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Abstract. The recently developed and publicly available synthetic im-
age generation methods and services make it possible to create extremely
realistic imagery on demand, raising great risks for the integrity and
safety of online information. State-of-the-art Synthetic Image Detection
(SID) research has led to strong evidence on the advantages of feature
extraction from foundation models. However, such extracted features
mostly encapsulate high-level visual semantics instead of fine-grained de-
tails, which are more important for the SID task. On the contrary, shallow
layers encode low-level visual information. In this work, we leverage the
image representations extracted by intermediate Transformer blocks of
CLIP’s image-encoder via a lightweight network that maps them to a
learnable forgery-aware vector space capable of generalizing exception-
ally well. We also employ a trainable module to incorporate the impor-
tance of each Transformer block to the final prediction. Our method is
compared against the state-of-the-art by evaluating it on 20 test datasets
and exhibits an average +10.6% absolute performance improvement. No-
tably, the best performing models require just a single epoch for training
(∼8 minutes). Code available at https://github.com/mever-team/rine.

Keywords: synthetic image detection · AI-generated image detection ·
intermediate representations

1 Introduction

The advancements in the field of synthetic content generation disrupt digital me-
dia communications, and pose new societal and economic risks [28]. Generative
Adversarial Networks (GAN) [21], the variety of successor generative models [24]
and the latest breed of Diffusion models [14] are capable of producing highly real-
istic images that often deceive humans [34], and lead to grave risks ranging from
fake pornography to hoaxes, identity theft, and financial fraud [50]. Therefore,
it becomes extremely challenging to develop reliable synthetic content detection
methods that can keep up with the latest generative models.

The scientific community has recently put a lot of effort on the development
of automatic solutions to counter this problem [38, 50]. More precisely, the dis-
crimination of GAN-generated from real images using deep learning models has
gained a lot of interest, although it has been found that such approaches struggle
to generalize to other types of generative models [13]. Synthetic Image Detection
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(a) RINE (Ours) (b) UFD [41] (c) Wang et al. [52]

Fig. 1: Feature space visualization for unseen data with t-SNE.

(SID) is typically performed based either on image-level [6,52] or frequency-level
features [19, 25, 43]. Also, there are methods [11, 12] that analyse the traces left
by generative models to provide useful insights on how to address the SID task.

Recently, the utilization of features extracted by foundation models, such as
CLIP [44], has been found to yield surprisingly high performance in the SID task,
with minimal training requirements [41]. However, these features are extracted
from the last model layer, known to capture high-level semantics. Instead, low-
level image features deriving from intermediate layers, which are known to be
highly relevant for synthetic image detection [4, 12], have not been explored to
date, despite their potential to further boost performance.

To address the SID task more effectively, we propose the RINE model by
leveraging Representations from Intermediate Encoder-blocks of CLIP. Specifi-
cally, we collect the image representations provided by intermediate Transformer
blocks that carry low-level visual information and project them with learnable
linear mappings to a forgery-aware vector space. Additionally, a Trainable Im-
portance Estimator (TIE) module is used to incorporate the impact of each in-
termediate Transformer block in the final prediction. We train our models only
on images generated by ProGAN (our experiments consider 1, 2, and 4 object
classes for training) and evaluate it on 20 test datasets including images gener-
ated from GAN, Diffusion as well as other (deepfake, low-level vision, perceptual
loss, DALL-E) generative models, surpassing by an average +10.6% the state-of-
the-art performance. Fig. 1 provides a comparison between the feature space of
RINE and that of state-of-the-art methods, for GAN, Diffussion and real images,
showcasing the discriminating ability of the proposed representation. Also, it is
noteworthy that (i) we reach this level of performance with only 6.3M learnable
parameters, (ii) trained only for 1 epoch, which requires ∼8 minutes, and (iii) we
surpass the state-of-the-art by +9.4%, when training only on a single ProGAN
object class, while the second-to-best model uses 20.

2 Related work

Synthetic Image Detection (SID) has recently emerged as a special but increas-
ingly interesting field of DeepFake1 or synthetic media detection [38, 50]. Early
studies investigated fingerprints left by GAN generators, similarly to the finger-
prints left by cameras [35], letting them not only to distinguish between real
1 Often used as an umbrella term for all kinds of synthetic or manipulated content
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and synthetic images but also to attribute synthetic images to specific GAN
generators [37, 54]. Other studies focused on GAN-based image-to-image trans-
lation detection [36] and face manipulation detection [47], but still the considered
evaluation sets contained images generated from the same generators as the ones
used for training, neglecting to assess generalizability. Such approaches have been
shown to struggle with detecting images coming from unseen generators [13].

Subsequent works focused on alleviating this issue through patch-based pre-
dictions [6], auto-encoder based architectures [13] and co-occurrence matrices
computed on the RGB image channels [39]. Next, Wang et al. [52] proposed
a simple yet effective approach, based on appropriate pre-processing and in-
tense data augmentation, which is capable of generalizing well to many GAN
generators by simply training on ProGAN images [29]. Additionally, traces of
GAN generators in the frequency domain were exploited for effectively address-
ing the SID task [19, 55], while the use of frequency-level perturbation maps
was proposed in [26] to force the detector to ignore domain-specific frequency-
level artifacts. Image gradients estimated by a pre-trained CNN model have been
shown to produce artifacts that can generalize well to unseen GAN generated im-
ages [49]. Removing the down-sampling operation from the first ResNet’s layer,
that potentially eliminates synthetic traces, together with intense augmentation
has shown promising results [12]. Another approach to improve generalization
has been to select training images based on their perceptual quality; this was
shown to be effective especially in cross-domain generalization settings [17].

Representations extracted by foundation models are surprisingly effective on
SID, generalizing equally well on GAN and Diffusion model generated data [41].
Motivated by this success, we hypothesize that further performance gains are
possible by leveraging representations from intermediate layers, which carry low-
level visual information, in addition to representations from the final layer that
primarily carry high-level semantic information. Our approach is different from
deep layer aggregation that was explored in several computer vision tasks [53],
as well as for deepfake detection [27], as we process the frozen layers’ outputs
of a foundation model, while deep layer aggregation is a training technique that
concatenates layer outputs to produce predictions during the training of a CNN.

Finally, the performance drop of synthetic image detectors in real-world con-
ditions typically performed when uploading content to social media (e.g., crop-
ping and compression) has been analysed in [12,36]. Our method is also effective
in such conditions as demonstrated by the experimental results in Sec. 5.6.

3 Methodology

3.1 Representations from Intermediate Encoder-blocks

Fig. 2 illustrates the RINE architecture. Let us consider a batch of b input images
X ∈ Rb×3×w×h, with w width, and h height, and targets Y = {yi}bi=1 ∈ Rb,
with yi ∈ {0, 1}. The images are reshaped into a sequence of p flattened patches
Xp ∈ Rb×p×(P 2·3), where P denotes patch side length and p = w·h/P 2. Then, Xp
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Fig. 2: The RINE architecture. A batch of b images is processed by CLIP’s image
encoder. The concatenation of the n d-dimensional CLS tokens (one from each Trans-
former block) is first projected and then multiplied with the blocks’ scores, estimated
by the Trainable Importance Estimator (TIE) module. Summation across the second
dimension results in one feature vector per image. Finally, after the second projection
and the consequent classification head modules, two loss functions are computed. Bi-
nary cross-entropy LCE directly optimizes SID, while the contrastive loss LCont. assists
the training by forming a dense feature vector cluster per class.

is linearly projected to d dimensions, the learnable d-dimensional CLS token is
concatenated to the projected sequence, and positional embeddings are added to
all p+1 tokens in order to construct the image encoder’s input, Z0 ∈ Rb×(p+1)×d.
CLIP’s image encoder [44], being a Vision Transformer (ViT) [18], consists of
n successive Transformer encoder blocks [51], each processing the output of the
previous block as shown in Eq. (1):

Z̃l = MSA(LN(Zl−1)) + Zl−1

Zl = MLP(LN(Z̃l)) + Z̃l

(1)

where l=1,. . . ,n denotes the block’s index, Zl ∈ Rb×(p+1)×d denotes the lth
block’s output, MSA denotes Multi-head Softmax Attention [51], LN denotes
Layer Normalization [2], and MLP denotes a Multi-Layer Perceptron with two
GELU [23] activated linear layers of 4 · d and d number of units, respectively.

Then, we define the Representations from Intermediate Encoder-blocks (RINE)
K, as the concatenation of CLS tokens from the corresponding n blocks:

K = ⊕
{
Z

[0]
l

}n

l=1
∈ Rb×n×d (2)

where ⊕ denotes concatenation, and Z
[0]
l ∈ Rb×1×d denotes the CLS token from

the output of block l. We keep CLIP, which produces these features, frozen
during training and use K to construct discriminative features for the SID task.

3.2 Trainable modules

The representations K are processed by a projection network (Q1 in Fig. 2):

Km = ReLU(Km−1Wm + bm) ∈ Rb×n×d′
(3)



Representations from Intermediate Encoder-blocks 5

where m=1,. . . ,q denotes the index of the network’s layer (with K0 = K),
Wm ∈ Rd′×d′

(except W1 ∈ Rd×d′
) and bm ∈ Rd′

define the linear mapping,
and ReLU denotes the Rectified Linear Unit [1] activation function. After each
layer, dropout [48] with rate 0.5 is applied.

Additionally, each of the d′ learned features can be more relevant for the SID
task at various processing stages, thus we employ a Trainable Importance Esti-
mator (TIE) module to adjust their impact to the final decision. More precisely,
we consider a randomly-initialized learnable variable A = {αlk} ∈ Rn×d′

the
elements of which will estimate the importance of feature k at processing stage
(i.e., Transformer block) l. This is used to construct one feature vector per image
i, as a weighted average of feature k across processing stages l:

K̃(ik) =

n∑
l

S(A)(lk) ·K(ilk)
q (4)

where (·) denotes tensor indices, Kq = {K(ilk)
q } ∈ Rb×n×d′

is the output of
projection Q1, and S denotes the Softmax activation function acting across the
first dimension of A.

Finally, a second projection network (Q2 in Fig. 2) with the same architecture
as the first one (cf. Eq. (3)) takes as input K̃ ∈ Rb×d′

and outputs K̃q ∈ Rb×d′
,

which is consequently processed by the classification head that predicts the final
output ŷi (probability to be fake). The classification head consists of two d′ × d′

ReLU-activated dense layers and one d′×1 dense layer which produces the logits.

3.3 Objective function

We consider the combination of two objective functions to optimize the parame-
ters of the proposed model. The first is the binary cross-entropy loss [20], which
measures the classification error and directly optimizes the SID objective:

LCE = −
b∑

i=1

yilogŷi + (1− yi) · log(1− ŷi)

The second is the Supervised Contrastive Learning loss (SupContrast) [32], which
is considered in order to assist the training process by bringing closer the feature
vectors inside K̃q that share targets and move apart the rest, defined as:

LCont. = −
b∑

i=1

1

G(i)

∑
g∈G(i)

log
exp(zi · zg/τ)∑

a∈A(i) exp(zi · za/τ)

where A(i) = {1, . . . , i − 1, i + 1, . . . , b}, G(i) = {g ∈ A(i) : yg = yi}, zj =

{K̃(jk)
q }d′

k=1 ∈ Rd′
, the · denotes dot product, and τ is a temperature parameter.

We combine the two loss functions by a tunable factor ξ, as shown in Eq. (5):

L = LCE + ξ · LCont. (5)
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4 Experimental setup

4.1 Datasets

Following the training protocol of related work [41, 49, 52], we use for training
ProGAN [29] generated images and the corresponding real images of the pro-
vided dataset. Similarly with previous works [26, 49], we consider three settings
with ProGAN-generated training data from 1 (horse), 2 (chair, horse) and 4 (car,
cat, chair, horse) object classes. For testing, this is the first study to consider
20 datasets, with generated and real images, combining the evaluation datasets
used in [41,49,52]. Specifically, the evaluation sets are from ProGAN [29], Style-
GAN [30], StyleGAN2 [31], BigGAN [5], CycleGAN [56], StarGAN [9], Gau-
GAN [42], DeepFake [47], SITD [7], SAN [15], CRN [8], IMLE [33], Guided [16],
LDM [46] (3 variants), Glide [40] (3 variants), and DALL-E [45].

4.2 Implementation details

The training of RINE is conducted with batch size 128 and learning rate 1e-3
for only 1 epoch using the Adam optimizer. To assess the existence of potential
benefit from further training we also conduct a set of experiments with 3, 5, 10,
and 15 epochs (cf. Sec. 5.4). For each of the 3 training settings (1-class, 2-class,
4-class), we consider a hyperparameter grid to obtain the best performance,
namely ξ ∈ {0.1, 0.2, 0.4, 0.8}, q ∈ {1, 2, 4}, and d′ ∈ {128, 256, 512, 1024}. Ad-
ditionally, we consider two CLIP variants, namely ViT-B/32 and L/14, for the
extraction of representations. The models’ hyperparameters that result in the
best performance (presented in Sec. 5) are illustrated in Tab. 1, along with the
corresponding number of trainable parameters, and required training duration.
For the training images, following the best practice in related work, we ap-
ply Gaussian blurring and JPEG compression with probability 0.5, then random
cropping to 224×224, and finally random horizontal flip with probability 0.5.
The validation and test images are only center-cropped at 224×224. Resizing is
omitted both during training and testing as it is known to eliminate synthetic
traces [12]. All experiments are conducted using one NVIDIA GeForce RTX 3090
Ti GPU.

# classes backbone ξ q d d′ # params. training time

1 ViT-L/14 0.1 4 1024 1024 10.52M ∼2 min.
2 ViT-L/14 0.2 4 1024 128 0.28M ∼4 min.
4 ViT-L/14 0.2 2 1024 1024 6.32M ∼8 min.

Table 1: Hyperparameter configuration of the best 1-, 2-, and 4-class models. The
number of learnable parameters per model (in millions), and the training time (in
minutes) is also reported.
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4.3 State-of-the-art methods

The state-of-the-art SID methods we consider in our comparison include the
following:

1. Wang [52]: A standard ResNet-50 [22] architecture pre-trained on ImageNet
is fine-tuned on SID with appropriate selection of pre- and post-processing,
as well as data augmentations.

2. Patch-Forensics [6]: A truncated (at block 2) Xception [10] pre-trained on
ImageNet is fine-tuned on SID for each image patch, finally aggregating the
individual patch-level predictions.

3. FrePGAN [26]: Frequency-level perturbation maps are generated by an ad-
versarially trained network making fake images hard to distinguish from real
ones, then a standard ResNet-50 [22] is trained on the SID task.

4. LGrad [49]: Image gradients, computed using a pre-trained deep network,
are processed by a standard ResNet-50 [22] pre-trained on ImageNet, which
is fine-tuned on the SID task.

5. DMID [12]: A ResNet-50 [22] without down-sampling in the first layer is
trained on the SID task using intense augmentation.

6. Universal Fake Detector (UFD) [41]: Simple linear probing on top of (last
layer) features extracted from CLIP’s ViT-L/14 [44] image encoder.

For all methods except FrePGAN, we compute performance metrics on the
evaluation datasets presented in Sec. 4.1, using the publicly available checkpoints
provided by their official repositories. For FrePGAN, that does not provide pub-
licly available code and models, we present the scores that are reported in their
paper [26].

4.4 Evaluation protocol

We evaluate the proposed architecture with accuracy (ACC) and average preci-
sion (AP) metrics on each test dataset, following previous works for compara-
bility purposes. For the calculation of accuracy no calibration is conducted, we
consider 0.5 as threshold to all methods. Best models are identified by the max-
imum sum ACC+AP. We also report the average (AVG) metric values across
the test datasets to obtain summary evaluations.

5 Results

5.1 Comparative analysis

In Tab. 2 and Tab. 3, we present the performance scores (ACC & AP respec-
tively) of our method versus the competing ones. Our 1-class model outperforms
all state-of-the-art methods irrespective of training class number. On average,
we surpass the state-of-the-art by +9.4% ACC & +4.3% AP with the 1-class
model, by +6.8% ACC & +4.4% AP with the 2-class model, and by +10.6%
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Generative Adversarial Networks Low level vision Perceptual loss Latent Diffusion Glide

Pro- Style- Style- Big- Cycle- Star- Gau- Deep- 200 200 100 100 50 100 AVG
method # cl. GAN GAN GAN2 GAN GAN GAN GAN fake SITD SAN CRN IMLE Guided steps CFG steps 27 27 10 DALL-E

Wang [52] (prob. 0.5) 20 100.0 66.8 64.4 59.0 80.7 80.9 79.2 51.3 55.8 50.0 85.6 92.3 52.1 51.1 51.4 51.3 53.3 55.6 54.2 52.5 64.4
Wang [52] (prob. 0.1) 20 100.0 84.3 82.8 70.2 85.2 91.7 78.9 53.0 63.1 50.0 90.4 90.3 60.4 53.8 55.2 55.1 60.3 62.7 61.0 56.0 70.2
Patch-Forensics [6] † 66.2 58.8 52.7 52.1 50.2 96.9 50.1 58.0 54.4 50.0 52.9 52.3 50.5 51.9 53.8 52.0 51.8 52.1 51.4 57.2 55.8
FrePGAN [26] 1 95.5 80.6 77.4 63.5 59.4 99.6 53.0 70.4 -* - - - - - - - - - - - -
FrePGAN [26] 2 99.0 80.8 72.2 66.0 69.1 98.5 53.1 62.2 - - - - - - - - - - - - -
FrePGAN [26] 4 99.0 80.7 84.1 69.2 71.1 99.9 60.3 70.9 - - - - - - - - - - - - -
LGrad [49] 1 99.4 96.1 94.0 79.6 84.6 99.5 71.1 63.4 50.0 44.5 52.0 52.0 67.4 90.5 93.2 90.6 80.2 85.2 83.5 89.5 78.3
LGrad [49] 2 99.8 94.5 92.1 82.5 85.5 99.8 73.7 61.5 46.9 45.7 52.0 52.1 72.1 91.1 93.0 91.2 87.1 90.5 89.4 88.7 79.4
LGrad [49] 4 99.9 94.8 96.1 83.0 85.1 99.6 72.5 56.4 47.8 41.1 50.6 50.7 74.2 94.2 95.9 95.0 87.2 90.8 89.8 88.4 79.7
DMID [12] 20 100.0 99.4 92.9 96.9 92.0 99.5 94.8 54.1 90.6** 55.5 100.0 100.0 53.9 58.0 61.1 57.5 56.9 59.6 58.8 71.7 77.6
UFD [41] 20 99.8 79.9 70.9 95.1 98.3 95.7 99.5 71.7 71.4 51.4 57.5 70.0 70.2 94.4 74.0 95.0 78.5 79.0 77.9 87.3 80.9

1 99.8 88.7 86.9 99.1 99.4 98.8 99.7 82.7 84.7 72.4 93.4 96.9 77.9 96.9 83.5 97.0 83.8 87.4 85.4 91.9 90.3
RINE (Ours) 2 99.8 84.9 76.7 98.3 99.4 99.6 99.9 66.7 91.9 67.8 83.5 96.8 69.6 96.8 80.0 97.3 83.6 86.0 84.1 92.3 87.7

4 100.0 88.9 94.5 99.6 99.3 99.5 99.8 80.6 90.6 68.3 89.2 90.6 76.1 98.3 88.2 98.6 88.9 92.6 90.7 95.0 91.5

* Hyphens denote scores that are neither reported in the corresponding paper nor the code and models are available
in order to compute them.
** We applied cropping at 2000x1000 on SITD [7] for DMID [12] due to GPU memory limitations.
† Patch-Forensics has been trained on ProGAN data but not on the same dataset as the rest models. For more
details please refer to [6].

Table 2: Accuracy (ACC) scores of baselines and our model across 20 test datasets. The
second column (# cl.) presents the number of used training classes. Best performance
is denoted with bold and second to best with underline. Our method yields +10.6%
average accuracy compared to the state-of-the-art.

ACC & +4.5% AP with the 4-class model. In terms of ACC, we obtain the best
score in 14 out of 20 test datasets, and simultaneously the first and second best
performance in 10 of them. In terms of AP, we obtain the best score in 15 out
of 20 test datasets, and simultaneously the first and second best performance in
14 of them. The biggest performance gain is on the SAN dataset [15] (+16.9%
ACC). Considering more training classes does not reduce generalization (cf. sup-
plementary material).

Generative Adversarial Networks Low level vision Perceptual loss Latent Diffusion Glide

Pro- Style- Style- Big- Cycle- Star- Gau- Deep- 200 200 100 100 50 100 AVG
method # cl. GAN GAN GAN2 GAN GAN GAN GAN fake SITD SAN CRN IMLE Guided steps CFG steps 27 27 10 DALL-E

Wang [52] (prob. 0.5) 20 100.0 98.0 97.8 88.2 96.8 95.4 98.1 64.8 82.2 56.0 99.4 99.7 69.9 65.9 66.7 66.0 72.0 76.5 73.2 66.3 81.7
Wang [52] (prob. 0.1) 20 100.0 99.5 99.0 84.5 93.5 98.2 89.5 87.0 68.1 53.0 99.5 99.5 73.2 71.2 73.0 72.5 80.5 84.6 82.1 71.3 84.0
Patch-Forensics [6] † 94.6 79.3 77.6 83.3 74.7 99.5 83.2 71.3 91.6 39.7 99.9 98.9 58.7 68.9 73.7 68.7 50.6 52.8 48.4 66.9 74.1
FrePGAN [26] 1 99.4 90.6 93.0 60.5 59.9 100.0 49.1 81.5 -* - - - - - - - - - - - -
FrePGAN [26] 2 99.9 92.0 94.0 61.8 70.3 100.0 51.0 80.6 - - - - - - - - - - - - -
FrePGAN [26] 4 99.9 89.6 98.6 71.1 74.4 100.0 71.7 91.9 - - - - - - - - - - - - -
LGrad [49] 1 99.9 99.6 99.5 88.9 94.4 100.0 82.0 79.7 44.1 45.7 82.3 82.5 71.1 97.3 98.0 97.2 90.1 93.6 92.0 96.9 86.7
LGrad [49] 2 100.0 99.6 99.6 92.6 94.7 99.9 83.2 71.6 42.4 45.3 66.1 80.9 75.6 97.2 98.1 97.2 94.6 96.5 95.8 96.5 86.4
LGrad [49] 4 100.0 99.8 99.9 90.8 94.0 100.0 79.5 72.4 39.4 42.2 63.9 69.7 79.5 99.1 99.1 99.2 93.3 95.2 95.0 97.3 85.5
DMID [12] 20 100.0 100.0 100.0 99.8 98.6 100.0 99.8 94.7 99.8** 87.7 100.0 100.0 73.0 86.8 89.4 87.3 86.5 89.9 89.0 96.1 93.9
UFD [41] 20 100.0 97.3 97.5 99.3 99.8 99.4 100.0 84.4 89.9 62.6 94.5 98.3 89.5 99.3 92.5 99.3 95.3 95.6 95.0 97.5 94.3

1 100.0 99.1 99.7 99.9 100.0 100.0 100.0 97.4 95.8 91.9 98.5 99.9 95.7 99.8 98.0 99.9 98.9 99.3 99.1 99.3 98.6
RINE (Ours) 2 100.0 99.5 99.6 99.9 100.0 100.0 100.0 96.4 97.5 93.1 98.2 99.8 95.7 99.9 98.0 99.9 98.9 99.0 98.8 99.6 98.7

4 100.0 99.4 100.0 99.9 100.0 100.0 100.0 97.9 97.2 94.9 97.3 99.7 96.4 99.8 98.3 99.9 98.8 99.3 98.9 99.3 98.8

* Hyphens denote scores that are neither reported in the corresponding paper nor the code and models are available
in order to compute them.
** We applied cropping at 2000x1000 on SITD [7] for DMID [12] due to GPU memory limitations.
† Patch-Forensics has been trained on ProGAN data but not on the same dataset as the rest models. For more
details please refer to [6].

Table 3: Average precision (AP) scores of baselines and our model across 20 test
datasets. The second column (# cl.) presents the number of used training classes. Best
performance is denoted with bold and second to best with underline. Our method
yields +4.5% mean average precision (mAP) compared to the state-of-the-art.
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1-class 2-class 4-class AVG
ACC AP ACC AP ACC AP ACC AP

all generators

w/o contr. loss 87.3 98.3 87.9 98.5 90.0 98.8 88.4 98.5
w/o TIE 85.0 97.8 86.4 98.5 90.5 98.8 87.3 98.3
w/o intermediate 78.9 93.1 81.1 94.7 82.5 94.8 80.8 94.2

full 90.3 98.6 87.7 98.7 91.5 98.8 89.8 98.7

non-GAN generators

w/o contr. loss 83.4 97.4 84.6 97.7 86.3 98.2 84.7 97.8
w/o TIE 80.0 96.6 82.0 97.8 87.0 98.2 83.0 97.5
w/o intermediate 73.4 90.0 76.3 92.4 77.0 92.4 75.5 91.6

full 87.2 98.0 84.3 98.1 88.3 98.3 86.6 98.1
Table 4: Ablation analysis compares the full architecture with it after removing the
contrastive loss, the TIE module, and the intermediate representations.

5.2 Ablations

In Tab. 4, we present an ablation study, where we remove three of RINE’s main
components, namely the intermediate representations, the TIE, and the con-
trastive loss, one-by-one. To be more precise, “w/o intermediate” means that
we use only the last layer’s features (equivalent to the SotA method [41]). We
measure the RINE’s performance on 20 test datasets, after removing each of
the three components, and present the average ACC and AP for the 1-, 2-, and
4-class models, as well as the average across the three models. In addition, we
present generalizability results by averaging across the non-GAN generators. The
results demonstrate the positive impact of all proposed components. Also, ab-
lating intermediate representations yields the biggest performance loss reducing
the metrics to the previous SotA levels (i.e., [41]). In supplementary material
the interested reader can find ablation of the fusion mechanism and backbone.

5.3 Hyperparameter analysis

Fig. 3(a)-(c) illustrates ACC & AP boxplots for ViT-B/32 vs. ViT-L/14 in the
1-, 2-, and 4-class settings. Each boxplot is built from 48 scores (ACC/AP)
obtained from the experiments of all combinations of ξ, q, and d′. It is clear that
CLIP ViT-L/14 outperforms ViT-B/32, thus from now on we report results of
ViT-L/14 only. Fig. 3(d)-(f) illustrates the impact of the contrastive loss factor
ξ, showing little variability across the different values, in all training settings.
Fig. 4 presents ACC boxplots for each (q, d′) combination of the trainable part
of the model. For q=1, little variability is observed for different d′ choices, while
for q=2 and q=4, there is a slight performance increase with d′ on average. The
hyperparameter choices we have made for the proposed models are based on the
maximum ACC & AP and not their average or distribution.
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(a) (b) (c)

(d) (e) (f)

Fig. 3: Boxplots of ACC and AP expressing the impact of image encoder ViT-B/32
vs. ViT-L/14 for the (a) 1-class, (b) 2-class, and (c) 4-class settings, and impact of the
contrastive loss factor ξ for the (d) 1-class, (e) 2-class, and (f) 4-class settings.

5.4 The effect of training duration

As stated in Sec. 4.2, the proposed models are trained for only one epoch. Here,
we experimentally assess the potential benefit from further training. We identify
the 3 best-performing configurations in the 1-epoch case for each of the 1-, 2-,
and 4-class settings. Then, we train the corresponding models for 15 epochs and
evaluate them in the 3rd, 5th, 10th, and 15th epoch (reducing learning rate by a
factor of 10 at 6th and 11th epoch). Fig. 5 presents their average and maximum
performance, across the 20 test datasets, at different training stages. Neither the
average nor the maximum performance improve if we continue training; instead,
in the 1- and 4-class training settings performance drops.

5.5 The effect of training set size

Here, we present a set of experiments in order to assess the effect of the training
set size to our models’ performance. Specifically, we re-train (again for only one
epoch) the best models (1-class, 2-class, 4-class) using 20%, 50%, 80%, and 100%
of the training data. For the 1-class, these percentages correspond to 7K, 18K,
28K, and 36K images, for the 2-class to 14K, 36K, 57K, and 72K images, and
for the 4-class to 28K, 72K, 115K, and 144K images. In Fig. 6, we present the
obtained performance (ACC & AP) on the 20 test datasets. We observe that the
results are very close to each other, especially in terms of AP, showcasing the
effectiveness of the proposed method even in limited training data settings.
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Fig. 4: Boxplots of ACC for all different architectures of the trainable part of the
model. X-axis shows the number of trainable parameters as well as the tuple (q, d′).

(a) (b) (c)

Fig. 5: Maximum and average performance (ACC & AP) across the 20 evaluation
datasets, of the 3 best-performing configurations at 3, 5, 10, and 15 epochs, for the (a)
1-class, (b) 2-class, and (c) 4-class training settings.

5.6 Robustness to common image perturbations

Following common practice [41,49,52,54], we assess our method’s robustness to
perturbations typically applied in social media by applying blurring, cropping,
compression, noise addition, and their combination to each evaluation sample
with 0.5 probability (experimental setting directly taken from [19]). The results
in Tab. 5 indicate high robustness against cropping and compression, with min-
imal performance losses, and a good level of robustness against blurring and
noise addition. Their combination considerably reduce performance but at sim-
ilar levels to that of current SotA without applying perturbations (cf. Tab. 2).

5.7 Importance of intermediate stages

In Sec. 5.2, we show that the intermediate representations is the most important
component of the proposed method. Here, we estimate the importance of each
block by analysing the importances A = {αlk} estimated by TIE (cf. Eq. (4)):

l∗k = argmax
l

(αlk), for k=1,. . . ,d′

fl =
| {k | l∗k = l} |

d′
, for l=1,. . . ,n
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6: ACC on the 20 evaluation datasets when the proposed model is trained with
20%, 50%, 80%, and 100% of the training data, for the (a) 1-class, (b) 2-class, and (c)
4-class settings. In (d)-(f) the same for AP.
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Generative Adversarial Networks Low level vision Perceptual loss Latent Diffusion Glide

Pro- Style- Style- Big- Cycle- Star- Gau- Deep- 200 200 100 100 50 100 AVG
perturb. GAN GAN GAN2 GAN GAN GAN GAN fake SITD SAN CRN IMLE Guided steps CFG steps 27 27 10 DALL-E

ACC

1-class

blur 96.3 78.3 76.2 91.3 90.3 94.1 93.9 72.3 88.9 61.4 83.8 86.5 77.1 93.3 78.5 93.2 77.5 79.0 77.0 88.9 83.9
crop 99.8 85.7 81.0 98.9 99.5 98.9 99.8 79.8 89.2 63.9 91.8 94.1 74.9 96.5 81.3 96.5 82.2 86.3 84.7 91.9 88.8

compress 99.1 81.2 77.3 96.9 99.0 98.4 99.7 78.7 89.2 62.8 88.6 96.1 72.1 94.4 76.3 94.2 79.3 81.0 81.6 89.0 86.7
noise 97.5 77.0 73.8 91.8 95.7 94.0 98.2 80.1 88.6 63.5 80.1 89.8 78.1 93.7 75.4 94.2 83.1 85.2 83.2 88.4 85.6

combined 88.8 72.3 71.7 80.7 87.7 90.1 89.3 75.3 88.3 62.8 76.3 80.0 80.2 87.4 72.2 88.4 78.4 81.1 79.2 82.6 80.6

no 99.8 88.7 86.9 99.1 99.4 98.8 99.7 82.7 84.7 72.4 93.4 96.9 77.9 96.9 83.5 97.0 83.8 87.4 85.4 91.9 90.3

2-class

blur 97.2 75.4 68.1 90.3 94.3 95.4 97.0 60.7 88.9 59.6 80.9 91.3 72.0 92.7 74.0 91.8 77.2 78.2 76.8 87.4 82.5
crop 99.8 81.3 72.5 98.0 99.4 99.6 99.8 64.5 89.7 61.4 85.3 96.9 67.2 97.0 79.2 97.2 83.1 85.3 83.4 92.5 86.7

compress 99.4 78.0 70.1 94.6 99.4 98.5 99.7 64.0 88.9 61.6 82.2 96.7 66.2 94.5 74.4 94.0 79.2 81.4 80.3 88.7 84.6
noise 97.7 74.2 67.5 89.5 96.2 93.5 98.8 69.0 88.6 62.6 73.3 88.4 71.7 92.8 71.0 91.6 79.5 80.3 79.5 87.1 82.6

combined 90.6 69.6 65.4 81.4 88.2 91.9 92.5 66.7 89.2 61.6 75.5 88.3 74.7 87.6 68.2 86.3 76.1 78.5 76.0 81.3 79.5

no 99.8 84.9 76.7 98.3 99.4 99.6 99.9 66.7 91.9 67.8 83.5 96.8 69.6 96.8 80.0 97.3 83.6 86.0 84.1 92.3 87.7

4-class

blur 97.7 86.9 90.4 93.9 91.5 98.5 95.1 72.3 91.7 57.8 81.0 81.6 77.6 92.8 81.2 92.3 83.2 87.2 85.2 92.2 86.5
crop 100.0 88.5 93.4 99.5 99.4 99.5 99.8 79.2 92.2 62.1 87.7 88.3 74.9 98.0 88.3 98.4 88.6 92.4 90.1 95.0 90.8

compress 99.9 87.5 89.2 98.1 99.2 99.6 99.7 72.8 91.4 61.9 88.0 93.0 70.6 95.2 79.8 95.9 85.8 88.4 87.2 91.2 88.7
noise 97.7 80.0 78.4 91.3 93.9 94.8 98.0 78.2 91.9 59.6 71.9 79.8 74.5 92.5 74.8 92.7 83.6 86.0 84.2 88.1 84.6

combined 91.9 75.8 78.9 82.6 88.7 91.2 92.9 72.5 92.5 58.7 77.5 85.0 79.1 89.1 73.4 89.2 82.8 85.2 83.5 82.5 82.7

no 100.0 88.9 94.5 99.6 99.3 99.5 99.8 80.6 90.6 68.3 89.2 90.6 76.1 98.3 88.2 98.6 88.9 92.6 90.7 95.0 91.5

AP

1-class

blur 99.7 94.6 93.6 97.6 98.6 99.5 99.8 93.2 96.1 76.1 94.1 98.9 91.0 98.6 91.2 98.6 93.1 94.0 92.9 96.8 94.9
crop 100.0 98.8 99.5 99.9 100.0 99.9 100.0 96.9 96.5 83.5 98.2 99.9 95.3 99.8 98.0 99.8 99.1 99.4 99.4 99.3 98.2

compress 100.0 98.5 99.0 99.7 99.9 99.9 100.0 96.1 96.0 82.3 95.9 99.6 94.0 99.7 96.2 99.7 98.6 98.8 98.8 99.1 97.6
noise 99.8 92.5 93.0 98.2 99.2 98.7 99.9 89.1 95.8 82.9 90.6 96.9 95.0 99.0 92.6 99.1 96.8 97.3 96.5 97.7 95.5

combined 97.8 84.9 84.3 92.1 97.0 97.6 98.2 84.0 95.9 77.8 87.2 94.6 92.2 95.7 84.0 96.0 88.7 89.9 87.7 92.1 90.9

no 100.0 99.1 99.7 99.9 100.0 100.0 100.0 97.4 95.8 91.9 98.5 99.9 95.7 99.8 98.0 99.9 98.9 99.3 99.1 99.3 98.6

2-class

blur 99.8 94.7 92.2 97.7 99.6 99.8 99.9 90.6 96.2 77.3 90.7 98.2 91.2 98.8 91.3 98.5 93.8 93.9 93.4 97.4 94.7
crop 100.0 99.4 99.4 99.9 100.0 100.0 100.0 95.8 96.8 86.4 97.4 99.7 94.7 99.9 98.1 99.9 98.8 99.0 98.9 99.6 98.2

compress 100.0 99.1 98.8 99.7 100.0 100.0 100.0 94.9 96.3 85.2 96.5 99.7 94.1 99.7 96.0 99.7 98.3 98.5 98.4 99.2 97.7
noise 99.8 93.1 91.7 98.2 99.5 99.3 99.9 84.6 96.4 84.3 91.7 98.0 93.7 99.2 91.7 99.2 97.2 96.9 96.7 98.3 95.5

combined 97.8 84.8 81.0 92.8 98.0 98.2 98.5 78.3 96.6 77.2 87.3 96.2 90.4 96.5 84.1 95.8 90.4 91.4 90.7 93.4 91.0

no 100.0 99.5 99.6 99.9 100.0 100.0 100.0 96.4 97.5 93.1 98.2 99.8 95.7 99.9 98.0 99.9 98.9 99.0 98.8 99.6 98.7

4-class

blur 99.9 97.1 98.4 98.7 99.6 99.9 99.8 93.5 97.3 74.2 95.1 99.5 90.5 98.4 93.1 98.1 94.4 96.0 94.9 97.7 95.8
crop 100.0 99.5 100.0 99.9 100.0 100.0 100.0 97.8 96.6 86.9 97.5 99.7 95.6 99.8 98.3 99.9 99.0 99.4 99.0 99.5 98.4

compress 100.0 99.4 99.9 99.9 100.0 100.0 100.0 96.1 97.2 86.0 95.4 99.5 94.3 99.6 96.0 99.6 98.6 98.9 98.6 98.8 97.9
noise 99.9 96.5 97.6 98.7 98.9 99.1 99.9 88.0 97.4 86.5 82.7 91.5 94.5 99.0 93.0 98.8 97.8 98.1 97.8 98.0 95.7

combined 98.2 89.4 91.7 93.3 97.9 98.2 98.4 82.1 97.3 77.9 88.1 94.6 93.3 96.6 87.6 96.3 92.4 94.9 93.7 93.5 92.8

no 100.0 99.4 100.0 99.9 100.0 100.0 100.0 97.9 97.2 94.9 97.3 99.7 96.4 99.8 98.3 99.9 98.8 99.3 98.9 99.3 98.8

Table 5: Performance (ACC & AP) after applying common image perturbations.
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Fig. 7: Frequency (fl) of each Transformer block obtaining the maximum importance
over feature elements.

Fig. 7 illustrates the frequency fl of Transformer block l obtaining maximum
importance, for l=1,. . . ,n. For the 1-class and 4-class models n=24 and d′=1024,
while for the 2-class model n=24 and d′=128. We observe that there are many
Transformer blocks obtaining higher maximum importance frequency than the
last one in all training settings, supporting the proposed method’s motivation.

5.8 The effect of training data origin on detecting Diffusion images

We additionally assess our method’s performance on Diffusion data produced
by commercial tools, and more precisely on the Synthbuster dataset [3]. Due to
the images’ size we consider the ten-crop validation technique and average the
predictions. Tab. 6 illustrates RINE’s performance on Synthbuster when trained
on ProGAN data from [52], and on Latent Diffusion Model (LDM) data from [12].
As expected training on Diffusion data provides big performance gains.

training set DALL-E 2 DALL-E 3 SD1.3 SD1.4 SD2 SD XL Glide Firefly Midjourney

ProGAN (from [52]) 64.6/86.7 21.1/30.7 66.3/91.3 65.8/91.4 49.0/66.8 53.3/73.4 42.6/55.7 70.8/99.3 34.2/39.5
LDM (from [12]) 89.8/96.2 47.2/32.5 96.4/100.0 96.4/100.0 93.5/98.5 96.3/99.8 90.0/96.3 85.3/93.4 92.4/97.4

Table 6: Performance (ACC/AP) of our method on Synthbuster.

6 Conclusions

In this work, inspired by the recent advances on the use of large-scale pre-trained
visual features, we propose RINE that leverages representations from intermedi-
ate encoder-blocks of CLIP, as more effective to SID. Our experiments demon-
strate the superiority of our approach compared to the state-of-the-art. As an
added benefit, the proposed approach requires only one epoch, translating to
∼8 minutes of training time, and limited training data to achieve maximum
performance, while it is robust to common image transformations.
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