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Abstract—We consider the design of regenerating codes
for distributed storage systems at the minimum bandwidth
regeneration (MBR) point. The codes allow for a repair
process that is exact and uncoded, but table-based. These
codes were introduced in prior work and consist of an outer
MDS code followed by an inner fractional repetition (FR)
code where copies of the coded symbols are placed on the
storage nodes. The main challenge in this domain is the design
of the inner FR code.

In our work, we consider generalizations of FR codes, by
establishing their connection with a family of combinatorial
structures known as resolvable designs. Our constructions
based on affine geometries, Hadamard designs and mutually
orthogonal Latin squares allow the design of systems where a
new node can be exactly regenerated by downloading β ≥ 1
packets from a subset of the surviving nodes (prior work
only considered the case of β = 1). Our techniques allow
the design of systems over a large range of parameters.
Specifically, the repetition degree of a symbol, which dictates
the resilience of the system can be varied over a large range
in a simple manner. Moreover, the actual table needed for the
repair can also be implemented in a rather straightforward
way. Furthermore, we answer an open question posed in
prior work by demonstrating the existence of codes with
parameters that are not covered by Steiner systems.

I. INTRODUCTION

Large scale data storage systems are becoming ubiqui-
tous in recent years. The availability of low cost storage
media such as magnetic disks have fueled the growth
of various applications such as Facebook, Youtube etc.
These applications require a massive amount of data to
be stored and accessed in a distributed manner. In these
systems it is often the case that the individual storage
nodes are unreliable. Thus, the integrity of the data and
the speed of the data access needs to be maintained even
under the presence of such unreliable storage nodes. This
issue is typically handled by introducing redundancy in
the storage system. For instance, one could replicate data
across multiple nodes or use Maximum Distance Separable
(MDS) codes such as Reed-Solomon codes that allow for
a better reliability at the same redundancy.

However, the large scale distributed nature of the sys-
tems under consideration introduces another issue. Namely,
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if a given storage node fails, it need to be regenerated so
that the new system continues to have the properties of
the original system. It is of course desirable to perform
this regeneration in a distributed manner and download as
little data as possible from the existing nodes. The problem
of regenerating codes was introduced by Dimakis et al. [1].
The authors demonstrated a fundamental tradeoff between
the amount of data stored at each node (storage capacity)
and the amount of data that needs to be downloaded for
regenerating a failed node (repair bandwidth).

In particular, consider a distributed storage system (DSS)
that consists of n storage nodes, each of which stores
α packets. A given user needs to have the ability to
reconstruct the stored file by contacting any k nodes; this
is referred to as the MDS property of the system. Suppose
that a given node fails. The DSS needs to be repaired
by introducing a new node. This node should be able
to contact any d ≥ k surviving nodes and download β
packets from each of them for a total repair bandwidth
of γ = dβ packets. The new DSS should continue to
have the MDS property. The work of [1] considered the
case of functional repair, where the new node needs to
be functionally equivalent to the failed node. It was shown
that this could be achieved by the usage of random network
coding. In particular, under functional repair the entire
storage vs. repair bandwidth curve is known exactly. One
can also consider exact repair where the new node should
be able to recreate the contents of the failed node (see [2],
[3]). Two points on the curve deserve special mention and
are arguably of most interest from a practical perspective.
The minimum bandwidth regenerating (MBR) point refers
to the point where the repair bandwidth, γ is minimum.
Likewise, the minimum storage regenerating (MSR) point
refers to the point where the storage per node is minimized.

Much of the existing work in the area of DSS considers
coded repair where the surviving nodes need to compute
linear combinations of all their existing packets. It is well
recognized that the read/write bandwidth of machines is
much lower than the network bandwidth. Thus, this process
induces undesirable latencies in the repair process. The
process can also be potentially memory intensive if the
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packets comprising the file are large. Motivated by these
issues, in [4], El Rouayheb and Ramchandran considered
the following variant of the DSS problem. The DSS needs
to satisfy the property of exact and uncoded repair, i.e.,
the regenerating node needs to produce an exact copy of
the failed node by simply downloading packets from the
surviving nodes. This allows the entire system to work
without requiring any computation at the surviving nodes.
In addition they considered systems that are resilient to
multiple (> 1) failures. However, the DSS only has the
property that the repair can be conducted by contacting
some set of d nodes, i.e., unlike the original setup, repair
is not guaranteed by contacting any set of d nodes. This is
reasonable as most practical systems operate via a table-
based repair, where the new node is provided information
on the set of surviving nodes that it needs to contact. The
work of [4] proposed a construction whereby an outer MDS
code is concatenated with an inner “fractional repetition”
code of a certain degree. The main challenge here is to
design the inner fractional repetition code in a systematic
manner.

The work of [4] primarily considered fractional repeti-
tion (FR) codes that result from Steiner systems, which are
an instance of a combinatorial design. Subsequently, Koo
and Gill [5] considered the usage of finite projective planes
for the design of these codes. Both [4] and [5], consider
fractional repetition codes where the new node downloads
exactly one packet (i.e., β = 1) from the surviving nodes
that are contacted. In this work we study the design of
fractional repetition codes in more generality.

A. Main Contributions

In this work we consider REPairable REplication-based
Storage Systems Using REsolvable Designs, abbreviated as
REPRESSURED codes. REPRESSURED codes are more
general than fractional repetition codes as the new node
has the flexibility of downloading β ≥ 1 packets from
the surviving nodes. Our design is based on combinatorial
structures called resolvable designs [6]. Our work makes
the following contributions.

• Our constructions based on affine geometries and
Hadamard designs allow for a large class of codes
where β ≥ 1.

• The work of [4] considers Steiner systems where
parameters such as the repetition degree of each
packet are fixed a priori. In contrast, our code design
allows the system designer to vary the repetition
degree within a large range in a simple manner.

• We resolve an open question posed in [4], by showing
the existence of FR codes that have a repetition degree
greater than two, that cannot be constructed by Steiner
systems.

• The systems under consideration require table-based
repair, whereby a table of nodes that need to be
contacted under the various failure patterns needs to

be maintained. As will be evident, our code design
approach is such that this table can be maintained in
a very simple manner.

This paper is organized as follows. Section II contains
a formal discussion of the problem formulation. Section
III and Section IV discuss the design of FR codes from
resolvable designs and Latin squares respectively. We con-
clude the paper with a comparison with existing work and
discussion of future issues in Section V.

II. PROBLEM FORMULATION

The DSS is specified by parameters (n, k, d) where n
- number of storage nodes, k - number of nodes to be
contacted for recovering the file and d ≥ k is the number
of nodes to be contacted in order to regenerate a failed
node. The storage capacity of each node is denoted by α.
In case of repair, the new node downloads β packets from
each surviving node, for a total of γ = dβ bits. Let M
denote the size of file being stored on the DSS. Under
functional repair, it is known that at the MBR point, α =
γ = 2Md

2kd−k2+k .
We consider the design of fractional repetition codes that

are best explained by means of the following example [4]
with (n, k, d) = (5, 3, 4) in the discussion below.

Fig. 1. A DSS with (n, k, d) = (5, 3, 4). Each node contains a subset of
the packets from {y1, . . . , y10}. Node V1 for instance contains symbols
yi, i = 1, . . . , 4.

Example 1: Consider a file of M = 9 packets
(x1, . . . , x9) ∈ F9

q that needs to stored on the DSS.
We use a (10, 9) MDS code that outputs 10 packets
yi = xi, i = 1, . . . , 9 and y10 =

∑9
i=1 xi. The coded

packets y1, . . . , y10 are placed on n = 5 storage nodes
as shown in Fig. 1. This placement specifies the inner
fractional repetition code. It can be observed that each yi
is repeated ρ = 2 times and the total number of symbols
θ = 10. Any user who contacts any k = 3 nodes can
recover the file (using the MDS property). Moreover, it
can be verified that if a node fails, one packet each can be
downloaded from the four surviving nodes, i.e., β = 1 and
d = 4, so that γ = 4.
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Thus, the approach uses an MDS code to encode a file
consisting of a certain number of symbols. Let θ denote
the number of encoded symbols. Copies of these symbols
are placed on the n nodes such that each symbol is repeated
ρ times and each node contains α symbols. Moreover,
if a given node fails, it can be exactly recovered by
downloading β packets from some set of d surviving nodes,
for a total repair bandwidth of γ = dβ. It is to be noted
that in this case α = γ, i.e., these schemes operate at the
MBR point. In the example above, β = 1, so that α = d.
However, one can consider systems with β > 1 in general.

In this work we propose the construction of several
fractional repetition codes. Before introducing the formal
definition of a fractional repetition (FR) code we need
the notion of β-recoverability. Let [n] denote the set
{1, 2, . . . , n}.

Definition 1: Let Ω = [θ] and Vi, i = 1, . . . , d be
subsets of Ω. Let V = {V1, . . . , Vd} and consider A ⊂ Ω
with |A| = dβ. We say that A is β-recoverable from V
if there exists Bi ⊆ Vi for each i = 1, . . . , d such that
Bi ⊂ A, |Bi| = β and ∪di=1Bi = A.

Definition 2: A fractional repetition (FR) code C =
(Ω, V ) for a (n, k, d) DSS (where d ≥ k) with repetition
degree ρ and normalized repair bandwidth β = α/d
(α and β are positive integers) is a set of n subsets
V = {V1, . . . , Vn} of a symbol set Ω = [θ] with the
following properties.
(a) The cardinality of each Vi is α.
(b) Each element of Ω belongs to ρ sets in V .
(c) Let V surv denote any (n−ρres) sized subset of V and

V fail = V \V surv . Each Vj ∈ V fail is β-recoverable
from some d-sized subset of V surv.

The value of ρres is a measure of the resilience of the
system to node failures. The code rate is defined as

RC(k) = min
I⊂[n],|I|=k

| ∪i∈I Vi|,

where [n] = {1, . . . , n}.
It can be observed that RC(k) corresponds to the maximum
filesize that can be obtained with a certain value of k.
We remark that in [4], only FR codes with β = 1 were
studied. In this case the requirement (c) in Definition 2 is
automatically satisfied and it can be seen that the system
is resilient to ρ− 1 failures.

Our proposed constructions aim to maximize the file
size M given the parameters (n, k, d, α)1 while ensuring
a certain level of failure resilience. In the case of MBR
constructions the maximum filesize under the Dimakis
et al. model is known to be kα − β

(
k
2

)
. Accordingly,

we call a FR code universally good if the code rate
RC(k) ≥ kα −

(
k
2

)
β ([4] used this terminology when

β = 1). As will be evident, all our constructions in this
work are universally good.

1It can be seen that these further specify β = α/d. Furthermore, it
can be seen that nd = θρ.

Fig. 2. A (6,3,3) REPRESSURED code. Note that {V1, V2, V3} and
{V4, V5, V6} form parallel classes.

III. REPRESSURED CODES FROM AFFINE
RESOLVABLE DESIGNS

We now discuss the construction of FR codes from
resolvable designs. As we shall see this construction allows
us to easily vary the repetition degree ρ and the normalized
repair bandwidth β.

Definition 3: Let C = (Ω, V ) where V = {V1, . . . , Vn}
be a FR code. A subset P ⊂ V is said to be a parallel class
if for Vi ∈ P and Vj ∈ P with i 6= j we have Vi ∩ Vj = ∅
and ∪{j:Vj∈P}Vj = Ω. A partition of V into r parallel
classes is called a resolution. If there exists at least one
resolution then the code is called a resolvable fractional
repetition code.
The properties of a resolvable FR code are best illustrated
by means of the following example.

Example 2: Consider a DSS construction with parame-
ters α = 3, θ = α2 = 9, ρ = 2 and β = 1. Suppose that
we arrange the symbols in Ω in a α × α array A shown
below.

A =
1 2 3
4 5 6
7 8 9

Let the rows and the columns of A form the nodes in the
FR code C (see Fig. 2), thus n = 6. It is evident that there
are two parallel classes in C, P r = {V1, V2, V3} (corre-
sponding to rows) and P c = {V4, V5, V6} (corresponding
to columns). As ρ = 2, this code can tolerate one failure.
It can be observed that for Vi ∈ P r and Vj ∈ P c, we have
|Vi ∩ Vj | = 1. Using this we can compute the code rate
when k = 3, RC(3) as follows. Let a+ b = 3 with a ≥ b.
Then, the number of distinct symbols in a set of 3 nodes
from C is

3a+ (3− a)(3− a) = a2 + 9− 3a,

where a nodes are from P r and (3 − a) nodes are from
P c. This is minimized when a = 2. Thus, RC(3) = 7 and
it can be seen that the construction is universally good.

It can be seen that given a resolvable FR code C =
(Ω, V ) with r parallel classes, one can obtain a resolvable
FR code C′ with repetition degree ρ ≤ r, simply by
choosing the node set in C′ to be any ρ distinct parallel
classes from C. Moreover, the recovery process when at
most ρ − 1 nodes are in failure and β = 1 is also quite
simple. Specifically, it is clear that upon ρ−1 node failures,
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there is at least one parallel class in C′ that remains intact.
As all symbols from Ω are represented in any parallel class,
any failed node can be regenerated by contacting the nodes
in the remaining class.

We now present explicit constructions of resolvable FR
codes by leveraging the properties of combinatorial de-
signs. For an in-depth discussion of combinatorial designs,
see [6].

Definition 4: A (θ, ρ, α, λ) balanced incomplete block
design (BIBD) is a pair (Ω, V ), where Ω is a θ-element
set and V is a collection of α-subsets of Ω, called blocks,
such that |V | = n; every element of V is contained in
exactly ρ blocks and every 2-subset of Ω is contained in
exactly λ blocks.
Let n denote the number of blocks. It can be shown that
for a BIBD, the following relations hold.

nα = θρ, (1)
ρ(α− 1) = λ(θ − 1). (2)

It can be observed that a BIBD is essentially a FR code,
with the additional property that every 2-subset of Ω is
contained in exactly λ blocks. Likewise we can define a
resolvable (θ, ρ, α, λ)-BIBD (analogous to a resolvable FR
code) and the notions of a parallel class and resolution.
Namely, a parallel class is a subset of disjoint blocks from
V whose union is Ω and a partition of V into ρ parallel
classes is a resolution.

Definition 5: A S(t, α, θ) Steiner system is a set Ω of θ
elements and a collection of subsets of Ω of size α called
blocks such that any t subset of the symbol set Ω appears
in exactly one of the blocks.
It can be seen that a S(2, α, θ) Steiner system is a

(θ, ρ, α, 1)-BIBD where ρ =
θ − 1

α− 1
.

Lemma 1: Bose’s Inequality [7]. Suppose that there
exists a resolvable (θ, ρ, α, λ)-BIBD. Then, n ≥ θ+ρ−1.

Within the class of resolvable designs we will primarily
be interested in the class of affine resolvable designs for
which n = θ + ρ− 1.

A. Affine geometry based constructions

First, we will discuss the construction of a resolvable
(q2, q + 1, q, 1)-BIBD. This is also known as the affine
plane of order q.

We can explicitly construct affine planes when q is a
prime power. Let q be a prime power and Fq denote the
finite field of order q. We define the symbol set Ω = Fq ×
Fq . For any a, b ∈ Fq , define a block Va,b = {(x, y) ∈ Ω :
y = ax+ b}. For any c ∈ Fq , define V∞,c = {(c, y) ∈ Ω :
y ∈ Fq}. So there are q2+q blocks which we can partition
into q + 1 parallel classes of each size q. Specifically, fix
a ∈ Fq then {Va,b : b ∈ Fq} forms the q parallel classes
and the last parallel class is given by {V∞,c : c ∈ Fq}.

Example 3: By using the above construction we can
construct an affine plane of order 2 (see Fig. 3).

Fig. 3. A (4, 2, 2) REPRESSURED code from the affine plane of
order 2. Each storage node consists of symbols that lie on a line, e.g.,
{(0, 0), (0, 1)} is a storage node.

The set of symbols is Ω = F2 × F2 and the blocks are
as follows:

V0,0 = {(0, 0), (1, 0)}

V0,1 = {(0, 1), (1, 1)}

V1,0 = {(0, 0), (1, 1)}

V1,1 = {(0, 1), (1, 0)}

V∞,0 = {(0, 0), (0, 1)}

V∞,1 = {(1, 0), (1, 1)}

Affine planes are also considered in [4] since any affine
plane is a Steiner system. They also mentioned in [5].
However, here we have the flexibility of constructing
fractional repetition codes with repetition ρ ≤ q + 1 by
choosing any ρ parallel classes. For instance, Example 2
can be also constructed by considering only two parallel
classes of an affine plane of order α when α is a prime
power.

Next, we discuss affine geometries which yield a larger
class of constructions. Let q be a prime power, m ≥ 2
and Ω = Fmq . Let 1 ≤ δ ≤ m − 1. Note that Ω is an m-
dimensional vector space over Fq . A δ-flat is a solution
set to a system of m − δ independent linear equations
that can be homogeneous or non-homogeneous. The set Ω
and the set of all δ-flats of Ω comprise the m-dimensional
affine geometry over Fq , denoted by AGm(q). It turns out
that one can generate a large class of resolvable designs
by considering AGm(q). Let

[
m
δ

]
q

denote the Gaussian
coefficient, so that[

m

δ

]
q

=

{
(qm−1)(qm−1−1)...(qm−δ+1−1)

(qδ−1)(qδ−1−1)...(q−1) if δ 6= 0

1 if δ = 0

Theorem 1: [6] Let V denote the set of all δ-flats
in AGm(q). Then Ω = Fmq and V form a resolvable
(qm, ρ, qδ, λ) design with n = qm−δ

[
m
δ

]
q
, ρ =

[
m
δ

]
q

and
λ =

[
m−1
δ−1
]
q
.

The case of m = 2, δ = 1 corresponds to the case of
affine planes that were discussed above. It can be shown
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that when δ = m − 1, using Theorem 1, we obtain affine
resolvable designs with n = θ + ρ − 1. In this case the
DSS parameters are θ = qm, α = qm−1, ρ = qm−1

q−1 and
n = qρ. The design can be specified by means of the
following algorithm.
(i) Let Ω = {(x1, x2, · · · , xm) : xi ∈ Fq for i =

1, 2, · · · ,m} be the symbol set.
(ii) Find ρ, (m − 1)-dimensional subspaces of Fmq such

that each of them contains the symbol (0, 0, · · · , 0) ∈
Fmq . Note that these subspaces of Fmq are the solu-
tions to homogeneous linear equations over Fq in q
variables. These ρ subspaces are representatives of the
ρ different parallel classes.

(iii) Construct each parallel class by considering the addi-
tive cosets of its representative. Let R1 be a (m−1)-
dimensional subspace corresponding a given homoge-
nous equation. Take a symbol u1 /∈ R1 and add u1
to each symbol in R1 to form a subspace R′1 (which
corresponds to a nonhomogeneous equation). We note
that there are q − 1 non-zero choices for u1. Each
choice of u1 forms a new block.

Example 4: [6] Let q = 3 and m = 3. The set of
symbols is Ω = F3

3 and there are 39 blocks which can
be partitioned into 13 parallel classes. The representatives
of the 13 parallel classes are as follows:

R1 = {000, 001, 002, 010, 020, 011, 012, 021, 022}

R2 = {000, 001, 002, 100, 200, 101, 102, 201, 202}

R3 = {000, 001, 002, 110, 220, 111, 112, 221, 222}

R4 = {000, 001, 002, 120, 210, 121, 122, 211, 212}

R5 = {000, 010, 020, 100, 200, 110, 120, 210, 220}

R6 = {000, 010, 020, 101, 202, 111, 121, 212, 222}

R7 = {000, 010, 020, 102, 201, 112, 122, 211, 221}

R8 = {000, 011, 022, 100, 200, 111, 122, 211, 222}

R9 = {000, 011, 022, 101, 202, 112, 120, 210, 221}

R10 = {000, 011, 022, 102, 201, 110, 121, 212, 220}

R11 = {000, 012, 021, 100, 200, 112, 121, 212, 221}

R12 = {000, 012, 021, 101, 202, 110, 122, 211, 220}

R13 = {000, 012, 021, 102, 201, 111, 120, 210, 222}

.
The other blocks are additive cosets of these 13 repre-

sentatives. For example, the first parallel class consist of
the following blocks:

B1 = {000, 001, 002, 010, 020, 011, 012, 021, 022}

B2 = {100, 101, 102, 110, 120, 111, 112, 121, 122}

B3 = {200, 201, 202, 210, 220, 211, 212, 221, 222}

m θ = qm n = qρ α = qm−1 β = α2/θ ρ = qm−1
q−1

4 16 30 8 4 15
5 32 62 16 8 31
6 64 126 32 16 63
3 27 39 9 3 13
4 81 120 27 9 40
5 243 363 81 27 121

TABLE I
PARAMETERS OF REPRESSURED CODES FROM AFFINE

GEOMETRIES.

The overlap between blocks from different parallel classes
in the case of affine resolvable designs is known from the
following result.

Lemma 2: [6] Any two blocks from different parallel
classes of an affine resolvable (θ, ρ, α, λ)-BIBD intersect
in exactly α2/θ symbols.

Corollary 1: Let P 1 and P 2 be parallel classes in an
affine resolvable (θ, ρ, α, λ)-BIBD. Let β = α2/θ. Any
block from P 1 is β-recoverable from P 2.

Proof: By Lemma 2 it is clear that the intersection
between a block in P 1 and any block in P 2 is of size β.
Next, there is no overlap between the blocks in P 2 and
there exist θ/α blocks in P 2; this gives us the result.
Thus, for affine resolvable designs resulting from affine
geometries, we have β = α2/θ = qm−2 and d = q.

In addition to the above examples, we emphasize that
we can generate resolvable FR codes with a wide range of
parameters as shown in Table I.

For instance, let q = 4,m = 5, d = m − 1 = 4. Then
a resolvable FR code C with θ = 1024, α = 256, β =
64, ρ = 341, n = 1364 exists. This code has 341 parallel
classes. Suppose that we wish to deploy a DSS with a
repetition degree of 5. We can simply pick 5 parallel classes
to form the node set. In the event of four node failures,
we contact all the nodes in the intact parallel class and
download β = 64 symbols from each of them, i.e., the
code is resilient to four node failures. The code rate RC(k)
is guaranteed to be at least kα −

(
k
2

)
β as any two nodes

have at most β symbols in common. This implies that these
codes are universally good.

Remark 1: This approach provides us with a systematic
way of designing codes with β > 1 that are resilient up to
ρ − 1 failures. Furthermore, it can be seen that a system
can be resilient to at most ρ−1 failures, i.e., our approach
is optimal from a resilience point of view. It is known that
there exist affine resolvable designs that are not Steiner
systems, i.e., our class of codes is different from the Steiner
system based codes considered in [4].

B. Hadamard matrix based construction

A second construction of affine resolvable designs can
be obtained from Hadamard matrices or equivalently dif-
ference sets as discussed below. Consider a group G of
order θ and D ⊆ G such that |D| = α, with the property
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that every nonidentity element of G can be expressed as
a difference d1 − d2 of elements of D in exactly λ ways.
We refer to D as a (θ, α, λ)-difference set.

Lemma 3: Quadratic residue difference set. [6] Let q =
4m−1 be an odd prime power and G = Fq . Let D = {z2 :
z ∈ Fq, z 6= 0} = {d1, · · · , dk} be the set of quadratic
residues. Then D is a (4m− 1, 2m− 1,m− 1)-difference
set in (Fq,+)2.
For any g ∈ G, we define the translate of D by g +D =
{g + d : d ∈ D}, and define the development of D by
Dev(D) = {g+D : g ∈ G}. If D is a (θ, α, λ)-difference
set in G, then (G,Dev(D)) is a (θ, ρ, α, λ)-BIBD [6].

Let (Ω, V ) be the (4m−1, 2m−1, 2m−1,m−1)-BIBD
constructed by using a quadratic residue difference set. Let
∞ /∈ Ω, and define for V ′ = {B∪{∞} : B ∈ V }. Then it
can be shown [6] that (Ω∪ {∞}, V ′ ∪ {Ω−B : B ∈ V })
is an affine resolvable (4m, 4m − 1, 2m, 2m − 1)-BIBD.
Using the equations (1) and (2) it can be seen that this
corresponds to a resolvable FR code with parameters θ =
4m,α = 2m,β = m, d = 2, ρ = 4m− 1 and n = 8m− 2.

Example 5: D = {1, 2, 4} is a (7, 3, 1)-difference set in
Ω = F7. We can construct the Fano plane by using the
difference set D which is a (7, 3, 3, 1)-BIBD. By applying
the above construction we have the following parallel
classes Pi, i = 1, . . . 7 and their corresponding storage
nodes.

P1 = {{∞124}, {0356}}

P2 = {{∞235}, {1460}}

P3 = {{∞346}, {2501}}

P4 = {{∞450}, {3612}}

P5 = {{∞561}, {4023}}

P6 = {{∞602}, {5134}}

P7 = {{∞013}, {6245}}

Remark 2: For this class of codes, d is always 2. How-
ever, they offer more flexibility in the choice of β; unlike
affine geometry based codes, we do not require β to be a
prime power.

Table II contains the parameters of this construction
corresponding to some representative values of m. For
these codes d = 2 which implies that k ≤ 2. It can be
seen that the code rate RC(k) is 3m for any Hadamard
design based resolvable fractional code for k = 2. In this
case, since 3m is equal to kα −

(
k
2

)
β, these codes are

universally good.
The advantage of affine resolvable designs is that the

overlap between blocks from different parallel classes is
known exactly. This is not the case in general for resolvable
designs that are not affine resolvable. Thus, if the design
is not affine resolvable, we may not be able guarantee the
β-recoverable property of the fractional codes. However, it

2+ denotes the additive operation over Fq

θ = 4m n = 8m− 2 α = 2m β = m ρ = 4m− 1
8 14 4 2 7
12 22 6 3 11
20 38 10 5 19
24 46 12 6 23
28 54 14 7 27
32 62 16 8 31

TABLE II
PARAMETERS OF REPRESSURED CODES FROM HADAMARD

MATRICES.

is conceivable that general resolvable designs can be used
for the design of FR codes. In the next section we present
constructions of resolvable FR codes where β = 1, but
the corresponding designs are not affine resolvable. We
emphasize that these designs result in FR codes whose
parameters are not achieved by [4].

IV. REPRESSURED CODES FROM LATIN SQUARES

In this section, we consider resolvable FR codes with
β = 1. We use mutually orthogonal Latin squares [6] for
the construction.

Definition 6: A Latin square of order s with entries from
a s-set Ω is an s× s array L in which every cell contains
an element of Ω such that every row of L is a permutation
of Ω and every column of L is a permutation of Ω.

Definition 7: Suppose that L1 and L2 are Latin squares
of order s with entries from Ω1 and Ω2 respectively (where
|Ω1| = |Ω2|). We say that L1 and L2 are orthogonal Latin
squares if for every x ∈ Ω1 and for every y ∈ Ω2 there is a
unique cell (i, j) such that L1(i, j) = x and L2(i, j) = y.

Equivalently, one can consider the superposition of L1

and L2 in which each cell (i, j) is occupied by the pair
(L1(i, j), L2(i, j)). Then, L1 and L2 are orthogonal if and
only if the resultant array has every value in Ω1 × Ω2. A
set of r Latin squares L1, . . . , Lr of order s are said to
be mutually orthogonal if Li and Lj are orthogonal for all
1 ≤ i < j ≤ r.

We now demonstrate a procedure of constructing FR
codes from mutually orthogonal Latin squares [8]. Let Ω =
{1, 2, · · · , s2}, and let L1, L2, · · ·Lr−2 be a set of r − 2
mutually orthogonal Latin squares of order s (r−2 ≤ s−1).

• Arrange the elements of Ω in a s × s array A. Each
row and each column of A corresponds to a storage
node (this gives us 2s nodes).

• Note that Li takes values in {1, . . . , s}. Within Li
identify the set of (i, j) pairs where a given value z ∈
{1, . . . , s} appears. Create a storage node by including
the entries of A corresponding to the identified (i, j)
pairs.

• Repeat this for each Li and all z ∈ {1, . . . , s}. This
creates another (r − 2)s storage nodes.

Thus, a total of rs storage nodes of size s can be obtained.
Of course one can choose fewer storage nodes if so desired.
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Lemma 4: The construction procedure described above
produces a resolvable fractional repetition code with θ =
s2, n = rs, d = α = s, ρ = r and β = 1.

Proof: It is clear from the construction that θ = s2

and n = rs. Each storage node has s symbols so that
α = s. We need to show that the code is resolvable.
Towards this end note that it is evident that we obtain
a parallel class by considering the nodes corresponding to
the rows of A (similar argument holds for the columns of
A). Next the nodes obtained by considering Latin square
Li also form a parallel class, since the set of elements
obtained by considering the (i, j) pairs corresponding to
z1 ∈ {1, . . . , s} are distinct from those corresponding to
z2 ∈ {1, . . . , s}, if z1 6= z2. As we have r parallel classes,
we obtain ρ = r. Next, consider the overlap between any
two storage nodes belonging to different parallel classes.
As Li and Lj are orthogonal, any entry (k, l) ∈ [s] × [s]
appears exactly once in the superposition of Li and Lj ,
which implies that the overlap between storage nodes
from different parallel classes corresponding to the Li’s
is exactly one element. Similarly, a block from a parallel
class corresponding to Li has exactly one overlap with the
blocks corresponding to the rows and columns of A.

Example 6: Let s = 4, and r = 2. Then, we have the
following construction

A =

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

,

L1 =

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

and L2 =

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

where it can be verified that L1 and L2 are orthogonal.
Then we have the following parallel classes and corre-
sponding storage nodes.

P rows = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}

P cols = {{1, 5, 9, 13}, {2, 6, 10, 14}, {3, 7, 11, 15}, {4, 8, 12, 16}}

PL1 = {{1, 6, 11, 16}, {2, 5, 12, 15}, {3, 8, 9, 14}, {4, 7, 10, 13}}

PL2 = {{1, 7, 12, 14}, {2, 8, 11, 13}, {3, 5, 10, 16}, {4, 6, 9, 15}}

Note that in describing the above construction we as-
sumed the existence of r − 2 mutually orthogonal Latin
squares. We now discuss the issue of the existence of such
structures.

If p is a prime number, s is a positive integer, and N =
ps then we can construct N −1 mutually orthogonal Latin
squares as described below.
(i) Define La : FN × FN → FN , by (r, c) 7→ ar + c

(where the addition is over FN ) for all a ∈ FN \ {0}.
Then La is a Latin square since for a given row r (or
column c) the column (or row) location of an element
s is uniquely specified.

(ii) For any a, b ∈ FN \ {0}, La and Lb are orthogonal
since for given ordered pair (s, t) the system ar+c =
s, br + c = t, determine r = (a − b)−1(s − t) and
c = s− ar uniquely.

Example 7: Let N=3. Then F3 = {0, 1, 2}, L1 : x + y
and L2 : 2x+y. The two orthogonal Latin squares of order
3 constructed by the above method are

L1 =
0 1 2
1 2 0
2 0 1

, L2 =
0 1 2
2 0 1
1 2 0

In general, the construction of orthogonal Latin squares
is somewhat involved. However, the celebrated results of
[9], demonstrate the construction of two orthogonal Latin
squares for all orders N 6= 2, 6. This immediately allows
us to construct resolvable fractional repetition codes with
the following parameters n = 4s, θ = s2, d = α = s,
β = 1, and ρ = 4 for any s 6= 2, 6.

It can be observed that this construction allows us to
design FR codes that are not covered by those arising from
Steiner systems. For instance, Let α = 10 and θ = 100.
Then to construct a FR code we need use the Steiner
system S(2, 10, 100) which does not exist [10]. However
the above construction with two orthogonal Latin squares
of order 10 provides us a resolvable fractional code with
α = 10 and θ = 100.

V. CONCLUDING REMARKS

In this work we introduced REPRESSURED codes that
are fractional repetition codes constructed from resolvable
designs. Our work offers the following advantages with
respect to the existing work.
• In [4], they only considered FR codes with β = 1,

i.e., codes where the new node downloads exactly one
packet from the survivor nodes. In contrast, our con-
structions based on affine geometries and Hadamard
designs (cf. Section III), allow for a large family of
codes where β > 1.

• The resolvable nature of our codes allows for a
natural tradeoff between the repetition degree ρ and
the number of parallel classes, i.e., we can obtain FR
codes with higher or lower ρ simply by including or
removing parallel classes. This flexibility is lacking in
the approach of [4], where the entire Steiner system
needs to be used. In particular, it is known that
there exist Steiner systems that are not resolvable.
For instance, Ray-Chaudhuri and Wilson showed that
a resolvable S(2, α, θ) exists if and only if θ ≡ 3
mod 6 ([11]).

• One of the open questions of [4] was the existence of
FR codes with ρ > 2 that were not covered by Steiner
systems. Our constructions in Section IV provide such
examples.

• The work of [5] mentioned the usage of affine
planes for designing distributed storage systems. Our
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work has considered a larger class of designs based
on affine geometries, Hadamard designs and Latin
squares.

It is to be noted that all our proposed constructions are
universally good, i.e. RC(k) ≥ kα − β

(
k
2

)
. Moreover, the

repair process is particularly simple. With ρ−1 failures, at
least one parallel class is guaranteed to be intact. The new
node can simply contact the nodes in the intact parallel
class for regeneration. This property is likely to simplify
the implementation of the proposed systems.

Future work would include the investigation of other
classes of combinatorial designs and a more careful anal-
ysis of the maximum filesize of the proposed codes.
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