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Abstract— Blind Compressed Sensing (BCS) is an extension
of Compressed Sensing (CS) where the optimal sparsifying
dictionary is assumed to be unknown and subject to estimation
(in addition to the CS sparse coefficients). Since the emergence
of BCS, dictionary learning, a.k.a. sparse coding, has been
studied as a matrix factorization problem where its sample
complexity, uniqueness and identifiability have been addressed
thoroughly. However, in spite of the strong connections between
BCS and sparse coding, recent results from the sparse coding
problem area have not been exploited within the context of
BCS. In particular, prior BCS efforts have focused on learning
constrained and complete dictionaries that limit the scope and
utility of these efforts. In this paper, we develop new theoretical
bounds for perfect recovery for the general unconstrained BCS
problem. These unconstrained BCS bounds cover the case of
overcomplete dictionaries, and hence, they go well beyond the
existing BCS theory. Our perfect recovery results integrate
the combinatorial theories of sparse coding with some of the
recent results from low-rank matrix recovery. In particular,
we propose an efficient CS measurement scheme that results
in practical recovery bounds for BCS. Moreover, we discuss
the performance of BCS under polynomial-time sparse coding
algorithms.

I. INTRODUCTION

The sparse representation problem involves solving the
system of linear equations y = Ax ∈ Rd where x ∈ Rm is
assumed to be k-sparse; i.e. x is allowed to have (at most) k
non-zero entries. The matrix A ∈ Rd×m is typically referred
to as the dictionary with m ≥ d elements or atoms. It is well-
known that x can be uniquely identified if A satisfies the
so called spark condition1. Meanwhile, there exist tractable
and efficient convex relaxations of the combinatorial problem
of finding the (unique) k-sparse solution of y = Ax with
provable recovery guarantees [1].

A related problem is Dictionary Learning (DL) or sparse
coding [2] which can be expressed as a sparse factorization of
the data matrix Y = AX subject to the conditions that each
column of X is k-sparse and A satisfies the spark condition.
A crucial question is: How many data samples (n) are needed
to uniquely identify A and X from Y ? The existing lower
bound is n ≥ (k+ 1)

(
m
k

)
assuming an equal number of data

samples over each k-sparse support pattern in X [3], [4].
In this paper, we are interested in the matrix factorization

problem Y = AX (with sparsity and spark conditions over
X and A) when only p < d random linear measurements
from each column of Y are available. We would like to
find lower bounds for n for the (partially observed) matrix
factorization to be unique. This problem can also be seen as
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1That is every 2k ≤ d columns of A are linearly independent.

recovering both the dictionary A and the sparse coefficients
X from compressive measurements of data. For this reason,
this problem has been termed Blind Compressed Sensing
(BCS) before [5], although the end-goal of BCS is the
recovery of Y .

Summary of Contributions: We start by establishing that
the uniqueness of the learned dictionary over random data
measurements is a sufficient condition for the success of
BCS. Exact BCS recovery conditions are derived under two
different measurement scenarios. In the first scenario, fewer
random linear measurements are available from each data
sample. We establish that having access to a large number of
data samples compensates for the inadequacy of linear mea-
surements. In the second scenario, it is assumed that slightly
more random linear measurements are available over each
data sample and the measurement operator is partly fixed
and partly varying over the data. This measurement scheme
results in a significant reduction in the required number of
data samples for exact recovery. Finally, we address the
computational aspects of BCS based on a recent non-iterative
dictionary learning algorithm [15] with provable guarantees.

A. Prior Art on BCS

BCS was initially proposed in [5] where it was assumed
that, for a given random Gaussian sampling matrix Φ ∈ Rp×d
(p < d), Z = ΦY is observed. The conclusion was that,
assuming the factorization Y = AX is unique, Z = BX
factorization would also be unique with a high probability
when A is an orthonormal basis. However, it would be
impossible to recover A from B = ΦA when p < d. It
was suggested that structural constraints be imposed over the
space of admissible dictionaries to make the inverse problem
well-posed. Some of these structures were sparse bases under
known dictionaries, finite set of bases and orthogonal block-
diagonal bases [5]. While these results can be useful in many
applications, some of which are mentioned in [5], they do
not generalize to unconstrained overcomplete dictionaries.

Subsequently, there has been a line of empirical work on
showing that dictionary learning from compressive data—
a sufficient step for BCS—can be successful given that a
different sampling matrix is employed for each data sample2

(i.e. each column of Y ). For example, [6] uses a modified
K-SVD to train both the dictionary and the sparse coeffi-
cients from the incomplete data. Meanwhile, [7], [8], [9]
use generic gradient descent optimization approaches for
dictionary learning when only random projections of data

2Note that the linear form Z = BX is no longer valid which is possibly
a reason for the lack of a theoretical extension of BCS to this case.
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are available. The empirical success of dictionary learning
with partial as well as compressive or projected data triggers
more theoretical interest in finding the uniqueness bounds of
the unconstrained BCS problem.

Finally, we must mention the theoretical results presented
in the pre-print [10] on BCS with overcomplete dictionaries
while X is assumed to lie in a structured union of disjoint
subspaces [11]. It is also proposed that the results of this
work extend to the generic sparse coding model if the
‘one-block sparsity’ assumption is relaxed. We argue that
the main theoretical result in this pre-print is incomplete
and technically flawed as briefly explained here. In the
proof of Theorem 1 of [10], it is proposed that (with
adjustment of notation) “assignment [of Y ’s columns to
rank-k` disjoint subsets] can be done by the (admittedly
impractical) procedure of testing the rank of all possible(
n
k`

)
matrices constructed by concatenating subsets of k`+1

column vectors, as assumed in [3]”. However, it is ignored
that the entries of Y are missing at random and the rank of an
incomplete matrix cannot be measured. As it becomes more
clear later, the main challenge in the uniqueness analysis of
unconstrained BCS is in addressing this particular issue. In
one case, we design a measurement scheme that preserves
the low-rank structure of Y ’s sub-matrices.

This paper is organized as follows. In Section II, we pro-
vide the formal problem definition for BCS. Our main results
are presented in Section III. We present the proofs in Section
IV. Practical aspects of BCS are treated in Section V where
we explain how provable dictionary learning algorithms, such
as [15], can be utilized for BCS. Finally, we conclude the
paper and present future directions in Section VI.

B. Notation

Our general convention throughout this paper is to use
capital letters for matrices and small letters for vectors and
scalars. For a matrix X ∈ Rm×n, xij ∈ R denotes its entry
on row i and column j, xi ∈ Rm denotes its i’th column
and vec(X) ∈ Rmn denotes its column-major vectorized
format. The inner product between two matrices A and B
(of the same sizes) is defined as 〈A,B〉 = trace

(
ATB

)
.

Let Spark(A) denote the smallest number of A’s columns
that are linearly dependent. A is µ-coherent if ∀i 6= j we
have |〈ai,aj〉|

‖ai‖2‖aj‖2 ≤ µ. Finally, let [m] := {1, 2, . . . ,m} and

let
(

[m]
k

)
denote the set of all subsets of [m] of size k.

II. BCS PROBLEM DEFINITION

Construct Y ∈ Rd×n by concatenating n signal vectors
yj ∈ Rd (for j ∈ [n]). Throughout this paper, we utilize
the following models for the measurements and the data.
It must be noted that the following data model is minimal
among existing sparse coding works; see e.g. [3], [4].

Linear measurement operator Mp(Y ): Suppose p ≤ d
linear measurements are taken from each signal yj ∈ Rd
as in zj = Φjyj ∈ Rp where Φj ∈ Rp×d is referred to as
the sampling matrix. We will useMp(Y ) = [zT1 , . . . , z

T
n ]T ∈

Rpn to denote the observations. Specifically, when the entries

of each Φj are drawn independently from a random Gaussian
distribution with mean zero and variance 1/d, we use the
notation Mp

G(Y ).

Sparse coding model Ymk (d, n): Assume Y = AX where
A ∈ Rd×m denotes the dictionary (m ≥ d) and X ∈ Rm×n
is a random sparse matrix with exactly k non-zero entries per
column and Spark(A) > 2k. Each column of X is randomly
drawn by first selecting its support S ∈

(
[m]
k

)
uniformly

at random and then filling the support entries with random
i.i.d. values uniformly drawn from a bounded interval, e.g.
(0, 1] ⊂ R. We use the notation Y ∈ Ymk (d, n) to assert that
Y ∈ Rd×n belongs to the specified sparse coding model.

Remark. The condition Spark(A) > 2k is necessary to
ensure a unique X even when A is known and fixed.

Remark. With probability one, no subset of k (or less)
columns of Y is linearly dependent. Also with probability
one, if a subset of k+1 columns of Y is linearly dependent,
then all of those columns must have the same support [4].

Given the above definitions, we can now formally express
the problem definition for BCS:

BCS problem definition: Recover Y ∈ Ymk (d, n) from
Mp(Y ) given Mp, m and k.

Our results throughout this paper are mainly developed for
the class of Gaussian measurements Mp =Mp

G. However,
it is not difficult to extend these results to the larger class of
continuous sub-Gaussian distributions for Mp.

III. MAIN RESULTS

Assume for now that there are exactly ` columns in X
for each support pattern S ∈ S where S =

(
[m]
k

)
. The best

known bound for `, for the factorization Y = AX to be
unique (with a probability of one) for Y ∈ Ymk (d, n), is
` ≥ k + 1 [4]. This results in a high sample complexity
n ≥ (k + 1)

(
m
k

)
. Specifically, it is said that ‘Y = AX fac-

torization is unique’ if there exist a diagonal matrix D and a
permutation matrix P such that for any feasible factorization
Y = A′X ′ ∈ Ymk (d, n), we have A′ = APD. Clearly, this
ambiguity makes it more challenging to prove the uniqueness
of the dictionary learning problem. Meanwhile, authors in [4]
propose an elegant strategy for handling the permutation and
scaling ambiguity which is reviewed in Lemma IV.1.

Through the following lemma, we can establish that the
uniqueness of the learned dictionary is a sufficient condition
for the success of BCS (proof is provided in Appendix).

Lemma III.1. Suppose for every pair AX,A′X ′ ∈
Ymk (d, n) that satisfyMp

G(A′X ′) =Mp
G(AX) with p > 2k,

A′ = APD for some diagonal matrix D and permutation
matrix P . Then A′X ′ = AX with probability one.

Briefly speaking, existing uniqueness results exploit the
fact that the rank of each group of ` columns in X with the
same support is bounded above by k. This makes it possible
to uniquely identify groups of samples that share the same
support pattern using Y . Meanwhile, when only Mp(Y ) is
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available, it might not be possible to uniquely identify these
groups. Nevertheless, it is noted in [4] that ` ≥ k|S| = k

(
m
k

)
ensures uniqueness without the need for grouping, at the
cost of significantly increasing the required number of data
samples (compared to ` ≥ k + 1).

In our initial BCS uniqueness result, we use the pigeon-
hole strategy of [4] which results in a less practical bound
n ≥ k|S|2 even when Y is completely observed3. Yet,
it is interesting to explore the implications of a finite n
that ensures a successful BCS for the general sparse coding
model: The CS theory requires the complete knowledge of
A to uniquely recover X and Y from Mp(Y ). Meanwhile,
these new guarantees for BCS assert that A, X and Y can
be uniquely identified from Mp(Y ) given a large but finite
number of samples n. Necessary proofs for the results of this
section are presented in the following section.

Theorem III.1. Assume p > 2k and there are exactly `
columns in X for each S ∈ S. Then Y ∈ Ymk (d, n) can be
perfectly recovered fromMp

G(Y ) with probability one given
that ` ≥ 2k(d−2k)+1

p−2k

(
m
k

)
.

Corollary III.1. With probability at least 1 − β, Y ∈
Ymk (d, n) can be perfectly recovered from Mp

G(Y ) given
that p > 2k and n ≥ 2k(d−2k)+1

β(p−2k)

(
m
k

)2
.

Aside from the intellectual implications of Theorem III.1
and Corollary III.1 discussed above, the stated bounds for
` and n are clearly not very practical. To reduce these
bounds while guaranteeing the success of BCS, we introduce
a hybrid measurement scheme that we explain below.

A. BCS with hybrid measurements

Definition (Hybrid Gaussian Measurement): In a hybrid
measurement scheme, ΦTj =

[
FT , V Tj

]
where F ∈ Rpf×d

stands for the fixed part of sampling matrix and Vj ∈ Rpv×d
stands for the varying part of the sampling matrix. The total
number of measurements per column is p = pf + pv ≤
d. In a hybrid Gaussian measurement scheme, F and V1

through Vn are assumed to be drawn independently from
an i.i.d. zero-mean Gaussian distribution with variance 1/d.
The observations corresponding to F and Vj’s are denoted
by FY ∈ Rpf×n and Mpv

G (Y ) ∈ Rpvn respectively.

As mentioned earlier, the hybrid measurement scheme was
designed to reduce the required number of data samples for
perfect BCS recovery. In particular, as formalized in Lemma
IV.4, the fixed part of the measurements is designed to
retain the low-rank structure of each k-dimensional subspace
associated with a particular S ∈ S. Meanwhile, the varying
part of the measurements is essential for the uniqueness of
the learned dictionary.

Theorem III.2. Assume p > 3k + 1 and there are exactly
` columns in X for each S ∈ S . Then Y ∈ Ymk (d, n) can
be perfectly recovered from hybrid Gaussian measurements
with probability one given that ` ≥ 2k(d−2k)+1

p−3k−1 .

3Authors in [4] propose a deterministic approach using the pigeon-hole
principle as well as a probabilistic approach with smaller bounds for n.

Remark. Similar to the statement of Corollary III.1, it
can be stated that BCS with hybrid Gaussian measurement
succeeds with probability at least 1 − β given that n ≥
2k(d−2k)+1
β(p−3k−1)

(
m
k

)
.

Remark. Although we mainly follow the stochastic ap-
proach of [4] in this paper, we could also employ the
deterministic approach of [3] to arrive at the uniqueness
bound in Theorem III.2. In [3], an algorithm (which is
not necessarily practical) is proposed to uniquely recover
A and X from Y . This algorithm starts by finding subsets
of size ` of Y ’s columns that are linearly dependent by
testing the rank of every subset. Dismissing the degenerate
possibilities4, these detected subsets would correspond to
samples with the same support pattern in X . Under the
assumptions in Theorem III.2, it is possible to test whether `
columns in Y are linearly dependent (with probability one),
as a consequence of Lemma IV.4 in the following section.

Until now, our goal was to show that A (and subsequently
X) is unique given only CS measurements. As we mentioned
before, uniqueness of A is a sufficient condition for the
success of BCS. Consider the scenario where not all support
patterns S ∈ S are realized in X or for some there is not
enough samples to guarantee recovery. For such scenarios,
we present the following theorem.

Theorem III.3. Assume p > 3k + 1 and let

Ŝ = {S|S ∈ S, |J(S)| ≥ γ} ⊆ S

where γ = 2k(d−2k)+1
p−3k−1 and J(S) denotes the set of indices of

columns of X with support S. Then, under hybrid Gaussian
measurement, YJ(S) for all S ∈ Ŝ can be perfectly recovered
with probability one.

IV. PROOFS

The following crucial lemma from [4] handles the permu-
tation ambiguity of sparse coding.

Lemma IV.1 ([4], Lemma 1). Assume Spark(A) > 2k for
A ∈ Rd×m and let S =

(
[m]
k

)
. If there exists a mapping

π : S → S such that

span {AS} = span
{
A′π(S)

}
for every S ∈ S

then there exist a permutation matrix P and a diagonal
matrix D such that A′ = APD.

The following lemma from random matrix theory, along
with Lemma IV.1, are the main ingredients of our first main
result (proof is provided in the Appendix).

Lemma IV.2. Assume A,B ∈ Rd×` are rank-k matrices
and Mp

G is a Gaussian measurement operator with p ≥
(2k(d+ `− 2k) + 1)/`. If Mp

G(A) =Mp
G(B), then A = B

with probability one.

4Degenerate instances of X are dismissed by adding extra assumptions
in the deterministic sparse coding model. Meanwhile, as pointed out in [4],
such degenerate instances of X would have a probability measure of zero
in a random sparse coding model
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Proof of Theorem III.1. Assume A′X ′ is an alternate factor-
ization that satisfies A′X ′ ∈ Ymk (d, n) and Mp

G(A′X ′) =
Mp

G(AX). We will prove A′ = APD for some diagonal D
and some permutation matrix P using Lemma IV.1. Consider
a particular support pattern S ∈ S and let J(S) ⊂ [n]
denote the set of indices of X’s columns that have the
sparsity pattern S. By definition, |J(S)| = ` ≥ k′

(
m
k

)
where

k′ = (2k(d − 2k) + 1)/(p − 2k). Due to the pigeon-hole
principle, there must be at least k′ columns within X ′J(S) that
share some particular support pattern S′ ∈ S. In other words,
if J ′(S′) denotes the set of indices of X ′’s columns that
have the support pattern S′, then |J(S) ∩ J ′(S′)| ≥ k′. For
simplicity, denote I = J(S)∩J ′(S′). Clearly, rank(AXI) =
rank(A′X ′I) = k (because |S| = |S′| = k), and we have

Mp
G(A′X ′I) =Mp

G(AXI)

According to Lemma IV.2, if p ≥ (2k(d+k′−2k)+1)/k′

or equivalently k′ ≥ (2k(d−2k)+1)/(p−2k), then A′X ′I =
AXI with probability one. Meanwhile, since |I| ≥ k′ ≥
k + 1, A′X ′I = AXI necessitates that

span {AS} = span {A′S′} (1)

Finally, since A satisfies the spark condition, it is not difficult
to see that π(S) = S′ is a bijective map. To explain more,
assume there exists some S′′ 6= S such that

span {AS′′} = span {A′S′}

Combining with (1) we arrive at

span {AS} = span {AS′′} ,

which contradicts the spark condition for A for S′′ 6= S.
Therefore, π must be injective. Now, since S is a finite set
and π is an injective mapping from S to itself, it must also
be surjective and, thus, bijective.

In order to guarantee at least ` columns in X for each
support S ∈ S in the random model Ymk (d, n), we must have
more than just n = `|S| data samples. The following result
from [4] quantifies the number of required data samples to
ensure at least ` columns per each S ∈ S with a tunable
probability of success.

Lemma IV.3 ([4], §IV). For a randomly generated X with
n = `

(
m
k

)
and β ∈ [0, 1], with probability at least 1−β, there

are at least β` columns for each support pattern S ∈ S.

Proof of Corollary III.1. Proof is fairly trivial. According to
Lemma IV.3, we need n ≥ `

β

(
m
k

)
samples to guarantee

that with probability at least 1 − β there are at least `
samples in X for each support pattern S ∈ S. In Theorem
III.1 we established that ` ≥ 2k(d−2k)+1

p−2k

(
m
k

)
guarantees

the success of BCS under Gaussian sampling. Therefore,
n ≥ 2k(d−2k)+1

β(p−2k)

(
m
k

)2
guarantees the desired uniqueness.

In order to prove the results for the hybrid measurement
scheme, we present the following lemma which is proved in
the Appendix.

Lemma IV.4. Assume F ∈ Rpf×d is drawn from an i.i.d.
zero-mean Gaussian distribution (with pf ≤ d). Let YJ ∈
Rd×|J| denote the columns of Y indexed by the set J . If
rank(FYJ) = k < pf , then rank(YJ) = k with probability
one.

Proof of Theorem III.2. Assume A′X ′ is an alternate fac-
torization that satisfies A′X ′ ∈ Ymk (d, n), Mpv

G (A′X ′) =
Mpv

G (AX) and FA′X ′ = FAX . Also assume pf = k + 1
and pv = p − k − 1. Consider a particular support pattern
S′ ∈ S and let J ′(S′) ⊂ [n] denote the set of indices of X ′’s
columns that have the same sparsity pattern S′.

Clearly,

rank
(
FA′X ′J′(S′)

)
≤ rank

(
A′X ′J′(S′)

)
= k

Therefore, if pf ≥ k + 1, then pf > rank
(
FA′X ′J′(S′)

)
and according to Lemma IV.4:

rank
(
FA′X ′J′(S′)

)
= rank

(
A′X ′J′(S′)

)
= k

with probability one. Hence, rank
(
FAXJ′(S′)

)
= k. Again

using Lemma IV.4 with pf ≥ k + 1,

rank
(
AXJ′(S′)

)
= rank

(
FAXJ′(S′)

)
= k

with probability one. Therefore, all the columns in XJ′(S′)

must have the same support, namely S. Note that since
J ′(S′) ⊆ J(S), |J ′(S′)| ≤ |J(S)| = `. Meanwhile,∑

S′∈S
|J ′(S′)| = `

(
m

k

)
necessitates that |J ′(S′)| = ` for every S′ ∈ S . Therefore,
|J(S) ∩ J ′(S′)| = |I| = `. Now, given

Mpv
G (A′X ′I) =Mpv

G (AXI)

according to Lemma IV.2, if ` ≥ (2k(d−2k)+1)/(pv−2k),
then A′X ′I = AXI with probability one. Meanwhile, since
|I| = ` ≥ k + 1, A′X ′I = AXI necessitates that

span {AS} = span {A′S′} (2)

Finally, since A satisfies the spark condition, π(S) = S′ is
a bijective map and A′ = APD for some diagonal D and
permutation matrix P according to Lemma IV.1.

Proof of Theorem III.3. Recall that for every S ∈ Ŝ we
have |J(S)| ≥ γ ≥ k + 1. Assume pf = k + 1 and
pv = p − k − 1 as before. Having pf ≥ k + 1 allows
testing whether a subset of k+ 1 columns of Y are linearly
dependent (have a rank of k) with probability one. Therefore,
by doing an exhaustive search among every sub-matrix YJ
with J ∈

(
[n]
k+1

)
, we are able to find subsets of J(S) (of

size k + 1) if |J(S)| ≥ k + 1. Moreover, we can combine
and complete these subsets to uniquely identify every rank-k
sub-matrix YJ(S) with |J(S)| ≥ k + 1.

Now, among these sub-matrices, those with |J(S)| ≥ γ
can be recovered perfectly (with probability one) since, for
any rank-k matrices YJ(S) and ŶJ(S),

Mpv
G (YJ(S)) =Mpv

G (ŶJ(S))
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with
pv ≥ (2k(d+ |J(S)| − 2k) + 1)/|J(S)|

or |J(S)| ≥ 2k(d−2k)+1
pv−2k implies YJ(S) = ŶJ(S) according to

Lemma IV.2.

V. ALGORITHMIC PERFORMANCE OF BCS UNDER
HYBRID MEASUREMENTS

As we mentioned before, a successful DL from random
linear measurements is a sufficient condition for a successful
BCS. Recall that, in a DL problem, the data matrix Y ∈
Rd×n is given where Y = A∗X∗ ∈ Ymk (d, n) and the task
is to factorize Y = AX ∈ Ymk (d, n) such that A = A∗PD
for some permutation matrix P and diagonal matrix D. Un-
fortunately, the corresponding optimization problem is non-
convex (even with `1 relaxation). The majority of existing
DL algorithms are based on the iterative scheme of starting
from an initial state Y = A(0)X(0) and alternating between
updating X(t+1) while keeping A(t) fixed and updating
A(t+1) while keeping X(t+1) fixed, each corresponding to a
convex problem. It has been recently shown that if the initial
dictionary A(0) is sufficiently close5 to A∗PD for some P
and D, then the iterative algorithm converges to A∗PD under
certain incoherency assumptions about A∗ [14].

DL from incomplete or corrupt data has been tackled in
several studies. In particular, DL from random measurements
has been addressed in [6], [7], [8], [9] where different
iterative DL algorithms are modified to accommodate the
compressive measurements. In some cases, these modifica-
tions have been justified by showing that the output of each
iteration does not significantly deviate from the reference
output based on the complete data. However, to best of our
knowledge, there are no convergence guarantees to A∗PD
for these iterative algorithms. In this section, we plan to
investigate the utility of a recently proposed non-iterative DL
algorithm [15] with guarantees for the approximate recovery
of A∗PD for an incoherent A∗. One would hope that A∗PD
can be approximated from Y with fewer data samples than
is required for the exact identification of A∗PD which was
the topic of previous sections.

In the following, we review the main result of [15] and
analyze the performance of their DL algorithm if only ran-
dom linear measurements of the training data were available.
Recall that in our hybrid measurement scheme, pf fixed
and pv varying linear measurements are taken from each
sample for a total of p = pf + pv linear measurements (per
sample). We need to introduce some new notation as well as
modifications to the sparse coding model to reflect the model
used in [15]. In particular, let X ∈ Rm denote the random
vector of sparse coefficients where its distribution class Γ is
defined below. Hence, each xj denotes an outcome of X .
Also, let Xi denote the random variable associated with the
i’th entry of X .

Definition (Distribution class Γ) The distribution is in class
Γ if i) ∀Xi 6= 0: Xi ∈ [−C,−1] ∪ [1, C] and E[Xi] = 0.

5The basin of attraction has a swath of O(k−2) [14].

ii) Conditioned on any subset of coordinates in X being
non-zero, the values of Xi are independent of each other.
Distribution has bounded `-wise moments if the probability
that X is non-zero in any subset S of ` coordinates is at
most c` times

∏
i∈S P[Xi 6= 0] where c = O(1).

Remark. Similar to [15], in the rest of paper we will assume
C = 1. Derived results generalize to the case C > 1 by
loosing constant factors in guarantees.

Definition Two dictionaries A,B ∈ Rd×m are column-wise
ε-close, if there exists a permutation π and θ ∈ {±1}m such
that ∀i ∈ [m] : ‖ai − θibπ(i)‖2 ≤ ε.

Remark. When talking about two dictionaries A and B that
are ε-close, we always assume the columns are ordered and
scaled correctly so that ‖ai − bi‖2 ≤ ε.

Theorem V.1 ([15], Theorem 1.4). There is a polynomial
time algorithm to learn a µ-coherent dictionary A from
random samples. With high probability, the algorithm re-
turns a dictionary Â that is column-wise ε-close to A
given random samples of the form Y = AX , where X is
drawn from a distribution in class Γ. Specifically, if k ≤
cmin(m(`−1)/(2`−1), 1/(µ log d)) and the distribution has
bounded `-wise moments, c > 0 is a constant only depending
on `, then the algorithm requires n = Ω((m/k)`−1 logm+
mk2 logm log 1/ε) samples and runs in time Õ(n2d).

Summary of the algorithm of [15] This algorithm, which
has fundamental similarities with a concurrent work [16],
consists of two main stages: i) Data Clustering: the con-
nection graph is built where each node corresponds to a
column of Y and an edge between yi and yj implies their
supports Si and Sj have a non-empty intersection. Then,
an overlapping clustering procedure is performed over the
connection graph to find overlapping maximal cliques (with
missing edges). ii) Dictionary Recovery: every cluster in the
connection graph represents the set of samples associated
with a single dictionary atom. After finding these clusters
in the connection graph, each atom is approximated by the
principal eigenvector of the covariance matrix for the data
samples in its corresponding cluster.

There are two challenges in extending the above result to
the BCS framework: i) during generation of the connection
graph from data and ii) during computation of the principal
eigenvector of the data covariance matrix. We address these
challenges separately in the following subsections.

A. Building the data connection graph for BCS

For building the connection graph, we use the fixed part
of the hybrid measurements, i.e. FY with F ∈ Rpf×d drawn
from a Gaussian distribution. Computation of the connection
graph in [15] relies on the following lemma.

Lemma V.1 ([15], Lemma 2.2). Suppose k < 1/(C ′µ log d)
for large enough C ′ (depending on C in the definition of
Γ). Then, if Si and Sj are disjoint, with high probability
|〈yi, yj〉| < 1/2.
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Without going into the details of the clustering algorithm
of [15], we study the conditions under which the connection
graph does not change when only pf linear measurements
from each data sample is given. Let FA ∈ Rpf×m be µf -
coherent. It is not hard to see from the above lemma that if
k < 1/(C ′µf log d), then with high probability for disjoint
Si and Sj , |〈Fyi, Fyj〉| < 1/2. To establish a relationship
between µf , µ and pf , we use the following result from [20].

Lemma V.2 ([20], Lemma 3.1). Let x, y ∈ Rd with
‖x‖2, ‖y‖2 ≤ 1. Assume Φ ∈ Rn×d is a random matrix
with independent N (0, 1/n) entries. Then, for all t > 0

P[|〈Φx,Φy〉 − 〈x, y〉| ≥ t] ≤ 2 exp(−n t2

C1 + C2t
)

with C1 = 8e√
6π
≈ 5.0088 and C2 =

√
8e ≈ 7.6885.

Corollary V.1. Assume F ∈ Rpf×d has i.i.d entries from
N (0, 1/pf ). Let A be µ-coherent and FA be µf -coherent.
Then,

P[µf ≥ µ+ t] ≤ 2 exp(−pf
t2

C1 + C2t
)

with C1 and C2 specified in Lemma V.2.

Proof. Note that the variance of F ’s entries does not have an
effect on µf due to the normalization in the definition of the
coherency and we could assume F ’s entries have variance
1/d as before. We exploit Lemma V.2 by replacing x = ai
and y = ±aj and Φ = F . Proof is complete by noticing that
P[µf ≥ µ+ t] ≤ P[|µf − µ| ≥ t]

Based on Corollary V.1, it can be deduced that with high
probability µf ≤ µ +

√
log(pf )/pf . Therefore, replacing

k < c/(µ log d) in the original Theorem V.1 with k <
c/(µf log d) introduces slightly stronger sparsity requirement
for the success of the algorithm.

B. Dictionary estimation for BCS

At this stage, we only exploit the varying part of the mea-
surements Mpv

G (Y ) and use p in place of pv for simplicity.
Let C1, C2, . . . , Cm be the m discovered overlapping clusters
from the previous stage and define the empirical covariance
matrix Σ̂i = 1

|Ci|
∑
yj∈Ci yjy

T
j for the cluster i. The SVD

approach6 of [15] estimates ai by âi which is the principal
eigenvector7 of Σ̂i. Let

Σ̃i =
1

|Ci|
∑
ŷj∈Ci

ŷj ŷ
T
j

denote the empirical covariance matrix resulting from the
compressive measurements where ŷj = ΦTj (ΦjΦ

T
j )−1Φjyj

as before. Similarly, let ãi denote the principal eigenvector
of Σ̃i. Our goal in this section is to show that ‖ãi − âi‖2
is bounded by a small constant for finite n and approaches

6In fact, [15] proposes two methods for dictionary estimation: i) selective
averaging and ii) the SVD-based approach. We selected to work with the
SVD approach due to its more abstract and versatile nature.

7The principal eigenvector is equivalent to the first singular vector of the
covariance matrix.

zero for large n. For this purpose, we use the recent results
from the area of subspace learning, specifically, subspace
learning from compressive measurements [17]. A critical
factor in estimation accuracy of the principle eigenvector
of a perturbed covariance matrix is the eigengap between
the principal and the second eigenvalues of the original
covariance matrix. This is a well-known result from the
works of Chandler Davis and William Kahan known as the
Davis-Kahan sine theorem [18].

Consider the following notation. Let Π̂k and Π̃k denote
projection operators onto the principal k-dimensional sub-
spaces of Σ̂ and Σ̃ respectively (i.e. the projection onto the
top-k eigenvectors). Let ‖Π̃k−Π̂k‖2 denote the spectral norm
of the difference between Π̂k and Π̃k. Define the eigengap
γ̂k as the distance between the k’th and k + 1’st largest
eigenvalues of Σ̂. Suppose Σ̂ is computed from at least `
data samples (|Ci| ≥ ` for all i). Moreover, assume the data
samples have bounded `2 norms, i.e. ∀j ∈ [`] : ‖yj‖22 ≤ η
for some positive η ∈ R.

Lemma V.3 ([17], Theorem 1). With probability at least 1−δ

‖Π̂k − Π̃k‖2 ≤
1

γ̂k

(√
88η2

`p
log(d/δ) +

8

3

ηd2

p2`
log(d/δ)

)
so that one can achieve ‖Π̂k − Π̃k‖2 ≤ ε provided that

` ≥ max

{
352η2 log(d/δ)

pγ̂2
kε

2
,

16

3

ηd2

γ̂kεp2
log(d/δ)

}

Below, we present a customization of Lemma V.3 for the
`2 error of the principal eigenvector estimator.

Corollary V.2. Let âi and ãi represent the principal eigen-
vectors of Σ̂i and Σ̃i respectively. With probability at least
1− δ for all i ∈ [m]

‖âi − ãi‖2 ≤
2

γ̂1

(√
88η2

`p
log(d/δ) +

8

3

ηd2

p2`
log(d/δ)

)

Proof. Clearly, Π̂1 = âiâ
T
i and Π̃1 = ãiã

T
i . As we

mentioned in the definition of ε-closeness, θi is implicit in
the error expression ‖âi − ãi‖2 requiring that ‖âi − ãi‖2 ≤
‖âi + ãi‖2 and consequently 〈âi, ãi〉 ≥ 0. Also note that, by
definition, for any z ∈ Rd

‖(Π̂1 − Π̃1)z‖2
‖z‖2

≤ ‖Π̂1 − Π̃1‖2

Now let z = âi + ãi. Then

‖(Π̂1 − Π̃1)z‖2
‖z‖2

= (1 + 〈âi, ãi〉)
‖âi − ãi‖2
‖âi + ãi‖2

≥ 1

2
‖âi − ãi‖2

Therefore
‖âi − ãi‖2 ≤ 2‖Π̂1 − Π̃1‖2

and the rest follows from Lemma V.3.
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To obtain a lower-bound for the eigengap γ̂1 we need to
review some of the intermediate results in [15]. In fact, we
compute a lower-bound for γ1 of Σ which serves as a close
approximation of γ̂1 when the number of data samples ` is
large. For every i ∈ [m], let Γi be the distribution conditioned
on Xi 6= 0. Let α = |〈u, ai〉| for any unit-norm u and let

R2
i = EΓi [〈ai,Y〉2] = 1 +

∑
j 6=i

〈ai, aj〉2EΓi [X 2
j ]

denote the projected variance of Γi on the direction u = ai.
It is shown [15] that generally

EΓi
[〈u,Y〉2] ≤ α2R2

i + 2α
√

1− α2ζ + (1− α2)ζ2

where ζ = max{ µk√
d
,
√

k
m}.

The principal eigenvector of Σi can be computed by
finding the unit-norm u that maximizes EΓi

[〈u,Y〉2]. Mean-
while, it has been established that for u = ai, EΓi [〈u,Y〉2] =
R2
i . Therefore, the range of α for the principal eigenvector

must satisfy the inequality (for α ≤ 1)

R2
i ≤ α2R2

i + 2α
√

1− α2ζ + (1− α2)ζ2

It is not difficult to show this range is

α ∈ [
R2
i − ζ2√

4ζ2 + (R2
i − ζ2)2

, 1]

Now, for the second eigenvector and eigenvalue pair we must
find a unit-norm v that satisfies 〈v, u〉 = 0 and maximizes
EΓi [〈v,Y〉2]. Define β = |〈v, ai〉|. It can be shown that

β ∈ [− 2ζ√
4ζ2 + (R2

i − ζ2)2
,

2ζ√
4ζ2 + (R2

i − ζ2)2
]

Note that the first and the second largest eigenvalues corre-
spond to projected variances of Γi on the directions of u and
v, respectively. Therefore, based on the derived ranges for α
and β, we are able to find the following lower-bound for γ1:

γ1 ≥ R2
i −

(
3R2

i ζ

R2
i − ζ2

)2

Note that ζ becomes very small as the problem size (d, m, n)
becomes large, resulting in γ̂1 ≈ γ1 ≈ 1. Therefore, given
a sufficient number of samples, it can be guaranteed that
ãi is an accurate estimation of âi and, in turn, an accurate
estimation of ai even when only p < d measurements per
sample is available. Once the dictionary has been approxi-
mated to within a close distance from the optimal dictionary
A∗PD, iterative algorithms such as [6], [7], [8], [9] can
assure convergence to a local optimum and therefore perfect
recovery as suggested in [14], [15], [16]. Finally, perfect
recovery of the dictionary results in perfect recovery of X
and Y given the CS bounds for the number of measurements
[1] which are generally weaker than the stated bounds for
the recovery of the dictionary.

VI. CONCLUSION

In this work, we studied the conditions for perfect re-
covery of both the dictionary and the sparse coefficients
from linear measurements of the data. The first part of this
work brings together some of the recent theories about the
uniqueness of dictionary learning and the blind compressed
sensing problem. Moreover, we described a ‘hybrid’ random
measurement scheme that reduces the theoretical bounds for
the minimum number of data samples to guarantee a unique
dictionary and thus perfect recovery for blind compressed
sensing. In the second part, we discussed the algorithmic
aspects of dictionary learning under random linear mea-
surements. It was shown that a polynomial-time algorithm
can assure convergence to the generative dictionary given a
sufficient number of data samples with high probability. It
would be interesting to explore dictionary learning and blind
compressed sensing for non-Gaussian random measurements.
In particular, when the data matrix is partially observed
(i.e. an incomplete matrix), data recovery becomes a matrix
completion problem where the elements of the data matrix
are assumed to lie in a union of interconnected rank-k
subspaces. This is a subject of future work.

APPENDIX

A. Proof of Lemma III.1

Let X ′′ := PDX ′. Note that A′X ′ = APDX ′ = AX ′′.
Thus, Mp

G(AX ′′) =Mp
G(AX). Our goal is to show X ′′ =

X and thus A′X ′ = AX ′′ = AX . To prove X ′′ = X , we
must show that for every j ∈ [n], ΦjAx

′′
j = ΦjAxj results

in x′′j = xj with probability one. For simplicity, we omit the
sample index j in the rest of the proof.

Let S and S′′ respectively denote the sets of non-zero
indices of x and x′′ where |S|, |S′′| ≤ k. Rewrite ΦAx′′ =
ΦAx as ΦA(x′′ − x) = 0. Note that x′′ − x is supported on
T = S ∪S′′ where |T | ≤ 2k. Therefore, we must show that,
with probability one,

∀T ∈
(

[m]

2k

)
: rank(ΦAT ) = |T |

necessitating x′′−x = 0 or x′′ = x. Since Spark(A) > 2k,
every 2k columns of A are linearly independent and we are
able to perform a Gram-Schmidt orthogonalization on AT to
get AT = UV where U ∈ Rd×2k is orthonormal (d ≥ 2k)
and V is a full-rank square matrix. Hence, ΦU ∈ Rp×2k

is distributed according to i.i.d. Gaussian and is full-rank
with probability one [19]. We conclude the proof by noticing
that rank(ΦUV ) = rank(ΦU) = 2k since V is a full-rank
square matrix.

B. Proof of Lemma IV.2

Denote a general linear matrix measurement operator
M : Rd×n → Rτ such that M(Y ) = ζ = [ζ1, ζ2, . . . , ζτ ]

T ,
ζi = 〈Mi, Y 〉 for i ∈ [τ ]. If we denote
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Φ =


vec(M1)T

vec(M2)T

...
vec(MT )T

 ∈ Rτ×dn (3)

then M(Y ) = Φvec(Y ). Specifically, under the Gaussian
measurement scheme for BCS, we have:

ΦCSG =

 Φ1

. . .
Φn

 ∈ Rpn×dn (4)

where non-zero entries of ΦCSG are i.i.d. Gaussian with mean
zero and variance 1/d.

The following result from [12] gives the required number
of linear measurements to guarantee (with probability one)
that a rank-r matrix does not fall into the null-space of the
measurement operator.

Lemma VI.1 ([12], Theorem 3.1). Let R be a q-dimensional
continuously differentiable manifold over the set of d×d real
matrices. Suppose we take τ ≥ q + 1 linear measurements
from Y ∈ R. Assume there exists a constant C = C(d)
such that P(|〈Mi, X〉| < ε) < Cε for every Y with ‖Y ‖F =
1. Further assume that for each Y 6= 0 that the random
variables {〈Mi, Y 〉} are independent. Then with probability
one, Null(M) ∩R \ {0} = ∅.

A careful inspection of the derivation of the above theorem
in [12] reveals that this result can be extended to include the
manifolds over the set of rectangular matrices Y ∈ Rd×n.
Specifically, for the manifold over rank-r d×n matrices we
have (see [13] for example) q = dim(R) = r(d+ n− r).

The following lemma establishes a sufficient lower bound
for τ to guarantee that M(A) =M(B) results in A = B.

Lemma VI.2. Let R denote the manifold over the set of
rank-r d × n matrices and let R′ denote the manifold over
the set of rank-2r d×n matrices. Also let M : Rd×n → Rτ
with τ ≥ dim(R′) + 1 = 2r(d+ n− 2r) + 1. Then, for any
A,B ∈ R,M(A) =M(B) implies A = B with probability
one.

Proof. Clearly, τ ≥ dim(R′) implies τ ≥ dim(R′′) for any
R′′ over the set of rank-r′′ d × n matrices with r′′ ≤ 2r.
Also note that rank(A−B) ≤ 2k, thus A−B ∈ R′′. Now,
since M(A− B) = 0 and Null(M) ∩ R′′ \ {0} = ∅ (with
probability one, according to Lemma VI.1), we must have
A−B = 0 or A = B with probability one.

It only remains to show that Mp
G satisfies the require-

ments of Lemma VI.1. As noted in [12], the requirement
P(|〈Mi, Y 〉| < ε) < Cε requires that the densities of 〈Mi, Y 〉
do not spike at the origin; a sufficient condition for this to
hold for every Y with ‖Y ‖F = 1 is that each Mi has i.i.d.
entries with a continuous density. Note that non-zero entries
of ΦCSG are i.i.d. Gaussian and cover every column in Y .
Therefore, none of the entries of ΦCSG vec(Y ) would spike at
the origin or equivalently there exists C = C(d, n) so that

P(|〈(ΦTj )i, yj〉| < ε) < Cε with ‖yj‖2 = Ω(1/
√
n) given

that the vector (ΦTj )i is drawn from a continuous distribution.

C. Proof of Lemma IV.4

Let r = rank(YJ) and k = rank(FYJ). Perform a Gram-
Schmidt orthogonalization on YJ to obtain YJ = UV where
U ∈ Rd×r has orthogonal columns and V ∈ Rr×|J| is full-
rank; hence, given r ≤ |J |, we have k = rank(FUV ) =
rank(FU). Note that, since U is orthogonal and F is i.i.d.
Gaussian, FU is also i.i.d. Gaussian. Hence, with probability
one, FU is full-rank [19] and k = min(pf , r). To conclude
the proof, note that when k < pf , necessarily we have k = r.
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