.org/10.
1109/ACCESS.2021.3121557

[9] C. Bormann and P. E. Hoffman, “Concise Binary Object Repre-
sentation (CBOR),” Internet Engineering Task Force, Request for
Comments RFC 8949, Dec. 2020.

[10] C. Bormann and M. Gütschow, “Packed CBOR,” Internet
Engineering Task Force, Internet Draft draft-ietf-cbor-packed-12,
Mar. 2024. [Online]. Available: https://datatracker.ietf.org/doc/
draft-ietf-cbor-packed

[11] E. Baccelli, C. Gundogan, O. Hahm, P. Kietzmann, M. S. Lenders,
H. Petersen, K. Schleiser, T. C. Schmidt, and M. Wählisch, “RIOT:
An Open Source Operating System for Low-End Embedded De-
vices in the IoT,” IEEE Internet of Things Journal, vol. 5, no. 6,
pp. 4428–4440, Dec. 2018.

[12] L. Boeckmann, P. Kietzmann, L. Lanzieri, T. C. Schmidt, and
M. Wählisch, “Usable Security for an IoT OS: Integrating the Zoo
of Embedded Crypto Components Below a Common API,” Proc.
of 19th International Conference on Embedded Wireless Systems
and Networks (EWSN), pp. 84–95, 2022.

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://taler.net/papers/thesis-dold-phd-2019.pdf
https://doi.org/10.1109/ACCESS.2021.3121557
https://doi.org/10.1109/ACCESS.2021.3121557
https://datatracker.ietf.org/doc/draft-ietf-cbor-packed
https://datatracker.ietf.org/doc/draft-ietf-cbor-packed


Poster: FedCM for Research and Education
Erwin Kupris

Munich University of Applied Sciences
Munich, Germany

erwin.kupris@hm.edu

Tobias Hilbig
Munich University of Applied Sciences

Munich, Germany
tobias.hilbig@hm.edu

Thomas Schreck
Munich University of Applied Sciences

Munich, Germany
thomas.schreck@hm.edu

Abstract—The misuse of web technologies for tracking users
on the Internet poses a threat to user privacy. Such technologies
include third-party cookies and bounce tracking servers. Browser
vendors and other stakeholders agreed to phase out some of these
technologies in the near future. This impacts not only trackers
and advertisers, but also legitimate usages such as authentication
flows in identity federations. The industry aims to solve these
issues via an emerging API called “Federated Credential Manage-
ment“ (FedCM), transforming the login process into a browser-
mediated flow. Our research focuses on how to improve the user
experience of FedCM within multilateral federations, which are
frequently used in the Research and Education (R&E) sector.
Specifically, we suggest ways to filter the large number of Identity
Providers (IdPs) commonly found in the R&E context and display
them, while automating the IdP discovery process. We provided
our suggestions to the working group, also considering user
privacy aspects. Incorporating these changes into the FedCM
API accordingly could pave the way for a privacy-preserving
and user-friendly sign-in experience in R&E federations.

Index Terms—FedCM, federation, security, privacy, academia

I. INTRODUCTION

The ongoing exploitation of certain web technologies for
tracking poses a threat to user privacy and data protection. To
mitigate these infringements, browser vendors have agreed to
phase out some of these technologies. The most prominent
example is third-party cookies, which are expected to be
deprecated later this year. Bounce tracking, i.e., a specific
chain of redirects invisible to the user, serves similar purposes.
However, legitimate usages for these technologies do exist,
which will be affected by this discontinuation.

Federated authentication mechanisms fall into this category.
SAML2 and OAuth are the most commonly used protocols for
this purpose. Both employ redirect-based login flows that are
nearly indistinguishable from malicious usage. Moreover, fed-
erated applications often use services such as SeamlessAccess
for discovering a user’s Identity Provider (IdP) [1]. To offer a
comfortable user experience, third-party cookies are required.

To prevent the breakage of these technologies, the Federated
Credential Management API (FedCM) was proposed. It en-
ables a secure, privacy-preserving, and dynamic authentication
process mediated by the browser. FedCM is being developed
by the W3C and has the status of a draft community group
report. A working group with the goal of standardizing this
API was recently established. The latest draft of the FedCM
API is already implemented in the Chrome browser and
experimental features can be tested in the Canary version.

In FedCM, the browser acts as a mediator between Relying
Parties (RPs) and IdPs [2]. When a user visits an RP, it can
call the FedCM API by providing one or more IdP URLs. The
browser then issues requests to the IdP to obtain information
about user accounts that have an active session with that IdP.
Afterwards, the browser asks the user to select an account and
consent to the federated authentication in a mediated dialog.
Upon selection, the browser issues a final request to the IdP
that includes the session cookie of the chosen account. The
IdP returns an opaque identity assertion to the browser, which
is relayed to the RP, thereby concluding the FedCM flow.

The current version of the FedCM API covers use-cases
of social, bilateral federations, e.g., “Login with Google” or
“Login with Facebook”. However, multilateral federations,
common in Research and Education (R&E), typically have
different requirements. Although FedCM does not yet meet
these requirements, it has the potential to not only fulfill them
but also address other long-standing issues.

In this work, we propose ideas for extending FedCM to
function effectively in the R&E sector. They can also be
applied to other federated architectures such as Open Banking.

II. PROBLEM STATEMENT

R&E federations differ from bilateral federations by having
the following specific characteristics: Instead of a single or
a few public IdPs, users from R&E institutions can usually
choose from thousands of IdPs when authenticating to an RP.
Due to this extensive number of IdPs, “Where Are You From”
(WAYF) services are used to determine a user’s home IdP.
Moreover, session lifetimes are commonly shorter, e.g., about
an hour long. R&E IdPs usually do not offer a dedicated login
page. Instead, when accessing a compatible service, users are
redirected to the IdP for authentication. Finally, it is possible
for RPs to not be explicitly registered at each IdP. These
differences prevent the latest version of the FedCM API from
being used in R&E federations.

Our contributions in this poster focus on two aspects of
FedCM: (1) FedCM should only present compatible IdPs to
the user, i.e., IdPs accepted by the RP and affiliated to the user.
(2) FedCM should provide an enhanced user experience when
the API is called using multiple, multilaterally federated IdPs.
This would enable an automated, user-friendly WAYF process
for R&E federations. In addition, we discuss privacy aspects
that become relevant when extending FedCM to better support
multilateral federations.



III. FILTERING IDPS

In the early stages of FedCM, an RP could initiate the
API using only a single IdP per call. However, RPs often
provide federated authentication with multiple providers. This
requires RPs to display individual buttons for each supported
IdP, initiating FedCM for the chosen IdP. This is known as the
so-called NASCAR problem, because users are presented with
an overwhelming number of logos and buttons.

To avoid this issue in FedCM, two experimental features
have already been added to the API: (1) A list of IdPs might
be provided in the API call instead of a single one [3]. (2)
IdPs can register themselves in the user’s browser [4]. In
the so-called any mode, RPs can then call FedCM for all
registered IdPs without explicit knowledge about them. While
still being actively worked on, both of these features enable
RPs to initiate FedCM using a larger number of potential IdPs.

However, there are many scenarios in which only IdPs
suitable for federated authentication with a specific RP should
be considered in the FedCM procedure. For example, an
RP might only be federated with IdPs that are part of the
global R&E inter-federation eduGAIN. In this case, other IdPs
should not be considered during the FedCM procedure to avoid
unnecessary requests by the browser. This section provides
suggestions for realizing this functionality.

A. IdP-list approach

RPs in R&E federations can usually fetch lists of compat-
ible IdPs from a federation operator or a separate metadata
discovery service. With this approach, an RP can already
initiate FedCM using only IdPs it is federated with, omitting
any unsuitable ones. While this solution is straightforward, it
presents another challenge: A list of all IdPs with which an RP
is federated might be extensive, e.g., there are more than 5,000
possible IdPs in eduGAIN. It is not practical for the browser
to issue requests to all of these IdPs. Therefore, the following
approaches might be considered to filter such extensive lists
provided by the RP.

FedCM introduced the Login Status API to prevent unnec-
essary requests to IdPs. This API enables IdPs to set a status,
either logged-in or logged-out, for their domain within the
browser. Before initiating any requests to an IdP, the browser
checks that the status for that IdP is set to logged-in. If the
RP provides multiple IdPs, this verification process occurs
concurrently for each. Consequently, only IdPs that have set
this status, i.e., IdPs with which the user has previously
interacted, are considered by the browser.

This solution works well for social federations because
session lifetimes are typically very long. In other scenarios,
however, sessions are usually shorter, especially in the aca-
demic or banking sectors. Such IdPs can utilize this API by
consistently setting the status to logged-in, preventing them
from being filtered out by the browser if the user is not
logged into them. While this solution might be perceived as
misusing the API, it would work with the current FedCM
implementation in Chrome without necessitating any changes.

Instead of utilizing the login status API to infer with which
IdPs the user has already interacted, FedCM’s IdP registration
can be used to filter IdP lists sent by an RP. In the proposed
any mode, every IdP that has been previously registered in the
browser is considered for the regular FedCM flow. Because the
RP does not call the API with IdPs that it is compatible with,
this mode needs to be adjusted to not consider unsuitable IdPs
that might have registered. Such an adjustment can combine
the IdP registration with lists of IdPs sent by RPs during the
API call, resulting in a some or certain mode. If an IdP has
been previously registered in the browser and is included in the
list of compatible IdPs provided by the RP, it can reasonably
be assumed that it is suitable for federated authentication.
Therefore, such an IdP should be considered by FedCM,
regardless of its login status.

B. affiliationHint approach

Instead of the RP sending a whole list of IdPs, we suggest it
signals its federation affiliations. This could be realized via an
additional attribute, e.g., affiliationHints, that the RP provides
to FedCM. Similarly, the IdP would mark its federation
affiliations during IdP registration. When the API is called,
the browser compares IdPs registered with identical affilia-
tionHints and exclusively considers exact matches. Since R&E
federations are often structured hierarchically, this attribute can
contain multiple entities, as shown in the following example.

The Munich University of Applied Sciences (HM) is a
member of the German federation DFN-AAI and the eduGAIN
inter-federation. HM’s IdP registered itself in the browser with
affiliationHints = [”hm.edu”, ”dfn.de”, ”edugain.org”]. The
user accesses an RP operated by the Sapienza University,
which is a member of the Italian GARR and eduGAIN.
The RP sends affiliationHints = [”uniroma1.it”, ”garr.it”,
”edugain.org”] within the API call. The browser then de-
termines that RP and IdP share an affiliation, i.e., eduGAIN.
Afterwards, the regular FedCM flow continues with HM’s IdP.

If an entity is part of more federations, this list can be
simply extended. In scenarios where such a clear hierarchy
does not exist, other hints might be used, e.g., ”EU-bank” or
”US-bank”. The exact structure of these hints must be clearly
defined to ensure alignment between RPs and IdPs. Further-
more, both RPs and IdPs can restrict their affiliationsHints
as they desire. For example, by excluding eduGAIN from its
hints, an RP can ensure that only users within its own national
federation are presented with an option to access it via FedCM.

C. OpenID Federation Approach

Instead of affiliationHints, the RP can call FedCM by
including OpenID Federation trust chains [5]. Each trust chain
represents a signed path from the RP to one of its trust anchors.
For filtering IdPs, the entityIds within a trust chain can be
parsed and used similarly to the affiliationHint approach. The
RP’s trust chains can subsequently be used to verify the trust
relationship between the RP and IdP. This approach is similar
to our previous study, which proposes a way to automate the
IdP discovery process in multilateral federations [6].



IV. WAYF OPERATION MODE

As previously discussed, users within R&E federations can
authenticate at federated RPs via thousands of potential IdPs.
Consequently, RPs in such federations commonly integrate
WAYF services to determine the IdP with which the user
wants to authenticate. This process is cumbersome from a user
experience perspective, because it frequently involves selecting
one’s home organization from an extensive list. Additionally,
the user experience of WAYF services is further impaired by
the deprecation of third-party cookies. The emerging FedCM
API has the opportunity to automate this long-standing issue
within R&E federations.

When the FedCM API is called by the RP, it currently offers
the user a selection of logged-in accounts. We propose FedCM
to incorporate an “organization chooser” in addition to the
current account chooser dialog. This dialog leverages some
of FedCM’s experimental features, i.e., IdP registration and
“button mode”. Instead of showing only logged-in accounts,
the selection dialog should include organizations that have
registered themselves in the browser and are not filtered out
by the methods proposed in Section III. If the user selects
an organization, a subsequent login should be facilitated at
the IdP by opening a pop-up window at the login URL the
IdP previously registered with. However, R&E IdPs might
not allow users to authenticate at the IdP directly. Instead,
the federated login procedure can only be initiated via a
redirect from an RP, including the necessary parameters such
as the RP’s entity identifier. Therefore, R&E IdPs will need to
develop alternative solutions, e.g., integrating a separate RP at
the login URL.

If FedCM were to be adopted in R&E federations in
the future, changes to all involved IdPs and RPs would be
necessary. During the transition period, it would be beneficial
for FedCM to support basic WAYF functionality. Normally,
FedCM requests an opaque token from the IdP for the selected
account and returns it to the RP. Instead of returning a token,
we suggest that FedCM should offer an option to return the
IdP selected by the user. This can be realized via an additional
parameter called wayf that is set by the RP in the API call.
Upon selection, the browser skips the retrieval of the token
from the assertion endpoint. After the selected IdP is returned,
the existing, possibly redirect-based federated login flow is
executed. Realizing this functionality would require minimal
changes to the affected RPs, IdPs, and the FedCM API.

V. PRIVACY CONSIDERATIONS

After a list of logged-in accounts has been queried, the
FedCM flow continues by fetching client metadata about the
RP from the IdP. Apart from receiving the RP’s metadata,
this request also ensures that a trust relationship between IdP
and RP exists. In the public IdP use case, RPs are always
registered at the IdP, making such a request possible. However,
in multilateral federations, this is often not the case. Instead,
metadata is either centrally managed, for example in SAML2,
or resolved dynamically in OpenID Federation.

In SAML2 based federations, the IdP typically maintains
and regularly updates extensive XML files containing the
metadata of all RPs within a federation. Therefore, the IdP
can simply locate the RP’s metadata in these files and return
it. For federations based on the OpenID Federation protocol,
this process presents a potential privacy challenge. It is vital
for FedCM to never disclose the user’s affiliation, i.e., their
IdPs, to an RP before they give explicit consent. The regular
metadata resolution in OpenID Federation would violate this
rule if the IdP started this process with a request to the RP
[5]. A malicious RP can correlate such a request with the
user’s running browser session and infer the user’s affiliation.
In our previous work, we presented an alternative approach to
verifying the trust relationship between IdP and RP [6]. This
method requires the RP to initiate the FedCM API by including
its OpenID Federation trust chains, as stated in Section III-C.
In addition, this solution does not disclose the RP a user visits
to the IdP before the user consents.

VI. CONCLUSION AND FUTURE WORK

The Federated Credential Management API (FedCM) is
an emerging standard that aims to improve privacy, security,
and the overall user experience of authenticating to federated
webservices. In the R&E sector, specific requirements exist
that FedCM, as of today, does not fully cover. Our poster
presents ideas on how this API can be extended to better
support the R&E sector and to offer a user friendly sign-in
experience. We have already proposed these suggestions to
the working group [7].

In future work, we plan to build a proof of concept of
FedCM at our university’s IdP. This includes implementing a
FedCM plugin for the Shibboleth IdP software and integrating
the necessary API endpoints. Furthermore, we plan to analyze
its security through a threat model analysis. Finally, we
envision a usability study representative of higher education
institutions, including students, staff, and faculty members.
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Abstract—Organizations are under constant threat of cyber
attacks. Hence, they need to have information security measures
put in place. Security managers lack methods to quantify how
much effort should be invested in protecting their IT assets
and training people. We propose developing a metric-based
method to guide cybersecurity investments, aimed at improving
an organization’s security posture.

I. INTRODUCTION

Cybersecurity managers lack clear metrics to guide security
decisions especially when it comes to investing in security[1].
Optimal security investments are paramount as organizations
increasingly rely on Information Technology (IT) [2]. How-
ever, organizations rarely have insights into the potential
added value offered by security investments. In 2016 RedSeal
Inc. polled 200 CEOs; 87% of CEOs who were surveyed
expressed the need for better metrics to evaluate cybersecurity
investments, and 72% said that the lack of useful metrics for
cybersecurity investment assessment was a “major challenge”
[3], [4]. [5] and [6] proposed security investment models,
but the models have limitations, including being based on
security threats and vulnerabilities that are hard to quantify
[6], [7], and lacking the organization security context[1], [8].
This research proposes a new decision-making process that
is metric-centered and tailored to each organization’s security
posture [9], [10].

Typically, organizations use different metrics to quantify
and justify their decisions with several business operations but
do not follow the same rational decision-making approach to
allocate resources for cybersecurity in their organizations[1],
[11]. The lack of proper resource allocation for cybersecurity
makes information security passive and less important for most
organizations, even though one single attack can be fatal and
lead to business closure. For example, in 2021, a major gas
pipeline (Colonial Pipeline) endured a ransomware attack that
led to paying a ransom worth $4.4 million, following the
attack. The attack also affected some of the pipeline’s digital
programs, shutting it down for several days[12]. Organiza-
tions use methods like discounted cash flow, Monte Carlo
simulation, decision-tree analysis, and others for uncertain and
complex decisions[13]. Nevertheless, interviews conducted by

Fig. 1. Situation and complication - Information Technology adds value to
business operations leading to success, however, cyberattacks use the same
technology as a vector to harm organizations when there are no security
measures put in place.

[11] reveal that most security executives and other organization
managers do not use any investment quantification methods
to decide how much their organizations should invest in
cybersecurity.

Organizations using information technology must imple-
ment cybersecurity measures to safeguard their IT assets and
data. The increasing reliance on IT for competitive advantage
[14] underscores the necessity of cybersecurity. Cyberattacks
lead to consequences such as financial losses, reputational
damage, and sometimes business closure; emphasizing the im-
portance of effective cybersecurity measures [2]. For example,
an Illinois hospital closed in 2021 after failing to financially
recover from a ransomware attack[15]. Frequently, most orga-
nizations don’t put enough information security measures or
are passive to protect their IT assets from attacks, due to lack
of awareness and lack of proper decision tools and models to
quantify how much they should invest in cybersecurity.

We propose developing a metric-based method to calculate
cybersecurity investments, tailored to each organization’s
security posture.

[5], [6] proposed cybersecurity investment models, but the
models are uncommon and have limitations [1], [7], [11].
For example, the Gordon and Loeb information security in-



vestment model [5] suggests that businesses should invest
not more than 37% of the expected loss that would result
from potential attacks on that business’s information. But,
quantifying threats is still a challenge[6]. For example, an
organization cannot quantify zero-day vulnerabilities [16]. In
addition, [6] proposed that organizations combine different
investment quantification methods, instead of just one, because
one investment method would be impractical. However, the
method has limitations [6], [7] and cannot be used as [7]
shared after analyzing that proposed approach. Therefore,
more research is required to propose usable quantitative cy-
bersecurity decision-making models for investment and other
decisions.

Despite the rare use of metric-centered methods for cyber-
security decisions, organization directors must protect their
businesses from cyber threats and have different approaches
to it. Mental biases and social preferences are some of the
frequent factors that influence cybersecurity decisions[17].
However, expert cybersecurity decision-makers depend on
security frameworks like NIST-800-53 and ISO 27001 to
structure strategic security decision-making processes [18].
Nonetheless, [17] states that even experts can exhibit errors
and have difficulties understanding delays and uncertainties
in predicting cyber incidents. Besides security experts, [19]
shares that most managers who have to make cybersecurity
decisions lack the expertise to make information security
decisions. Therefore, quantitative methods must be used to
support rational decisions in information security, especially
in uncertain and unfamiliar incidents.

II. SECURITY POSTURE BASED INVESTMENT

We propose developing a new cybersecurity investment
measuring method that is based on every organization’s con-
text (security posture) [9], [10]. We also propose a framework
that organizations can use to measure their security posture,
which will then inform different security metric-based deci-
sions, including investment decisions. Rowe & Galler[1] and
Vries[8] have proposed a conceptual approach to describe
and consider the components of a cybersecurity investment
decision. Following their idea, we will explore an organiza-
tion’s security posture as the base for identifying where an
organization stands with information security; what, and how
much the organization should do to improve its information
security posture.

To arrive at our proposed research goals, we have three main
research questions whose answers will be building blocks to
achieving our research targets. Our first research question is
“Why should organizations care about information security
investment?” To properly answer it we have a couple of
sub-questions which are: “What are the comprehensive direct
and indirect costs associated with cyberattacks on organiza-
tions, and how can these costs be efficiently quantified and
assessed?”, “How has cybersecurity investment been defined
from an economic perspective, in published literature?”, and
“How do organizations currently make decisions related to
cybersecurity investment?”. The second research question is

Fig. 2. Assumption: Elements of an organization’s security posture. An
organization’s security posture is made of different factors from the people
within an organization, to policy and regulations, the technology they use, and
external threats and opportunities that affect its cybersecurity. Our research
aims to bring together all those factors together into a framework that will
guide organizational security decisions.

“How can an organization’s security posture be used for
decision-making?” To answer it we have a couple of sub-
questions which are: “How has security posture been de-
fined in published literature, under the scope of cybersecurity
decision-making?”, “What variables should be used to measure
and improve an organization’s security posture?” and “How
can we systematically measure and evaluate an organization’s
security posture based on our understanding of the factors that
contribute to it?”. Lastly, answering the third question which
is: “ How can an organization’s security posture be used to
calculate how much to invest in information security?” will
lead us to achieving the final research goal.

Fig. 3. Our research approach

III. CONCLUSION

To determine the best value for cybersecurity investment
organizations must use a framework that considers the context
of each organization. Existing decision-making frameworks
and security investment models do not consider existing or
lacking effort in building an organization’s security posture,
the models base their calculations on security threats even
though the threats are hard to quantify and the approach leaves
out each organization’s context. To address the mentioned



limitations metric-centered methods for information security
decisions and investment, we aim to develop an organization
security posture tailored decision-making method that will also
be used to calculate cybersecurity investments within organi-
zations. Therefore, we call fellow researchers participating at
EuroS&P 2024 and beyond, who are interested in research
to develop a usable investment cybersecurity decision-making
method to collaborate with us in addressing the stated research
questions. Together, we can pave the way for a more resilient
and proactive cybersecurity landscape, ensuring the sustained
success of organizations in an increasingly digitized world.
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Abstract—Byzantine Fault Tolerant State Machine Replication
(BFT-SMR) is a widely used approach to provide availability
and fault tolerance to applications by enabling the system to
continue its correct execution even when some nodes present
arbitrary faults. This is done by replicating for all nodes the
execution and response to client requests. When the client receives
enough identical responses, that response is delivered. In BFT-
SMR all correct processes must produce equal responses to the
client requests. This requisite hinders the use of Large Language
Models (LLMs) given that these models inherently produce non-
deterministic outputs. We introduce Model Answer Replication
(MARS), an algorithm that allows the use of SMR in non-
deterministic applications, particularly when employing LLMs.
MARS’ key innovation is comparing responses to client requests
by measuring their semantic similarity rather than bit by bit
equality and allowing client side code to remain unaltered from
what is found in SMR algorithms for deterministic applications.

Index Terms—State Machine Replication, Byzantine Fault Tol-
erance, Large Language Models, Non-deterministic Algorithms

I. INTRODUCTION

Instruction-tuned Large Language Models (LLMs) are deep-
learning models designed to generate natural language textual
responses to comply with user requests. Their success has
enabled their integration into diverse applications, showcasing
their utility across multiple domains [1], including critical
applications such as medical diagnostics [2].

In critical applications, the safety and availability of the sys-
tem is crucial. One common method to achieve this is through
the Byzantine Fault Tolerant [3] State Machine Replication [4]
(BFT-SMR) abstraction, where the components of the system
are replicated. When a client issues a request, all nodes will
execute it and send their response to the client, ensuring the
system can execute correctly even when some nodes fail.

With BFT-SMR, when a client makes a request, they receive
multiple responses. If enough responses match, the system
considers the request successful. This method clashes with
LLMs, as their responses vary due to the non-determinism
commonly introduced during language decoding. Existing
solutions to abstract non-determinism in applications and allow

This work was supported by the FCT/MCTES grants PRT/BD/152803/2021
and PRT/BD/154428/2022, as well as by NOVA LINCS UIDB/04516/2020
and UIDP/04516/2020 with the financial support of FCT.IP

their use in the SMR approach [5], [6] fail to extend to the
challenges posed by LLMs.

We introduce Model Answer Replication (MARS), an algo-
rithm designed to make LLMs compatible with SMR. To the
best of our knowledge, this work represents the first attempt to
address this issue. A key innovation of MARS is to compare
server responses based on their semantic/conceptual similarity
rather than by exact match. Furthermore, MARS and BFT-
SMR protocols for deterministic operations differ in that in the
latter the response the client delivers is the output of correct
nodes, while in MARS, the response delivered can result from
a byzantine node, as long as it is be deemed innocuous by
correct nodes. This abstract outlines our ongoing work. We
will:

• Using fundamental concepts in BFT-SMR and unsuper-
vised learning as basis (§ II) and under a realistic system
model (§ III), we will specify (§ IV) and implement the
MARS algorithm.

• Validate and evaluate a critical application using MARS
on a representative environment with heterogeneity in the
components used and under diverse attacks to the system
safety.

II. BACKGROUND

In this section, we describe the primitives used in MARS,
adapting the definitions from [7].

Best Effort Broadcast (BEB) is a simple broadcast primi-
tive which satisfies the following properties:

• Validity (BEB1): If a correct process broadcasts msg,
every correct process eventually delivers msg.

• No duplication (BEB2): No message is delivered more
than once.

• No creation (BEB3): If a process delivers msg with
sender from, then msg was previously broadcast by from.

Total Order Broadcast (TOB) is a broadcast primitive that
establishes an order for messages to be delivered, followed by
all correct processes in accordance with these properties:

• Validity (TOB1), No duplication (TOB2), and No cre-
ation (TOB3): Equal to properties BEB1, BEB2, and
BEB3, respectively.



• Agreement (TOB4): If msg is delivered by a correct
node, then it is eventually delivered by all correct nodes.

• Total Order (TOB5): Let msg1 and msg2 be any two
messages and suppose p and q are any two correct
processes that deliver msg1 and msg2. If p delivers msg1
before msg2, then q delivers msg1 before msg2.

Mapping to Embedding Space is the process of mapping
a sentence in natural language into an n-dimensional point [8].
To implement this process, a Transformer encoder [9] identi-
fies key aspects of natural language sentences such that similar
sentences map to close points in space.

III. SYSTEM MODEL

Service Properties: We assume a system with a static
number of n nodes. All nodes have the same state but may be
running heterogeneous implementations of the system’s spec-
ification [5]. MARS provides the State Machine Replication
(SMR) abstraction [4] and the following properties:

• Linearizability (S1): The execution of client requests
should behave as a centralized component [10];

• Pragmatic Correctness (S2): Every response a client
delivers is valid and results from a correct node, or is a
similar and equally valid response from a faulty node;

• Termination (L1): A request from an honest client will
eventually be executed and its response delivered;

The first two properties are safety properties, Termination
is a liveness property. Properties S1 and L1 follow directly
from the requirements to provide the SMR abstraction [4].
Pragmatic Correctness ensures that the response the client
delivers is correct, even though MARS does not guarantee
the clients deliver responses from correct nodes.

Network Model: We assume the adversary controls the
network and is able delay and reorder messages exchanged
between all parties, controlling the scheduling of messages.

MARS’ execution requires calls to a Total Order Broadcast
(TOB) primitive. All steps of the MARS algorithm excluding
the TOB calls can be executed in an asynchronous network
model, where the adversary can delay messages an indefinite
(but finite) amount of time. The network model is therefore
limited by the underlying TOB primitive implementation,
which can be either a partially synchronous network [11] with
deterministic BFT-SMR protocols [5], [12] or an asynchronous
network with randomized protocols [13].

Adversary Model: We assume a static adversary that can
induce byzantine faults [3] in at most f nodes, where f < n

3 .
The adversary is computationally bounded and thus unable
to subvert standard cryptographic primitives except with neg-
ligible probability. Furthermore, we assume that all parties
involved are authenticated and sign their message contents.

IV. MARS

Figure 1 represents an execution trace of MARS responding
to a client request assuming there are four nodes and the
second is byzantine. The client request will be totally ordered
using the Total Order Broadcast (TOB) primitive. Each node

runs its own LLM, and each of which will produce a different
response to the client request, however, correct nodes will
produce semantically similar responses. In fig. 1 correct nodes
provide common greetings (Hello, Hi, and Howdy). Faulty
nodes produce arbitrary responses that may or may not be
similar to correct nodes’, e.g the response Bye.

After generating the responses to the client request, the
nodes choose which response is sent to the client, while
excluding incorrect responses. This is achieved following two
steps: Nodes evaluate each other’s responses and group similar
responses.

Entailment Evaluation: First, nodes broadcast their re-
sponses through the Best Effort Broadcast (BEB) primitive so
they are delivered by all correct nodes. Each node evaluates
a peer response by performing Natural Language Inference
(NLI) to measure the entailment between the client request
and the response being evaluated [14]. A high score indicates
strong entailment while a low score indicates there is no
relation between the request and the response.

Response Set Consensus: Correct nodes then use BEB to
broadcast the scores of each response evaluated. Following
property BEB1, every correct node i will eventually aggregate
a set Si of n − f responses and 2f + 1 scores per response.
Properties BEB2 and BEB3 assure that the majority of re-
sponses and scores result from correct nodes. Only one set Si

will be used to decide the response sent to the client by correct
nodes. Every set Si will have a majority of correct responses
and scores and so any can be chosen. Nodes will propose their
sets Si and we use TOB to achieve consensus on the set S to
be used [15]. Properties TOB1, TOB4 and TOB5 ensure all
correct nodes deliver and agree on S.

Answer Selection: Each correct node runs the deterministic
algorithm Answer Selection (AS) on input S, which selects a
single response from S to be sent to the client. In AS, every
response is mapped to a point in the embedding space [9], such
that semantically similar responses produce points that are
closer than dissimilar responses. Byzantine responses that are
semantically different from correct responses map to points far
from correct responses. However, experimentally we obverse
that there are scenarios where this behaviour is not present. To
account for this phenomena, we use the NLI scores gathered
in S to spread apart points with lower entailment.

For each response, its final score will be the median of its
corresponding scores in S. Because there are 2f+1 scores per
response, where at least f + 1 result from correct nodes, the
median score will either have been proposed by a correct node
or has a value between scores proposed by correct nodes. A
point corresponding to a low score response will be displaced
further away from the origin, while a point corresponding to
a high score response will not be displaced. Because there are
at most f byzantine responses in S and at least f + 1 correct
responses, we perform agglomerative clustering, incrementally
adding new points until a cluster of size at least f + 1 is
achieved. The chosen response will correspond to the point
that minimizes the square root of the distance to the remaining
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Fig. 1. Execution trace of a idempotent client request in MARS when Node 2 is Byzantine. The client issues a request, which is ordered so all correct nodes
process it in the same relative order. Passing the request by a correct LLM results in a variation of a greeting (”Hello”, ”Hi”, and ”Howdy”). Nodes broadcast
their responses and each will evaluate the responses of its peers. The evaluation scores will then be broadcast and nodes will collect 2f +1 scores for n− f
responses. Nodes will then determine the set of candidate responses, along with their scores. Nodes then select a response and send it to the client. When the
client receives f + 1 equal responses (”Hi”), the content of these responses is delivered.

points in the cluster, resulting in the selection of the innermost
point while discounting the influence of points in the edge of
the cluster. All correct nodes will compute the same response
from the AS algorithm and send it to the client. The client
delivers a response that it has received from at least f + 1
nodes.

Properties: The Linearizability property is achieved by or-
dering the client request through the use of the TOB primitive
a the start of MARS execution. The nodes in the MARS
algorithm execute calls to LLMs, the Entailment Evaluation,
and Answer Selection procedures, all of which are local and
always terminate. Besides these procedures, the nodes make
calls to the BEB and TOB primitives. Properties BEB1, TOB1,
and TOB4 ensure that these protocols always terminate. It
follows that MARS achieves its Termination property.

Finally, it is not obvious MARS achieves the Pragmatic
Correctness property. In our model we assume that responses
by byzantine nodes map to points that are either (1) far apart
from points resulting from correct nodes, if the byzantine
responses are malicious; or (2) are close to points proposed
by correct nodes but have innocuous content. A more formal
definition of what constitutes innocuous content in our model
will be present in the full version of this work. Experimentally,
we find this assumption to hold true in most scenarios;
however, a more thorough evaluation and mechanisms to better
approach our model to reality are still in progress.
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Abstract—To transform cybersecurity and privacy research
into a highly integrated, community-wide effort, researchers need
a common, rich, representative research infrastructure that meets
the needs across all members of the research community, and fa-
cilitates reproducible science. USC Information Sciences Institute
and Northeastern University are meeting researcher needs, and
have been funded by the NSF mid-scale research infrastructure
program to build Security and Privacy Heterogeneous Environ-
ment for Reproducible Experimentation (SPHERE). SPHERE
research infrastructure will offer access to an unprecedented
variety of user-configurable hardware, software, and network
resources, it will offer six user portals geared toward different
populations of users, and it will support reproducible research
via a combination of infrastructure services and community
engagement activities.

I. INTRODUCTION

Cybersecurity and privacy threats increasingly impact our
daily lives, our national infrastructures, and our industry.
Recent newsworthy attacks targeted nationally important in-
frastructure, our government, our nuclear facilities, our re-
searchers, and research facilities. The landscape of what needs
to be protected and from what threats is continuously evolving:
new technologies are released and the threat actors improve
their own capabilities through experience and close collabo-
ration. Meanwhile, defenders often work in isolation, using
private data and facilities, and producing defenses that are
quickly outpaced by new threats. To transform cybersecurity
and privacy research into a highly integrated, community-
wide effort, researchers need a common, rich, representative
research infrastructure that meets the needs across all mem-
bers of the research community, and facilitates reproducible
science.

To meet researcher needs, USC Information Sciences Insti-
tute and Northeastern University have been funded by the NSF
mid-scale research infrastructure program to build Security
and Privacy Heterogeneous Environment for Reproducible
Experimentation (SPHERE). This research infrastructure will
offer access to an unprecedented variety of hardware, software,
and other resources, all relevant to cybersecurity and privacy

research, connected by user-configurable network substrate,
and protected by a set of security policies uniquely aligned
with cybersecurity and privacy research needs. SPHERE will
offer six user portals, closely aligned with needs of different
user groups, facilitating widespread adoption. It will provide
built-in support for reproducibility, via easy experiment pack-
aging, sharing, and reuse. SPHERE will build a process, a
standard, and incentives for community-wide efforts to develop
representative experimentation environments for cybersecurity
and privacy research, and to continuously contribute high-
quality research artifacts. You can learn more about SPHERE
by visiting https://sphere-project.net.

II. COMMUNITY NEED

Over the past decade, and especially during the Covid-
19 pandemic, both an individual’s and society’s essential
functions (e.g., work, school, entertainment, social, financial,
infrastructure, and governance) moved increasingly online.
This sharply increased our nation’s dependence on correct
and reliable functioning of network and computing systems,
and has led to increases in the frequency and impact of
cybersecurity and privacy CS&P attacks. Recent years have
seen unprecedented and record-breaking attacks, for example
the Solar Winds supply-chain attack [5], which exposed confi-
dential government data, and the Colonial Pipeline attack [8],
which shut down our major gas pipeline for several days.
Ransomware attacks more than tripled [6], DDoS attacks
doubled [2], and data breaches increased by 70% [7]. Simply
put, we now live in a world where cybersecurity and privacy
are intrinsically intertwined with everything we do, and fail-
ures in these domains can have far-reaching monetary and
national security impacts, and even jeopardize human lives.
Research progress in cybersecurity and privacy is thus of
critical national importance, to ensure safety of U.S. people,
infrastructure and data.

USC Information Sciences Institute ran two workshops in
2022 to learn about community need around cybersecurity
and privacy research: the Cybersecurity Artifacts Workshop [1]



and the Cybersecurity Experimentation of the Future 2022
Workshop [4].

CS&P researchers need common, rich, representative
research infrastructure, which meets the needs across all
members of the community, and facilitates reproducible
science to move from piecemeal, opportunistic research to
pursuing integrated, sophisticated, community-encompassing
research.

III. SPHERE RESEARCH INFRASTRUCTURE

We are building innovative, transformative research infras-
tructure (RI) for CS&P experimentation: SPHERE – Security
and Privacy Heterogeneous Environment for Reproducible
Experimentation. In this section we describe the architec-
ture, services, and community-building activities we plan to
undertake to transform CS&P research from piecemeal and
opportunistic to highly integrated, community-wide effort that
is sophisticated and reproducible.

The SPHERE research infrastructure will offer rich, abun-
dant, and diverse hardware resources, which would meet the
experimental needs of 90% of researchers today [3]. The
devices we plan to purchase and integrate with SPHERE as ex-
perimental nodes, and the research that benefits from these are
as follows: (1) General compute nodes: 48 from DeterLab,
144 new nodes, with Intel TDX, ARM CCA/TrustZone, and
AMD SEV; Research supported: application, system and net-
work security, measurement, human user studies, large-scale
experiments, education, trustworthy computing; (2) Machine
learning nodes: 10 GPU-equipped servers; Research sup-
ported: security with machine-learning in the loop; (3) Cyber-
physical nodes: 15 Rockwell Automation ControlLogix PLCs,
I/O modules; Research supported: critical infrastructure se-
curity; (4) Embedded compute nodes: 600 from DCOMP,
312 new (Intel Atom, Intel Xeon D, ARM Cortex-A57,
and NVIDIA Jetson NX Volta GPUs); Research supported:
edge computing security, blockchain security, private com-
puting, trustworthy edge computing, federated learning; (5)
IoT nodes: 500 IoT nodes (a variety of smart home, smart
speaker, camera, doorbell, TV, appliance, medical, office,
wearable, and miscellaneous devices); Research supported:
IoT security, user privacy; and (6) Programmable nodes:
8 programmable switches, 16 NetFPGA development boards
(smartNICs); Research supported: dynamic (programmable)
network security, SDN security. SPHERE will support most
popular and relevant devices for CS&P research today. If
CS&P research trends change in the future, new devices can
be easily added by adding new installation and control scripts.

Many CS&P researchers study phenomena that inter-
act closely with network topology, protocols and actors –
SPHERE will meet the field’s unique needs by offering a
dedicated, user-configurable network substrate. CS&P experi-
ments further may include generation of harmful traffic, taking
live measurements from the real Internet, running human user
studies, and even interacting with malicious Internet actors. To
support these different research needs, and protect the Internet,
SPHERE will provide safe network security policies.

All SPHERE nodes will be accessible via a single user
interface. To meet the needs of various classes of users,
SPHERE will provide six user portals: MAN (manual) - for
exploratory research, JUP (Jupyter) – for mature research, GUI
– for novice users, EDU – for use in education, AEC – for
artifact evaluation committees, and HUM – for human user
studies. Users will be able to access all portals from the user
interface, and obtain a consistent view of their experiments,
while being able to switch between portals as their needs
evolve.

SPHERE will promote integrated research in cybersecurity
and privacy and facilitate reproducible science by building a
streamlined process, standards, and incentives for the commu-
nity to develop, share and reuse high-quality research artifacts.
To aid artifact packaging, SPHERE will build infrastructure
services that include extensive logging of user actions and
support for various approaches to capture experiment topol-
ogy, setup and workflow. In addition to these technological
advances, SPHERE team will engage with artifact evaluation
committees at conferences and journals to support artifact
evaluation on SPHERE. Additionally, SPHERE will issue an
open call for mature research artifacts to be deployed on
SPHERE as representative experimentation environments.

IV. CONCLUSION

This poster describes SPHERE1, a new research infras-
tructure for cybersecurity and privacy that will be built over
the next four years by USC-ISI and Northeastern Univer-
sity. It is our hope that SPHERE will transform and propel
CS&P research to new advances, by providing a common
experimentation platform for the research community.
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Abstract—Federated Learning (FL) enables multiple parties
to train a model without sharing data. However, in heteroge-
neous scenarios where the data distribution amongst the FL
participants is non-independent and identically distributed
(non-IID), FL suffers from the data heterogeneity challenge
which severely degrades the ability of the global model to
converge. To solve this problem, we propose a novel data
augmentation strategy, named DPSDA-FL, which can aid
in homogenizing the local data present on the client’s side.
DPSDA-FL improves the training of the global model by
leveraging differentially private synthetic data from founda-
tion models. We obtain promising preliminary results on the
CIFAR-10 dataset regarding recall of the global model.

1. Introduction

Federated Learning (FL) enables multiple parties to
come together and train an ML model without sharing
their data [1]. The training process is orchestrated by a
third party, which is usually a central server. In FL, each
client uses private data to train its own local model, while
the server uses an aggregation algorithm to construct a
global model. The entire process runs for several iterations
until a global model with the desired performance is
achieved.This global model is then broadcast to all clients
so they can use it for inference on their test dataset.
FL protects against data leakage as each client’s private
training data is not disclosed to any other party. FL also
enables adherence to regulations such as the GDPR [2].

However, when the data distribution amongst the
clients in FL is statistically heterogeneous, meaning the
data distribution is non-independent and identically dis-
tributed (non-IID), the prediction accuracy of the models
is affected. A client may hold data from some classes and
not from other classes present in the global dataset, as such
the ability of the global model to make accurate inferences
is severely degraded [3]. Also, when clients train their
local model on data that does not contain certain classes
from the global set or only a few samples from specific
classes, the models will likely be biased towards those
underrepresented groups [3]. This could have devastating
consequences when these models are deployed in safety-
critical situations such as healthcare and finance.

Statistical heterogeneity can be tackled by making the
dataset across FL clients uniform in their distribution. This
can be achieved by using data augmentation, a technique
that can generate more training data to harmonize the data

distribution amongst the clients in FL. Data augmentation
is effective as it can reduce the problem of non-IID data
in FL [3]. Existing works [4], [5] in the literature have
used Generative Adversarial networks (GANs) to generate
synthetic data for data augmentation. GANs, however,
are vulnerable and tricky to train to produce high-quality
and diverse synthetic data for data augmentation [6]. In
this regard, we propose using foundation models for a
more effective data augmentation process. To the best
of our knowledge, this is the first work that employs
pre-trained foundation models to generate differentially
private synthetic data to tackle the problem of non-IID
Data in FL. Thus, our contributions are as follows:

• We propose a new data augmentation strategy,
named Differentially Private Synthetic Data Aided
Federated Learning using Foundation Models
(DPSDA-FL), to enhance the FL performance with
non-IID Data.

• We demonstrate the effectiveness of utilizing Dif-
ferentially Private Synthetic Data from Foundation
Models in Cross Silo Horizontal FL.

• We conduct experiments and evaluations on the
CIFAR-10 dataset and obtain enhancements re-
garding the recall capability of the global model.

2. Related Work

2.1. Data Heterogeneity and Data Augmentation

Data Heterogeneity in FL arises from the differ-
ences in data distribution and quantity among participants.
Quantity skew results from the differences in the amount
of data held by clients, while label skew – the differences
in the classes of data held by individual clients [7].

Several techniques have been proposed to address
the challenge of data heterogeneity in FL. FedProx [8]
integrates a proximal term into the training process, which
reduces the divergence of the local models from the global
model by serving as a penalization term. In [9], a stochas-
tic controlled averaging algorithm, a modification of the
federated averaging, was developed, which incorporates
variance reduction to stabilize the local model towards the
global model. However, these techniques are not effective
in extreme cases of data heterogeneity.

Another line of work uses GANs to mitigate the effects
of data heterogeneity by generating additional training
data for data augmentation [10]. In [4], a GAN was trained



at the server side using FL and then used to generate syn-
thetic data. This data is shared across clients to improve
FL’s performance. Other researchers proposed Synthetic
Data Aided Federated Learning (SDA-FL) [5], where all
clients receive a portion of locally synthetically generated
data that is globally shared by the server. Despite the
effectiveness of GAN-based methods in combating data
heterogeneity problems in FL and enhancing the perfor-
mance of the global model, these works have limitations.
The instability of training GANs can result in low-quality
synthetic samples with low utility [11].

Recent works have addressed the underperformance
of GANs in generating high-quality synthetic data by
adopting diffusion models. These models have been shown
to produce high-quality data for computer vision applica-
tions [6], [11]. Diffusion models, however, can be chal-
lenging to train due to their high computational require-
ments. However, the emergence of foundation models
has made access to pre-trained diffusion models more
accessible. Foundation models like Open AI’s Stable Dif-
fusion and DALL.E [12] have become widely accessible
to the public. These pre-trained models can be leveraged
to generate high-utility synthetic data.

2.2. Differentially Private Synthetic Data Using
Foundation Models

Synthetic data has been demonstrated to inadvertently
reveal sensitive information about the original dataset
generated from [13]. Consequently, integrating privacy-
preserving techniques into the synthetic data genera-
tion process is imperative. Differential Privacy (DP) is
a method that introduces randomness while computing
statistics to maintain the privacy of the underlying infor-
mation [14]. It has emerged as the standard approach for
enhancing the privacy of synthetic data due to its ability to
offer provable privacy guarantees. Consequently, diffusion
models are being trained using DP to safeguard the privacy
of the synthetic data they produce.

In [15], by fine-tuning pre-trained diffusion models
with tens of millions of parameters, high utility data
with low Fréchet Inception Distance (FID) were gener-
ated privately. The synthetic data was employed for a
downstream classification task, and state-of-the-art results
were attained. A more recent method, PRIVIMAGE [16],
generates DP synthetic images using foundation models
by strategically selecting pre-training data. While this
approach is practical, it incurs significant memory and
time overheads. Another notable technique is Private Evo-
lution (PE) [17], an algorithm that fine-tunes pre-trained
diffusion models to generate synthetic data from private
datasets while maintaining differential privacy. PE has
demonstrated state-of-the-art results in image synthesis
and requires no pre-training. In this study, we leverage
PE to generate synthetic data for data augmentation.

3. DPSDA-FL: Differentially Private Syn-
thetic Data Aided Federated Learning Using
Foundation Models

Algorithm 1 and Figure 1 give a high-level overview of
our novel data augmentation strategy, DPSDA-FL, which
works as follows:

Figure 1. DPSDA-FL: Differentially Private Synthetic Data Aided Fed-
erated Learning Using Foundation Models.

Algorithm 1 DPSDA-FL
1: Input Parameters:
2: N : Number of clients.
3: T : Total number of rounds.
4: α: Learning rate.
5: wt: Initial model parameters.
6: wt+1: Updated model parameters.

7: Initialization
8: Clients share their unique label counts with a server
9: Clients generate DP synthetic data using FMs

10: for i = 1 to N do
11: Generate Di

syn from Di
c

12: Send Di
syn to server

13: end for
14: Server forms global DGsyn from Di

syn
15: Distribute DGsyn using unique label count
16: for t = 1 to T do
17: Send wt to all clients
18: for i = 1 to N do
19: Augment Di

c with DGsyn
20: Train model Li to update wi

t+1

21: Server Initializes w0

22: Send wi
t+1 to server

23: end for
24: Aggregate wt+1 = 1

N

∑N
i=1 w

i
t+1

25: end for
26: Repeat until convergence =0

1) At the start of the training process, clients share
their unique label counts with the server to form
a globally unique label count.

2) Each client proceeds to locally use the image-
guided diffusion model locally [17] to generate
differentially private synthetic data Dsyn from
their local data.

3) The diverse and high-quality generated synthetic
data are then shared with the server to form a
global synthetic data DGsyn.

4) The server uses the unique label count to dis-
tribute the synthetic data to the clients.

5) Each client augments its local data with the
global synthetic data to homogenize its local data
and train its local model.

6) The training process proceeds as in FedAvg for
multiple rounds until the global model converges.



TABLE 1. EXPERIMENTAL SETTINGS

Name Value

FL architecture Cross-Silo Horizontal FL
Dataset CIFAR-10
NN architecture CNN
Number of clients 5
Non-IID partition 2 classes per client
Number of local epochs 2
Number of global rounds 20
Learning rate 0.1
Batch size 32
Optimizer Stochastic gradient descent

Figure 2. Confusion matrix for the baseline approach: FedAvg.

4. Experiments and Preliminary Results

Our experimental settings and results are summarised
in Table 1, and Fig. 2 and 3, respectively. As can be
observed, the global model trained using DPSDA-FL re-
sults in more correct predictions when compared to the
baseline: FedAvg. These results suggest that differentially
private synthetic data generated by foundation models can
be utilized for local model training to mitigate the effects
of data heterogeneity in FL with Non-IID Data.

5. Conclusions and Future Work

Our work presents a novel data augmentation tech-
nique for cross-silo horizontal FL designed to address the
non-IID Data challenge. This technique enables clients to
generate high-quality, diverse, differentially private data,
which can be shared to enhance local model training. The
results of our experiments show a significant improvement
of up to 27% in the recall of the global model trained
with DPSDA-FL, compared to the baseline: FedAvg. This
underscores the potential of our technique to significantly
enhance the performance of global model training in FL.

As future work, we will experiment with datasets that
do not overlap with the pretraining data of the foundation
models.
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Abstract—Trusted Execution Environments (TEE) and secure
enclaves with hardware support are promising concepts for en-
hancing security in constrained environments. These approaches
provide protected processing areas within a SOC, in which
security-critical applications can execute, and at the same time
prevent unauthorized access to sensitive data and program
code. New microcontrollers with the Armv8-M architecture offer
Trustzone-M, a hardware feature to protect memory and support
TEEs. To facilitate adoption, Arm provides an open source
reference implementation for a secure processing environment
(Trusted Firmware-M). In this poster, we present how we
integrated this secure firmware in an IoT operating system and
measure the overhead cost in memory and execution time.

Index Terms—Internet of Things, IoT, Security, Trusted Exe-
cution Environment, Trustzone-M

I. INTRODUCTION

Internet of Things (IoT) devices store, process and transmit
sensitive data, while often being insecure and easily physically
accessible by potential attackers. Vulnerable devices can serve
as entry points to larger networks for compromising critical
system components and infrastructure. To secure IoT systems
we need measures to make those devices trustworthy.

One way to achieve this are Trusted Execution Environ-
ments (TEE) [1]. Those are isolated components in which
trusted applications (TA) can perform security critical oper-
ations, such as secure storage of data and cryptographic key
material, cryptographic operations, device authentication and
attestation and secure over-the-air (OTA) updates.

TEEs can provide a reduced set of operations only required
to establish trust between communication partners and ex-
pose a smaller attack surface than a rich OS. An OS could
be compromised by malware or through a physical attack.
Separating critical operations from the OS provides an extra
layer of security and allows for independent attestation and
verification.

In the constrained IoT, hardware-supported TEEs can help
to protect devices. On Arm Cortex-M devices with the Armv8-
M and Armv8.1-M architectures, TrustZone-M allows for a
memory-map based system separation [2]. Flash and memory
are split into secure and non-secure address regions, allowing
access to secure addresses only, when the CPU runs in a secure
state. CPU state transitions are performed in hardware, either
by triggering interrupts or through non-secure callable veneer
functions, aiming to make them fast and efficient.

Non-Secure Hardware

Trusted Firmware-M

HAL

Secure Hardware

Core (IPC, SPM, Interrupts) Secure Boot

Updates Storage Crypto Attestation

PS
A
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s
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Fig. 1. TF-M in combination with a non-secure operating system like RIOT

To increase the security of the IoT operating system
RIOT [5], we aim to integrate a secure firmware with the OS.
RIOT is an open source project aiming at a small memory
footprint and support for many different architectures. This is
achieved by a minimalistic core, which can be extended with
optional feature modules.

One existing candidate for a secure firmware on Arm
Cortex-M platforms, is the open source project Trusted
Firmware-M (TF-M) [4]. TF-M is a reference implementation
of a Secure Processing Environment (SPE) [3], which has been
specified as part of the Arm Platform Security Architecture
(PSA) framework. Since RIOT already supports the PSA
Crypto API [6], we decided to also evaluate the suitability
of TF-M as a secure firmware in RIOT.

In this poster, we report on ongoing work to leverage TEE
technologies in RIOT. We partly integrated TF-M with the OS
and document the steps needed to run RIOT side by side with
the firmware (§ II). We then measure the overhead introduced
by the secure firmware (§ III), and describe the problems and
limitations we encountered (§ IV).

II. INTEGRATING TF-M IN RIOT

TF-M provides a SPE, which acts as an intermediary
between a non-secure processing environment (NSPE) and
the secure hardware. It provides secure services, which are
necessary to verify system integrity and increase security.
Those services include secure updates, cryptography, secure
storage (e.g. for keys and certificates) and attestation. The
NSPE can be either a bare-metal application or an operating
system, and runs in non-secure memory areas. Communication
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Fig. 2. RAM and ROM usage of RIOT and RIOT/TF-M builds

between SPE and NSPE happens through several service APIs,
which are provided by the SPE.

The TF-M build system generates three binaries: a boot-
loader, a secure firmware image and, optionally, a non-secure
firmware image. All images are signed with a key to be
verified by the bootloader and concatenated to a single binary.
When flashing, at first the bootloader is written at memory
address 0, followed by the merged binary. If the image
signatures are valid, the bootloader boots the SPE, which sets
up the platform. The setup includes the configuration of secure
memory regions and the creation of partitions for the secure
services. All of this is done in a secure CPU state. The SPE
then loads and boots the NSPE and triggers a transition to
non-secure mode. If the non-secure application calls the secure
service APIs, they trigger the transition back to the secure state
to perform the requested operations. Afterwards the system
switches back to non-secure mode and returns the results of
the operation to the NSPE.

For this work, we aim to build RIOT as a NSPE and link it
with TF-M. The TF-M documentation lists a few requirements
for an OS to run as a NSPE:

• The OS must be able to run in non-secure mode.
• The OS must initialize the PSPLIM register and handle

it during thread context switch operations.
• The OS needs to ensure that a link register value can

differentiated between secure and non-secure builds.
First we had to figure out the details on what this meant for
RIOT.

A. Preparing RIOT

Two of the platforms supported by TF-M are also supported
in RIOT: the Nordic nRF9160 and nRF5340. There is a crypto
hardware driver available for the nRF9160, providing more
possibilities for experimentation, which is why we focus on
this board for now. Per default, RIOT runs in secure mode
and has access to the whole system, including secure RAM,
peripherals and registers. To enable non-secure mode, we
needed to find all the instances where secure addresses are

accessed and change them to non-secure addresses. To make
this optional, we added the modification as a compile time
option, as shown in Listing 1.

1 #if IS_ACTIVE(MODULE_TRUSTED_FIRMWARE_M)
2 #define LED_PORT (NRF_P0_NS)
3 #else
4 #define LED_PORT (NRF_P0_S)
5 #endif

Listing 1. Example of optional access to secure and non-secure LED ports
in RIOT

To switch between secure and non-secure images, supervi-
sor calls (SVC) are needed. Per default, RIOT does not use
SVC, so they have to be enabled explicitly when used with
TF-M.

TF-M requires a secure RAM range of 0x16000 bytes,
which means that RIOT RAM can only start at address
0x20016000. Usually RIOT RAM starts at 0x20000000, so we
needed to modify RIOT RAM length and start address. This
can be configured individually for RIOT platforms. Since TF-
M uses MCUboot we could use RIOTs existing partial support
for MCUboot to facilitate the integration. MCUboot usage
requires the definition of the image header size and the new
start address of the binary. As with the modified RAM start
address, this can be configured in the CPU specific makefiles
in RIOT.

Per default RIOT can only flash one binary. We added a TF-
M specific makefile to RIOT that contains a new flash target
with support for multiple binaries. This makefile is executed
after building the secure and non-secure images. It links both
images, signs them separately with an RSA key and merges
them into one binary. It then flashes the bootloader binary at
address 0x00 and the merged binary with the required offset.

B. Adding TF-M

Trusted Firmware-M has been added to RIOT as a third-
party package. We implemented an interface, through which
non-secure calls from the non-secure to the secure side can be
executed. A makefile downloads the source code and builds
TF-M in two steps. First, the secure image is configured and
built. This produces the bootloader binary and secure binary,
as well as a folder called api ns. This contains code and
configurations that are needed for communication between the
secure image and the non-secure image. In the next step, we
compile this api ns and create a library that shall be linked
with the RIOT binary.

C. Limitations

Per default, RIOT runs applications in a main thread,
which is created during kernel initialization and provides its
own stack with stacksize configured at runtime. After thread
creation RIOT initiates a context switch to execute the program
until completion. The current integration with TF-M does
not permit RIOT to create its own threads for applications.
This means, core threading needs to be disabled and OS and
applications are run in the same thread. Since the required
stack size for an application is defined when creating the main
thread, there is currently no way to dynamically increase the
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Fig. 3. Random and hash execution times by operation

stack size without threading. As a workaround, the stack size
is hardcoded in the linker file for the nRF9160.

III. EVALUATION

To evaluate the impact of TF-M on RIOT OS, we compare
memory consumption and execution time of cryptographic
operations with and without a secure processing environment.
TF-M uses the PSA Crypto reference implementation from the
MbedTLS library [7]. For comparison we include MbedTLS
as a third-party package in RIOT. We use the same version
TF-M uses and build it with the same configuration for the
library and the PSA Crypto module. The only difference is
that TF-M builds MbedTLS with the SPM (secure partition
manager) option, to separate code into secure and non-secure
parts. Since RIOT does not support this split we cannot use
this option in our case.

A. Memory

Figure 2 shows the RAM and ROM usage of both builds.
When building only RIOT with MbedTLS, we use ≈ 41 KB
of ROM and ≈ 7.5 KB of RAM. When building RIOT as
a NSPE for TF-M, the ROM usage decreases, because the
MbedTLS library is now part of the SPE. The SPE now uses
≈ 140 KB of ROM. Additionally the TF-M build adds ≈
52 KB of bootloader code. RIOT RAM usage also decreases
slightly when building with TF-M, while the SPE and the
bootloader use ≈ 43 KB and ≈ 24 KB.

B. Execution Time

We measure the execution times of random number gen-
eration (RNG), a SHA-256 hash computation, elliptic curve
(ECC) key generation, ECDSA sign/verify operation and an
ECDH key agreement operation with a NIST-P256 curve. We
measure each operation for the duration of 1000 iterations by
toggling a GPIO before and after the execution. We sample the
data with a logic analyzer at a rate of 6 MS/s. When comparing
RNG and hash computation, TF-M introcudes a significant
overhead of ≈ 200% for RNG and ≈ 300% for hash
operations. Surprisingly, this observation can’t be reproduced
for elliptic curve operations. Here the TF-M build is around
20 ms faster when generating a key pair, a signature and a
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shared secret, while being around 70 ms faster when verifying
a signed hash. Likely reasons are optimizations by TF-M as
well as different calloc implementations. MbedTLS in TF-
M allocates memory with a static buffer, while the RIOT
version uses the slower libc implementation.

IV. CONCLUSIONS AND OUTLOOK

In this paper we integrated an existing implementation
of a secure firmware in RIOT and measured the overhead
it introduces to the operating system. We showed that the
runtime overhead for random number and hash generation is
quite large, while it is negligible for ECC operations. The
firmware impact on RAM and ROM usage is quite large and
does not comply with the RIOT goal of a small memory
footprint. Also it is not portable to other CPU architectures.
We therefore conclude that TF-M is not a desired solution for
a secure firmware in RIOT. In future research, we will explore
alternatives to TF-M and develop a new, RIOT specific TEE.
The measurements we derived from this work will be used to
compare our own implementation to TF-M and improve the
size and efficiency of our design.
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