
NPSNET: JANUS-3D Providing Three-Dimensional Displays for a
Two-Dimensional Combat Model

David R. Pratt, Jon C. Walter, Patrick T. Warren, and Michael J. Zyda
Graphics and Video Laboratory

Naval Postgraduate School, Department of Computer Science
Monterey, CA 93943-5100 USA

Abstract

This paper discusses the integration of the Amy’s ex-
isting combat modeling tool, JANUS(A), with the real-
time three-dimensional graphics display offered by NPS-
NET . A scripting tool capable of rendering JANUS(A)
scenarios previously executed in the traditional two-di-
mensional model is discussed. This replay capability al-
lows the gamerlanalyst the ability to watch the three-di-
mensional battle unfold from any position on the battle-
field. Also, the implementation of a real-time, networked
link from the two-dimensional JANUS model to NPSNET
is detailed. This link involves an Ethernet connection
from a Sun workstation, which houses the two-dimension-
al model, to a Silicon Graphics workstation used for ren-
dering the real-time three-dimensional simulation..

Introduction

In 1991, the U. S. Army Training and Doctrine Com-
mand selected JANUS(A) as the simulation software
standard for training at company and platoon levels, using
the battalion commander as the senior trainer. It is also
used in a seminar role by the Command and General Staff
College to train new battalion and brigade commanders
on the principles of synchronized combined arms opera-
tions [JANU 911. JANUS(A) is fielded throughout the
world and, because of its ability to accurately model com-
plex combat scenarios, is widely used by trainers and an-
alysts in numerous applications which include combat
training, studies of combat operations, combat develop-
ment, testing of new equipment, and research and devel-
opment.

Despite its p a t success and huge popularity as a com-
bat development and testing tool, JANUS(A) analysts and
developers realized the need for a three-dimensional view
of the battlefield to validate their results. One project,
where the Army finds the three-dimensional view useful,
is the new system testing of the M1A2 main battle tank at
Fort Hunter Liggett, California. As part of this testing, the

U. S. Army TRADOC Analysis Command, Monterey
(”RAC-MTRY), used JANUS(A) as a tool to model the op-
erational testing of the M1A2 tank, before it was actually
tested on the ground [PAUL 921. A three-dimensional capa-
bility would help validate this data by verifying events, such
as tank positions, direct fire engagements, and Line of sights
between weapon systems.

In addition to its obvious usefulness with the development
of new combat systems, there are many other applications
for this system. Because of past virtual reality successes,
such as SIMNET, users knew that a three-dimensional view,
in support of JANUS(A) exercises, would greatly enhance
training simulations. Almost as good as being on the actual
terrain, a three-dimensional world would give the gamer/an-
alyst the ability to watch the battle unfold from any position
on the battlefield. In addition to standard scenarios, this abil-
ity could be used, in conjunction with JANUS(A), for three-
dimensional ‘after-action reviews’ at Combat Training Cen-
ters, such as the National Training Center, Fort Irwin, Cali-
fornia. Likewise, previously fought battles, such as the ‘Bat-
tle of 73 Easting’ of Desert Storm fame, could be reenacted
on JANUS(A), and refought in the three-dimensional simu-
lation, allowing for several ‘what-if‘ conditions.

JANUS(A) Description

JANUS(A), is an interactive, computer based, war-gam-
ing simulation of combat operations conducted at the bri-
gade and lower level in the United States Army [JANU 861.
JANUS(A) is a “two-sided, interactive, closed, stochastic,
ground combat simulation” [JANU 911. It is termed ‘two-
sided’ because it allows the simulation of two opposing forc-
es. These two forces, the Blue force and the Red force, are
simultaneously directed and controlled on separate monitors
by two different sets of players. Each monitor displays only
the vehicles pertaining to its side, plus the opposing vehicles
which are directly observed by its vehicles. Therefore, the
model is classified ‘closed’ because the friendly force player
does not know the complete disposition of the opposing
forces. The model is ‘interactive’ because each player mon-
itors, directs, reacts to, and redirects all key actions of the

US. Government Work Not Protected by U.S. Copyright
31

simulated units under his control. Once a scenario is started,
certain events in the game, such as direct fires and artillery
impacts, are ‘stochastically’ modelled, which meaos that
they act according to the laws of probability, and thus are
different for every scenario run. The principal modeling fo-
cus in JANUS(A) is on military systems that participate in
maneuver and artillery operations on land, thus the term
‘ground combat simulation’.

JANUS(A) is composed entirely of Army-developed al-
gorithms and data to model combat processes. The multi-
tude of programs which belong to JANUS(A) consist of ap-
proximately 200,000 lines of code written entirely in VAX-
11 FORTRAN, a structured Digital Equipment Corporation
(DEC) extension of ANSI standard FORTRAN-77 [JANU
911.

NPSNET-JANUS Integration

The Naval Postgraduate School’s Computer Science De-
partment created a system to render three-dimensional,
real-time simulations of military vehicles and terrain data-
bases known as NPS Netwodced Vehicle Simulator (NPS-
NET) [ZYDA 911 [ZYDA 91al [ZYDA 921 FALB 921.
Specific attributes of the system include creating a three-di-
mensional, real-time, virtual world at a cost of well under
$100,000 [ZYDA 921. Furthermore, it possesses the ability
for quick adaptation with applications involving other mod-
eling systems.

NPSNET currently provides three modes of combat
modeling. First, the model can be played in a networked,
multi-user mode. In this mode, one or more players can
chose and maneuver any vehicle in the three-dimensional
virtual world via a ‘Space Ball’. They can decide to fight
with or against one another over the network. Additionally,
a player can choose to fight a set of semi-automated forces.
Players can view the world from the perspective of the ve-
hicle commander or from an observer controller vehicle.
The second modeling mode NPSNET uses is a script. With
this method, the user can prepare scripted scenarios of com-
bat operations and view the results in three-dimensions. The
last mode includes receiving inputs over an Ethemet net-
work from other three-dimensional combat models such as
SIMNET. In this mode, NPSNEX can fully interact with the
other combat model.

NPSNET provides an assortment of U.S. and foreign
weapons system models. Currently, vehicle models range
from U.S. MlAl tanks and A-10 jet aircraft to Soviet made
T72 tanks and BMPs. All of these vehicles are formatted
and rendered using the NPSOFF system [ZYDA 91al.

NPSNET uses the JANUS(A) terrain database to con-
struct the three-dimensional terrain. The JANUS(A) terrain
database is merely a collection of grid coordinates with an
elevation assigned to each coordinate. In order to store

these elevations in a sequential file format, JANUS(A) di-
vides the terrain into a grid. The spacing between the hori-
zontal and vertical lines is known as the resolution value.
Currently, JANUS(A) can support resolution values of
12.5,25,50, 100, and 200. Each intersection is labeled by
the Cartesian coordinates of the horizontal and vertical line
that make up the intersection. These grid intersections are
known as checkpoints. The ground elevation is recorded
for each grid cell, and, if a tree or city is present in a certain
grid, this is also recorded along with its respective height
factor. JANUS(A) references the Cartesian coordinates for
each checkpoint using its respective UTM coordinate.

NPSNET utilizes two techniques to render three-dimen-
sional terrain, using either triangular-mesh or discrete poly-
gons as basic building blocks. Mesh terrain is created using
the built in ‘‘IRIS” function for drawing a triangular mesh,
commonly referred to as “t-mesh”. Each checkpoint is
treated as one of the three points of a triangle. The t-mesh
terrain skin is built by moving from the left to the right of
the map, then from the bottom to the top of the map. The
triangular-mesh terrain provides an efficient and simple
terrain skin for the virtual world, but currently does not al-
low roads and rivers to be drawn without significant tear-

In order to realistically provide the ability to render roads
and rivers, NPSNET instead utilizes the discrete polygon
(polygonized) terrain model [FALB 921. Because each
polygon is a discrete element, each one can be manipulated
-- or any object on it -- with great precision.

A grid node is the basic building block for polygonized
terrain. Each node is made up of two triangles, an upper and
a lower. The numbering for each grid node uses the upper-
left hand corner of the square as the local origin, with each
corner of the node representing a checkpoint from the data-
base. Each side of the basic grid node is equal to the reso-
lution value, This three-dimensional view of the terrain is a
fairly good representation, with the accuracy increasing
with the lower resolution values (smaller grid spacing).

All objects (such as trees, vehicles and buildings) are
rendered using a system known as NPSOFF [ZYDA 91aI.
These stationary objects and polygonized terrain data are
stored in files indexed by coordinates which match their
corresponding terrain node. Moving objects are stored in an
array assigned to each terrain node. Their positions are up-
dated each time the graphics loop is executed [MACK 911.

ing.

Generation of a Three-Dimensional Script

In the traditional JANUS(A) model, vehicles are repre-
sented on a two-dimensional screen using a simple icon.
Depending on whether a vehicle is classified as “friend’ or
“foe”, this icon is permanently faced to the left or right and

32

no indication is given to its direction of travel, its orienta-
tion, or its gm tube/sight orientation [JANU 861.

AJl signtficant events which occur during a JANUS(A)
scenario are recorded in five disk files (movement, direct
fires, artillery fires, kills, detectioas), known as post-pro-
cessor files. These post-processor files are converted to cre-
ate a realistic and accurate script for the three dimensional
simulation, NPSNET. The major hurdle to overcome for
this conversion, is that a two-dimensional game does not re-
quire (and in this case, does not produce) al l of the infonna-
tion needed to define what a vehicle is actually doing at ev-
ery moment in the game.

In general these files list the x and y coordinates of a ve-
hicle at the time an event occurs. Additionally, who the ve-
hicle shot, the location of the target, the location of impact
for each artillery shot, and the clock time for each of these
events is included with these listings [JANU 861. When the
actual JANUS model is running, it is possible, upon re-
quest, to find out the speed of a vehicle and its line-of-sight
fan. However, this information is gptrecorded in the post-
processor files.

In order to recreate a viable three-dimensional represen-
tation of the game, new information about what each vehi-
cle was doing between recorded events must be inferred
The C Language Integrated Production System (CLIPS)
expert system shell was chosen as the inference engine to
generate this new information [GIAR 893. CLIPS was cho-
sen because of the considerable amount of pattem matching
necessary.

The first step in the information inference process is to
determine the data that NPSNET requires for rendering.
One of the capabilities of NPSNET is to display and move
vehicles according to a script. To read the script, NPSNET
first compares the current game clock with the time as-
signed to the top element in the script file. If the game clock
is greater than or equal to the event time, then the event is
read and its instructions are implemented. To simplify the
processing of a script, each line in the script file is consid-
ered an event. Tbe information contained in each event line
is as follows:

Time
Vehicle Number
Vehicle Type
X coordinate
Z coordinate (referred to as the Y coordinate in a 2D

Vehicle orientation (in positive radians)
Weapon orientation (in positive radians)
Speed (meters per second)
Shot fired (I= Yes; 0 = No)
Alive (1= alive; 0 = killed)
Elevation (ground vehicle = 0; helicopter = 100

world)

meters; plane = 200 meters)

M e r NPSNET reads an event, it assigns the event speed
and direction to the three-dimensional vehicle model. If the
vehicle shoots or dies, a flash or buming hulk is rendered
respectively.
The key to inferring new information from the post pro-

cessor files is to compare the current event with the chro-
nologically subsequent event for the same vehicle. From
these comparisons, many useful pieces of information,
such as the speed and direction of movement can be in-
ferred. Currently, events in the JANUS post-processor files
are listed chronologically [JANU 861:

In order to compare two events for a single vehicle , there
needs to be an easy way to locate the next event for a par-
ticular vehicle. Searching each of the five post-processor
files for chronologically subsequent events is a memory in-
tensive process that would quickly become time consum-
ing and thus not useful. Therefore, an event file is created
for each vehicle. Next, each of the JANUS post-processor
files is read and the events pertaining to each individual ve-
hicle is stored in its own file. Furthermore, a letter is ap-
pended to the head of each event to identify its event type
(fire, move, etc.).

With the events for each vehicle stored in a single file, it
is now easy to read an entire vehicle event file into memo-
ry, compare two chronological events for a vehicle, and in-
fer some useful information about the vehicle's activities
between listed events.

In general, there are three activities that a vehicle could
possibly perform between listed events. It can be halted,
moving, or killed. In order to present a realistic three-di-
mensional representation of these three activities, the fol-
lowing pieces of information are inferred

*Orientation of the vehicle
Orientation of the weapon (turret)

*Direction of movement (if moving)
*Speed

The busk speed and orientation of the vehicle and weap-
on are obtained by performing the simple calculations. The
general mission of the vehicle is determined in order to
gain a more refined estimate of its weapon's orientation
and speed. These calculations are implemented using
CLZPS Object-Oriented Language, (COOL) [GIAR 911.
COOL is used because the encapsulation of the information
pertaining to one object makes it easy to manipulate the ob-
ject as a whole.

There are several characteristics that suggest that a vehi-
cle is in a defensive posture. The primary or tell-tale defen-
sive characteristic is when a vehicle is travelling at a speed
of less than 3 k.p.h. This speed tends to suggest that the ve-
hicle is either on an extremely slow and deliberate offen-
sive mission or it is actually sitting still (in a defensive po-
sition) for most of the time interval between the two listed
events. If it moves to its next position at a more deliberate

33

speed of about 13 -15 k.p.h., it is assumed that it is moving
to an alternate defensive position. If this extremely slow
speed is encountered, there are two other pieces of evidence
that, if present, tend to c o b the defensive hypothesis.
One of these additional pieces of evidence is whether the
vehicle just completed firing a shot or will fire a shot in the
future. This tends to be true because a vehicle shooting on
the move would normally be travelling at a speed much in
excess of 3 k.p.h. if it wants to survive. The second piece of
evidence assumes that if a vehicle fires in the future, and if
the distance to the next firing position is less than 100
meters, it is probably moving between fighting positions
and hence is in a defensive posture. If all of the above con-
ditions are met, then the program asserts that the vehicle is
in the defense, and as a consequence halts the vehicle and
orients it towards the enemy (towards the next target loca-
tion). Then, the vehicle moves to its next event location at a
set speed of 13 k.p.b, ensuring that it arrives at the next
event location on time. There are certainly other heuristics
that can suggest if a vehicle is in the defense or not, but they
currently are not implemented.

A second tell-tale heuristic is whether a vehicle does not
move for over five minutes. Not moving for over five min-
utes suggests that the vehicle is in a defensive posture --
viewing the engagement area. Then at a certain time it
would move quickly to its next defensive position.

It is assumed that if a vehicle’s events do not confirm the
defensive heuristic then the vehicle is considered to be on
an offensive mission. This is a simple but rather accurate
hypothesis but does not exhaust the need for other inferred
knowledge.

An anomaly that becomes very apparent in a three-di-
mensional world, that is not readily obsemed in the two-di-
mensional JANUS(A) simulation is, at times, a vehicle
travels at a speed in excess of 45 m.p.h. Unless the vehicle
is an aircraft, this is very unrealistic, and probably due to
minor modifications in input by the user at the time of the
original JANUS(A) run. This anomaly often occurs be-
tween the initial position for a vehicle and the first event
listed in the post-processor files.

If these two conditions occur, then at start time, the vehi-
cle is rendered at the position specified by the first move-
ment rather than the location specified by the initial condi-
tions. It is also given a speed of zero. If this excessive speed
anomaly does not occur between the initial position and the
first event, then the speed is smoothed.

The smoothing algorithm slows the speed of the vehicle
to 25 k.p.h. This decrease in speed has a natural side effect.
It will cause the vehicle to not be at the correct location
when its next event is scheduled to occur (call this upcom-
ing event, A). To compensate for this problem, a new
MOVE event is created (event B) which will keep the vehi-
cle moving at a speed of 25 k.p.h. to the location that was

specified in event A. In order to get the vehicle back in syn-
chronization with the remainder of the event list, the speed
associated with movement from event A to its subsequent
event is increased to allow the vehicle to arrive at the fol-
low-on event’s location on time.
As a rule, the orientation of the vehicle, if moving, is al-

ways in the direction of travel. If the vehicle is halted, the
orientation depends on the following pieces of evidence:

*If the vehicle is firing during the current event then ori-
ent towards the target.

-If the vehicle is not firing but will fire in the future, ori-
ent the vehicle towards the next target location.

*If the vehicle is not firing and will not fire in the future,
then use the vehicle orientation from the last event as
the current Orientation.

*If the vehicle is placed on the battlefield but does not
have any events associated with it, then orient the ve-
hicle in its initial view direction.

The heuristics for weapon orientation are similar to those

-If the vehicle is firing during the current event then ori-
ent the weapon towards the target.

*If the vehicle is not firing but will fire in the future, ori-
ent the weapon towards the next target location.

*If the vehicle is not firing, will not fire in the future, but
did fire in the past then use the weapon orientation
from the last firing event.

*If the vehicle never fires, then orient the weapon in the
same direction as the vehicle.

Using the CLIPS Object Oriented Language (COOL),
each of the events listed in a vehicle event file is read into
one of the following objects: MOVE, FIRE, KILL, ARTY
[GIAR 911. After the entire file is read into memory, then
each event is compared against the next event or an upcom-
ing firing event. These comparisons generate facts that are
stored in the form of (condition, <fact>). Then, based on
the facts generated, CLIPS’ inference engine will choose
the appropriate rule to execute. These rules then call meth-
ods and functions which generate the data required for
NPSNET [CLIP 911. Once a rule is chosen and the NPS-
NET event data is generated, this data is written to a file
specified for the current vehicle. Once the event file for a l l
of the vehicles is evaluated, each of the files containing the
heuristic data is combined into a single event list file. This
file is then sorted chronologically. After sorting it is ready
to be used by NPSNET as a script file.

used for the vehicle orientation with a few differences.

Real-Time Capability

The U.S. Army realized the advantages of running the
JANUS(A) combat model on the popular and compact
UNIX based workstations instead of on the cumbersome
VAX/Tektronix systems currently in use. In August of

34

1991, TRAC-MTRY contracted with the Rand Corporation
to develop a version of JANUS(A) that would operate on a
Sun/uNM workstation. A working prototype of JAN-
US(A) for UNlX was delivered in April 1992 [GUYT 921.

In the past, a network link between the traditional JAN-
US(A) model and NPSNET was not feasible because of the
drastically different protocols and platforms. With the in-
troduction of this new version of the JANUS(A) combat
model, it finally became possible to construct this real-time
network.
This new UNIX-based version of JANUS(A), which we

call JANUS(X), does not change the “inner-workings” of
the original combat model. The model itself is identical in
both versions, in fact, the same FORTRAN code is used in
both models. This reuse of the VAX-FOR” code is
made possible by the Sun 4 - F O R M compiler, which is
capable of translating VAX data types and system calls into
their UNM equivalents [SUN 911.

The only viable difference between the two versions of
JANUS is that the UNIX version bypasses all FORTRAN
calls to the Tektronix screens, and replaces them with the
‘C’ programming language calls to the X-Windows envi-
ronment [GUYT 921.

As mentioned above, the VAX-version of JANUS(A) is
hindered by its antiquated hardware and non-networking
capabilities. This version can only be displayed on Tektron-
ix monitors, with the Blue force on one screen, and the Red
force on another.

JANUS(X), on the other hand, has the added flexibility of
being run on a Sun Workstation with the display piped to
the same monitor, or any other workstation and monitor
with X-Windows capability.

The communications between the Sun Workstation, run-
ning the JANUS(A) simulation, and the wokstations ren-
dering the two-dimensional images is accomplished using
an Ethemet network. JANUSOL) creates messages and
places them on the network as packets. These message
packets are read by a listening workstation and rendered ap-
propriately on its monitor [GUYT 921.

JANUS(X) executes two different programs at the same
time. The main JANUS(X) program operates on one Sun
workstation. This program executes all operations of the
JANUS(A) combat model, initializes the network, and
sends the message packets to the network. The second pro-
gram runs on the workstation that will render the X-Win-
dows screens. It captures the message packets that are on
the network, then sends them to a subprogram which pars-
es the messages and returns them to their original function
formats. These functions then call the X-Windows library
functions required to render the two-dimensional images on
the monitor. Additionally, screen inputs to JANUS (e.g.
mouse picks) are captured, recorded into a message packet,

and sent back to the machine running the main JANUS
model [GUYT 921.

The version of NPSNET used for this project uses NPS
networking format. NPSNET and JANUS(X) use two dif-
ferent message sending protocols, and consequently, use
different message formats. To accommodate both func-
tions, messages are first sent from the JANUS@) game us-
ing its own format. When these messages are read by the
receiving IRIS workstation, they are changed to the NPS-
NET message format, and the appropriate three-dimen-
sional graphics are dqlayed in real-time.

JANUS(X) sends a specific message to update the move-
ment of a vehicle on one of the two-dimensional screens.
Therefore, in the body of the JANUS(X) function to send
this message, a special message destined for NPSNET is
embedded. This message includes the side and unit number
of the vehicle, its speed, orientation and current coordi-
nates. Using the side and vehicle number as indices, NPS-
NET can adjust the location, speed and direction of the ve-
hicle in the three-dimensional world.

JANUS(X) does not send any message which specifical-
ly identifies that a vehicle fired a shot. Therefore, a special
function was written to write this message to NPSNET.
This message sends the force side and vehicle identifica-
tion number for both the shooter and the intended target.
Upon receipt of this message, NPSNET will render a muz-
zle flash for the vehicle that fired. Also, a red or blue line
(depending on the force side of the firer) is drawn from the
shooter to the target. This line simulates the tracer action of
a shot, while the color allows the observer a quick reference
to who fired it.

Just as with vehicle shots, JANUS(X) does not send any
message which specifically identifies that artillery was
fired. So again, a function was written to send an artillery
message to NPSNET. It sends the x and y coordinates
where the artillery is currently landing. When this message
is received by NPSNET, an artillery explosion is rendered
at the coordinates indicated.
The death or destruction of a weapon system in the JAN-

US(x) combat model is simulated by simply removing its
icon from the two-dimensional screen. To notify NPSNET
of the destruction of a vehicle, a message to NPSNET was
embedded in the function which deletes the icon. This new
message sends the force side, vehicle identification num-
ber, grid coordinates, and the final orientation of the vehi-
cle. NPSNET then simulates the destruction of a vehicle by
halting it and displaying an orange flame.

JANUS3D as a Modeling Tool

JANUS(A) was used in the past as a modeling tool for
the R e n t MIA2 main battle tank field tests, using the Ar-
my’s Model-Test-Model (MTM) concept [BUND 911. For

35

the M1A2 tests, MTM began with pre-test modeling before
the actual field test occurred. With the Fort Hunter-Liggett
terrain database loaded in the JANUS(A) model, useful in-
formation was gleaned which helped design the field test
site. Likewise, with the proper vehicle data, several battles
were attempted to help decide upon the specific combat sce-
narios to run during the trials. After the test was completed,
post-test modeling was done to compare against the data
from the trials, in hopes to accredit JANUS(A) as a simula-
tion modeling tool for MTM. If accredited, this would allow
more operational testing and evaluation in the modeling en-
vironment, instead of the highly expensive field tests
[PAUL 921.

JANUS-3D provides the combat weapons system devel-
oper the ability to easily visualize a new weapon system.
The developer can develop appropriate tactics for the sys-
tem, and test different weapon system specifications such as
size, shape and positioning of optical devices prior to con-
structing any portion of the system.

JANUS-3D in the €“Test. The goal in the pre-test mod-
eling is to use JANUS(A) to aid in the test design and help
in recommending different combat scenarios. In most cases,
the pexsomel conducting the pre-test modeling will be the
leaders or users of the actual weapons system. Because they
may have very little knowledge of JANUS(A), a user-
friendly, interactive model, like JANUS3D, is ideal for this
purpose. After the terrain database is loaded into JANUS-
3D, the unit leaders have the capability of driving every
inch of the battlefield in their own vehicle. In the case of the
MIA2 trials, each tank commander (four total) could sit be-
hind his own workstation and drive, view, and shoot his
own tank, via NPSNET’s network capability. Offensive or
defensive battles can be enacted time after time, against au-
tonomous forces or against other manned workstations, to
try and determine the best tactics and use of terrain, before
the players have even seen the actual ground location. This
helps save time and money in the overall test design, be-
cause the price of performing many pre-runs on an actual
vehicle would be astronomical. Also, it provides excellent
training and first hand knowledge of the area for the leaders
and crews, which is a definite advantage going into the ac-
tual ground tests.

Besides serving as a training tool and scenario consuuc-
tor, JANUS-3D also is an excellent tool to choose the areas
for the field test. Test developers can position their vehicles
in proposed defensive positions, check out their fields of
view, and determine if the chosen piece of terrain is optimal
for the weapon system’s firing range. Likewise, proposed
offensive routes can be driven to see if the vehicle has prop
er cover and concealment, adequate fields of view, and ma-
neuverable terrain.

At the present time, the pre-test modeling accomplished
by JANUS-3D cannot be input into the JANUS(A) model.

Future research WO& with NPSNET: JANUS-3D will al-
low all activities accomplished in the three-dimensional
world, such as vehicle positioning, movement, and firing,
to affect the traditional JANUS(A) model. This feature
would allow war-fighters and combat model analysts the
capability to plan positions and routes in the three-dimen-
sional world, then either JANUS(A) could run the actual
scenario, or the operators could become participants in the
3D world, or a combination of both could be chosen.

A necessary requirement for the post-test phase is to rep-
licate the actual field test site as accurately as possible
within the model. Except for the resolution factors, the ter-
rain in JANUS(A) cannot be changed. Ongoing work with
NPSNJ3, on the other hand, has given the user the capabil-
ity to dynamically change the terrain. At the present time,
road craters, bridges (both erect aad blown), and tank
berms can be created and edited to fit the desires of the op-
erator. Future work will allow tank ditches and tank posi-
tions to be excavated. l’his gives the analyst the flexibility
to change the terrain to better match the actual test site.
In JANUS(A), if a tree or city lies within a grid cell, the

entire grid cell is marked as having a tree or city, and has
the respective height factor. For example, if the terrain da-
tabase is using a 200 meter resolution map, and a grid cell
is marked as having trees of height factor 12 meters, then
the entire 200 x 200 meter grid cell would have a block of
trees 12 meters high. Likewise, these height factors for the
mes and cities do not come from the DMA terrain data-
base, but are input by the user. Thus, if incorrect values are
entered, or if the same values are used from database to da-
tabase, these errors are not easily caught. However, errone-
ous height values become obvious in a three-dimensional
world.

A better model of trees and cities is provided in JANUS-
3D. By design, trees and buildings are stochastically placed
in a marked grid cell, according to the density factor of the
cell. The trees and cities are the accurate height, plus they
display a more traditional shape. The random placement,
coupled with the density of the trees, allows possible view-
ing under and around trees, which is more realistic in less
densely packed forests.

However, if this is not acceptable, and an even better rep-
resentation is demanded,
JANUS-3D has the capability of placing trees, cities, and
most common man-made objects at the exact spot that they
are located in the real world, with little difficulty. Thus, if
aerial photos were available, or if someone had intimate
knowledge of the area, the new objects for the terrain mod-
el could be accommodated.

Another requirement in the post-test phase is to replicate
the vehicle actions as closely as possible. In the traditional
JANUS(A) model, vehicles are represented as two-dimen-
sional icons, and routes are planned by a series of straight

36

lines connected by control nodes. An anomaly observed, af-
ter viewing several JANUS(A) scenarios in the three-di-
mensional mode, is that vehicles sometimes pass through
one another, or actually park on top of one another (presum-
ably at control points). These problems are caused both by
human error upon input of the routes and nodes, and also
because the model has no collision detection system. This
is a serious problem, because the traditional model cannot
accurately show that a battlefield may be too congested, or
that there is insufficient room for one tank to pass a de-
stroyed vehicle at a bridge crossing, JANUS-3D is anexcel-
lent tool to highlight these errors so that new routes or posi-
tions can be chosen.
la addition to movement errors, JANUS(A) also has

problems with the field of view of stationary vehicles. JA-
NUS(A) uses the last direction the vehicle travelled as the
field of view. Thus, if a vehicle is in the defense, and with-
draws to a subsequent battle position, his field of view
could possibly be to the rear. Using JANUS3D, the analyst
will observe this problem, and can change the vehicles line
of sight in the two-dimensional model. In future additions
to JANUS3D, the analyst wiU be able to affect this change
from the three-dimensional model with the ‘Space Ball’.

Line of sight calculations in JANUS(A) use a standard
height factor for vegetation and vehicles, with each vehicle
having the same factor. JANUS-3D allows the operator to
place his view at the exact eye level for each vehicle, thus
providing a more realistic view of the terrain. JANUS-3D
shows problems with this calculation when vehicles are de-
stroyed which cannot be seen in the three-dimensional
world Likewise, some vehicles in JANUSSD have line of
sight with enemy vehicles, but JANUS(A) does not show
that they do.

Conclusions

Two important results were achieved with this w o k
First, NPSNET was validated as a flexible, three-dimen-
sional simulation platform for integration with traditional
two-dimensional models. Second, it was shown that a tradi-
tional two-dimensional combat model can be successfu~y
displayed in thee-dimensions. This provides new life to
systems that would otherwise rapidly become obsolete.
What makes the second result even more noteworthy is that
the three-dimensional display is achieved at a very low cost.

While this project proved that two-dimensional combat
models cm be displayed in three-dimensions, it only allows
the user to be an “observer” of the simulation. The next log-
ical step is to allow the observer to become an “operator”
within the simulation. The goal is to have the actions of the
operator within the three-dimensional world, be used as in-
put to the two-dimensional model. Tbis feature would allow
war-fighters and combat model analysts the capability to

test new ideas quickly and conduct multiple “what if’ op-
emions using the model.

LIST OF REFERENCES
[BUND 911 Bundy, Dennis, “Model-Test-Model Using High
Resolution Combat Models”, TRAC-MTRY, Unpublished Paper,
1991.
[CLIP911 Sohare Technology Branch, Lyndon B. Johnson
Space Center, CUPS Reference Monual, Version 5.0” JSC-
22948, Jan 1991.
[FALB92] Falby, John S., Zyda, Michael J., Pratt, David R.,
Mackey, Randall L.. “NPSNET: A Networked Vehicle
Simulation with Hiermhical Data Structures”, currently under
revision for Computers & Graphics.
[GIAR89] Giarratano, Joseph C., and Riley, Gary, Expert
Systems, Principles and Programming, PWS-KENT. Publishing
Company, 1989.
[GIAR91] Giarratano, Joseph C., CUPS User’s Guide,
Information Systems Directorate, Software Technology Branch,
Lyndon B. Johnson Space Center, Jan 1991.
[GUYT92] Guyton, Jim, JANUS(A) for SudUnix, Rand
Corporation, Los Angeles, CA, April 1992.
[JANU 861 U.S. Army TRADOC Analysis Command, WSMR,
JANUS(T) Documentation Manual, June 1986.
[JANU 911 U.S. Army TRADOC Analysis Command, WSMR,
JANUS(A) Version 2.0 Information Letter, March 1991.
[JANU92] US. Army TRADOC Analysis Command,
havenworth, Janus Army, Single Model Sewing AI1 Domains,
Leavenworth, KS, 1992.
[MACK 911 Mackey, Randall L., NPSNET: Hierarchical Data
Structures for Real-Time Three-Dimensional I/isuol Simulations,
Master’s Thesis, Naval Postgraduate School, Monterey,
California, September 1991.
[PAUL921 Paulo, Eugene I?, Proctor, Michael D., Gorevin,
Matthew L., Lathrop, Andrew, “Comparison of MlAl/MlA2
Battle Results Between JANUS(A) and an Operational Field
Test”, T R A C - m y , Unpublished Paper, 1992.
[SUN911 Sun Microsystems INC. Sun FORTRAN User’s
Guide, February 1991.
[ZYDA 911 Zyda, Michael J. and Pratt, David R., “NPSNET: A
3D Visual Simulator for Virtual World Exploration and
Experimentation”, 1991 Society for Information Display
International Symposium Digest of Technical Papers, Volume
X2U& May 1991, pp 361-364.
[ZYDA 9la]Zyda, M. J., Wilson, K. P., Pratt, D. R., Monahan, J.
G., and Falby, John S., “NPSOFF: An Object Description
Language for Supporting Virtual World Construction”, currently
under revision for Computers & Graphics.
[ZYDA 921 Zyda, Michael J, Pratt David R, Monahan Gregory,
and Wilson, Kalin P “NPSNET: Constructing a 3D Virtual
World”, Symposium on 3 0 Graphics, ‘92 Proceedings, April
1992, pp 147-156.

37

