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I. INTRODUCTION 
The time-dependent Maxwell equations constitute the hyperbolic partial differential equa- 

tion system [1,2]. In order to complete the description of the differential system, initial value 
and boundary condition are required. For Maxwell equations, only the source of the excited 
field and a few physical boundary conditions at  the media interfaces are pertinent [l]: 

aB - + v x E = O  at 

_ _  aD v x H = - J  
at 

n x  (El - E 2 )  = 0 
n x  ( H l - H 2 )  = J,  
n .  (Dl - 0 2 )  = ps 
n .  (B ,  - B2) = 0 

(4) 

where the subscripts 1 and 2 refer to media on two sides of the interface. J ,  and ps are the 
surface current and charge densities of a perfect electrical conductor respectively. 

This first-order divergent-curl equations system is not necessarily analytical and is diffi- 
cult to solve by conventional numerical methods. Pioneering efforts by Yee and others have 
attained impressive achievements [3,4]. Recently, numerical techniques in computational 
electromagnetics (CEM) have been further enriched by the computational fluid dynamics 
(CFD) community [5,6]. Limited by the numerical resolution of present algorithms, accu- 
rate high frequency CEM simulations are still beyond the reach of conventional computing 
systems. 

The computational accuracy requirement for diffraction and refraction dominant electro- 
magnetic phenomena is well known [4,5]. For any numerical simulation of physics, funda- 
mental efforts should always be concentrated on the requirements of numerical resolution, 
initial/boundary condition implementation, and accurate geometrical description. A major 
source of error is introduced into the solution by physically incorrect and inappropriate im- 
plementation of initial and boundary conditions. The placement of the farfield boundary 
and type of initial or boundary conditions also play an important role. These concerns are 
easily appreciated in the light of the fact that the governing equations are identical in CEM, 
only different initial or boundary conditions generate different solutions. 

Numerical accuracy is also controlled by the algorithm and computing systems used. Error 
induced by the discretization consists of round-off and truncation error. The round-off error 
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is contributed by the computing system. Since this error behavior is random, it is th8 
most difficult to evaluate. The truncation error for time-dependent calculations appears 
as dissipation and dispersion. In multiple dimensional computations, the anisotropic error 
also emerges. All known numerical algorithms have a wavenumber range in which the error 
is small. As an illustration, the semi-discrete dispersive error of several well-known and a 
bidiagonal compact-differencing scheme are presented in Figure 1. The numerical results are 
obtained by solving the one-dimensional model wave equation. It is not surprising that the 
high resolution algorithm development is a pacing item in CEM. 

For a wide range of CEM applications, the Maxwell equations can be cast on a general 
curvilinear frame of reference to accommodate different electrical configurations [6,7]. The 
system of equations on general curvilinear coordinates is derived by a coordinate transfor- 
mation from the Cartesian frame to achieve the strong conservation form [6,7]: 

< = < ( 2 , y , r ) , 4 = 4 ( 2 , y , z ) , C =  I ( Z , Y , 4 .  ( 5 )  

where the dependent variables are now defined as, U = U (B,V, ByV,  B,V, D,V, DyV, DzV),  
and the V is the local cell volume is also the inverse Jacobian of coordinate transformation. 

In order to provide a versatile numerical tool for CEM, the multiple-block structure tech- 
nique becomes necessary to describe the field around complex electric configurations. The 
adopted grid topology, grid generation procedures, and the minimum grid spacing criteria 
will control the simulation accuracy. The aforementioned requirements are collectively de- 
scribed as pre-processing needs. On the other hand, the data reduction, data display, and 
validation efforts are considered to be post-processing endeavors. All these issues demand a 
systematic approach to establish a common ground for applications. 

In the last decade, through remarkable progress in micro chip and interconnect data link 
technology, a host of multiple address, message passing computers have became available for 
data processing. These scalable multi-processors or multi-computers, in theory, are capable 
of providing essentially unlimited computing resources for scientific simulations. A synergism 
of new numerical procedures and scalable parallel computing capability will open up a new 
frontier in electromagnetics research [8]. This new opportunity also offers challenges for 
CEM research in high resolution numerical algorithm development, consistent and well- 
posed initial values and boundary conditions implementation, pre- and post data processing, 
and the ever important validation data base development. 

11. AREAS OF RESEARCH EMPHASIS 
In numerical simulation, the well-posedness requirement of initial or boundary conditions 

and the stability of a numerical approximation are also ultimately linked to the eigenvalues 
of governing equation. The solution of the hyperbolic differential system has a distinctive 
domain of dependence in which all data must meet the compatibility condition [2]. The well- 
posed boundary conditions at the farfield and the media interface is paramount for numerical 
stability and accuracy. Since all CEM computations in the time domain must be conducted 
on a truncated computational domain, this constraint requires a numerical farfield condition 
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at the truncated boundary to mimic the behavior of an unbounded field. A highly developed 
technique to suppress the reflected wave from the artificial numerical boundary is to introduce 
an absorbing layer. Arecent contribution to this approach is due to Berenger [9]. Another 
approach is to treat the farfieid by the characteristic-based formulation. Both approaches 
use split Maxwell equations, a comparative study should be performed to gain insight on the 
effectiveness and well-posedness features of these techniques. 

A systematic evaluation of boundary implementation on media interface is urgently needed. 
Particularly for PEC scattering simulations, the unknown surface current and charge density 
are bypassed by extrapolations [6-81. Although these approximated numerical boundary con- 
ditions are compatible with the basic attribute of the hyperbolic partial differential system, 
they also induce error. The error is easily identified by comparing with values derived from 
the asymptotic formulation in the optical limit by Kay [lo]. Figure 2 depicts the compari- 
son of computed electrical surface charge densities with asymptotes. The discrepancy exists 
over the entire wavenumber range examined. An exact boundary formulation on the PEC 
scatterer by including the conservation law for electric charge and current densities will be 
invaluable for high resolution procedure development. 

The final area of CEM research emphasis is the accuracy enhancement of computations 
by high resolution schemes and spectral methods. Substantial progress is being made in 
the compact difference method, optimized algorithm research [ll]. All these numerical tech- 
niques are devised to increase the numerical resolution of simulations over a wider range of 
the frequency spectrum. Several high resolution schemes for both the finite-difference and 
the finite-volume formulations are being developed. A detailed delineation of these numerical 
procedures will accelerate their maturation for applications. 

In summary, recent progress in solving the three-dimensional Maxwell equations in the 
time domain has opened a new frontier in electromagnetics. The progress in micro chip and 
interconnect network technology has led to a host of high performance distributive memory 
computer systems. The synergism of efficient and high resolution numerical algorithms for 
solving the Maxwell equations in the time domain with high performance multicomputers will 
propel the relatively new interdisciplinary simulation technique to practical and productive 
applications. 
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Figure 1. Dispersive Error of Various schemes for Solving 

Simple Model Wave Equation 

Figure 2. Comparison of Electrical Surface Charge 
Density on a PEC Sphere 
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