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Abstract—A variety of authors have incorporated multiple
target motion models into the Probabilistic Multi-
Hypothesis Tracking (PMHT) algorithm using a discrete
Markov chain to model the motion model switching
process. However, in these papers the observed data
likelihood function is not written down for this model, nor is
it evaluated because all possible model assignment
sequences must be considered over the PMHT batch. These
two issues are addressed in this paper under the assumption
that the Markov chain switching model affects the target
state process but not the target measurement process: the
observed data likelihood function for the PMHT algorithm
is given along with a method for evaluating it. A closely
related method of including multiple target motion models
in the PMHT algorithm that results in a finite mixture
distribution of motion models is described as well. In
addition, it 1s shown that using multiple-model smoothing
algorithms such as an IMM smoother to estimate the target
states in a multiple model PMHT algonithm will not
maximize the observed data likelihood function. Finally, it
1s shown that the MAP target state estimates for linear
Gaussian targets with multiple motion models can be
computed using a bank of Kalman smoothers. This result
fills a gap in the existing literature. * 2
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1. INTRODUCTION

The PMHT algorithm is a multi-target tracking algorithm
that estimates target state vectors by maximizing the
posterior probability density function (PDF) (i.e. maximum
a posteriori or MAP estimates) over a batch of time updates
[1, 2]. The target state estimates are obtaned using an
iterative algorithm derived via the expectation-maximization
(EM) algorithm [3, 4]. One of the useful aspects the PMHT
algorithm [1, 2] and other methods derived using the EM
algorithm 1s the observed data likelihood function is
guaranteed to monotonically ascend during optimization [3,
4]. This is an extremely powerful feature of EM algorithms
in general and the PMHT algorithm in particular for at least
two reasons. Firstly, good convergence tests can be
implemented using the sequence of observed data PDF
values, and secondly, because any failure of the observed
data PDF to monotonically ascend means there are
programming errors or numeric computation problems. As
a result, methods for evaluating the observed data likelihood
function are highly desirable.

Previous authors incorporated multiple target motion
models into the PMHT algorithm to improve tracking of
dynamic targets or estimate the time at which a target
maneuvers [5-10]. In these references, the target motion
models are switched via a discrete Markov chain with
known transition matrix. A comparison of the performance
of these schemes appears in [6] and [7]. However, the
observed data likelihood function (the distribution of the
observed data conditioned on the target states) is never
explicitly stated or computed in these references. In this
paper, the observed data likelihood functions for the
multiple-model PMHT algorithm [5-8] and the IMM PMHT
algorithm [6, 7] are derived and an exact method for
computing them is given in Section 3. In addition, an
alternative method of incorporating multiple motion models
into the PMHT algorithm is presented in which the discrete
target model assignment variables are statistically



independent. This results in a finite mixture distribution of
target motion models rather than a discrete Markov chain,
and the evaluation of its observed data likelihood function is
straightforward. This approach is referred as the mixed-
model PMHT throughout this paper, and the label the
multiple-model PMHT is replaced with the jump Markov
PMHT to clearly distinguish it from the mixed-model
PMHT. This naming convention also more accurately
reflects the underlying statistical assumptions.

When multiple target motion models are used in the PMHT
algorithm, there is an additional set of missing information,
namely, the discrete model assignment variables. The
multiple model algorithm can be posed either explicitly by
calling out the discrete model assignment variables as
missing data inside the PMHT algorithm as in [5-7], or
mmplicitly inside the algornthm used to maximize the
auxiliary function. These two algorithms are closely
related. In the first algorithm, an iteration first performs
data association and target model association and then
estimates target states. In the second algorithm, the outer
iteration performs data association, and then an inner
iteration for each target performs model association
followed by state estimation. In principle, the inner iteration
of the second algorithm can be performed multiple times for
each step of the outer iteration. In this paper, the discrete
model assignment variables only affect the evolution of the
target state variables and do not affect the measurement
distributions (i.e, a target’s output distribution 1s
independent of the discrete model switching process). This
assumption avoids coupling between targets and, in the
authors’ experience, the observation distribution 1s a weak
function of the model assignment process that 1s
overwhelmed by the observation distribution’s dependence
on signal to noise ratio.

For the special case of linear-Gaussian models, it is shown
in Section 5 that the EM method leads to the mixed-model
and the jump Markov PMHT algorithms that can be
implemented via a bank of Kalman smoothers with
appropriately modified synthetic system models and input
data. This proof fills a gap in the existing literature [17].

2. THE PMHT ALGORITHM

From [1, 2], the probability density function (PDF) of the
observed measurements (observed data PDF) equals

p(ZX)=p(Z]X)p(X). O

where Z and X represent the collection of measurements
and target states over the entire batch respectively. The
target state vectors from different targets are statistically
independent. In principle, the target state estimates satisfy

X = arg}l’(nax{p(Z,X)}; (2)

however, an EM algorithm 1s only guaranteed to converge
to a fixed point of the likelihood function [3, 4]. Therefore,
resulting state estimates may correspond to local maxima of
(1) rather than the global maximum.

The EM algorithm requires the specification of a set of
missing information. In the PMHT algorithm, this set of
missing information is the collection of discrete assignment
variables that connect the measurements to the targets and
clutter distribution. The complete data PDF is the joint
distribution of the measurements, the target states, and the
discrete assignment variables and is expressed as [1, 2]

?P(Z,X,K) = p(Z|X.K)p(X)p(K). (3

where K represents the set of discrete assignment
variables. The MAP estimates of the target states are
obtained ¥ia an auxiliary function that is defined by

Q(Xx,X') =
Slog|p(Z,X,K)|p(K|2,x7), @

where

p(7,X,K)

5
p(Z,X) (5)

p(K|Z,X)=

and X’ is an initial or previous estimate of the target state
vector sequences. [3, 4] prove that maximizing or simply
increasing the auxiliary function (4) with respect to the
parameters causes the observed data PDF to increase.
Because the observed data function is bounded above,
alternating between (4) and (5) will cause the observed data
PDF (1) to monotonically increase and converge to a
stationary point that, for Gaussian densities, is a local
maximum.

3. THE OBSERVED DATA PDF

The complete data probability density function for the
PMHT algorithm with multiple target motion models 1s
given by

»(Z,X,K, ) = ©
p(Z | X, K)p(X | $)p(S)p(K),

where 7 represents the collection of measurements {rom
the targets and clutter over the batch, X represents the
collection of target state vector sequences, K denotes the



collection of discrete measurement to target assignment
variables, and & denotes the collection of discrete target
model assignment variables. The random variables K and
S are statistically independent. Under the assumption that
all the discrete assignment variables in K are statistically
independent, the joint distribution of the measurements and
the discrete measurement to target assignment variables
conditioned on the collection of target states equals

(ZK\X):

= HHP( Zip

t=1n=1

(715, K)p(K)
(7

m’ tr)p(ktr = m)

over the batch of length T where there are 0 < N,

measurements n each scan and 0 < m < M targets. The

clutter distribution is always present and corresponds to
m = 0, and in this case,

p (ztr wtmktr) = p(ztfr ktr) (®)
because the clutter distribution has no state process. The
joint PDF of the target state variables and the target model

assignment variables is expressed as

M ©)
- Ulp(Xm ‘Sm)p(sm)’
where X and S are the collection of state vectors and

discrete target model assignment variables for target m
over the batch respectively. The target state vectors evolve
according to a continuous Markov process, and the target
model assignment variables either are statistically
independent (the mixed-model PMHT) or evolve according
to a discrete Markov chain (the jump Markov PMHT). For
the mixed-model PMHT, the target model assignment
variables are independent, hence,

P(X S, ) = p(X, |5, )2(5,,)

= Hp(mﬁm‘mﬁflmﬂsﬁm )p(sﬁm = j):

=1

(10)

where the target model assignment variable, s, , takes on

integer values between one and J > 1. For the jump
Markov PMHT where there is a Markov chain distribution
on the target model assignment, the joint distribution of the
target state vectors and the target model assignments equals

X, ‘Sm)p(Sm) = p(slm)p(wlm‘slm)

T
XH p(wﬁm ‘$ﬁ71m75ﬁm )p(sﬁm ‘Sﬁflm )7

4y

where again s

J =1,

. takes on integer values between one and

The observed data PDF conditioned on the target states (i.e.,
the measurement PDF conditioned only on the target states)
1s obtained by integrating over all possible discrete
measurement to target assignment random variables and
discrete target model assignment variables. From [1, 2], the
PDF of the measurements conditioned on the target states is

A
[111

t=1r=1|m=0

(12)

Ms I

»(z, |2

ﬁm? ﬁr)p(kﬁr = m) .

Unfortunately, no similar expression for the target states is
available from the literature. Hence the unconditional PDF
of the target states must be derived.

Let T(T)be the set of all discrete target model assignment

sequences of length T for all targets. Then, from (9), the
probability of all the target states alone 1s given by

p(X)= 22

Sew(T)

p(X18)p(8), @13

where & 1is a particular set of model assignment sequences
for all targets in U(7T) . Because the targets are statistically
independent, the expression in (13) 1s equivalent to

I
=
M
™
n
=

3

»(X)

I
:12
]

where ¥ (T) is the set of all model assignment sequences

for target m of length 7' and & is a particular model

assignment sequence in W (T) Focusing on one

particular target, the model assignment sequence can be
integrated out directly when the model assignment variables
are statistically independent (the mixed-model PMHT), or
recursively using the forward part of the forward-backward
(Baum-Welch) algonithm [4, 11] when the model
assignment variables have a discrete Markov distribution
(the jump Markov PMHT). For the mixed-model PMHT,
the PDF of a target’s state vector sequence equals



J

pmg{zw%ﬁgm%—n

r(s (15)
x H Zp(mtm‘mt—lm75tm)p(stm = j)])
=2

i=1

which is similar to (12). For the jump Markov PMHT,
define the forward probability as

O
! (16)

5 (51 11015025, 1)

I=1

mi—11 7

where the sum over [ represents the sum over s, , and

amlj = p(mlm ‘Slm)p(slm = J) (17)
Then,

J
p(Xm) = >, (18)
j=1

1s the PDF of the target’s state vector sequence. The
observed data PDF for the mixed-model PMHT is obtained
by combining equations (12) and (15), or by combining
equations (12), (14), and (18) for the jump Markov PMHT.
The later case applies to the IMM PMHT because it uses a
discrete Markov chain for the model assignment variable as
well. Either way, the result

p(2.X)=p(2|X)p(X). Q9

1s the same Bayesian form as the observed data PDF (1).

4. TARGET STATE ESTIMATES

The problem of estimating the target state vectors using the
EM algorithm can be posed two ways: Only the discrete
measurement to target assignment variables are treated as
missing information, or the discrete measurement to target
assignment variables and the discrete target model
assignment variables are treated as missing information.
The first case leads to a nested algorithm [12, 13] where the
discrete measurement to target assignment variables are
treated as missing information in the outer EM algorithm,
and the MAP target state estimates are obtained using an
inner EM algorithm where the discrete target model
assignment variables are treated as missing information. In
the second case, both the discrete measurement and model
assignment random variables are treated as missing
information simultaneously in a single EM algorithm as in
[5, 9]. In Section 35, it is shown that MAP target state

estimates for linear Gaussian targets with multiple motion
models can be computed using a Kalman smoother for each
target.

Nested Algorithm

When only the discrete measurement to target assignment
variables are treated as missing information and the discrete
measurement to target assignment probability mass
functions are known, the auxiliary function is given by [1,
2]

M
QXX =C+ >0, (XX (20
m=1

where ('1s a constant and

Qm(X X’) =

35w, og]p(5,

=1 r=1

oa| 3 p(X,15,)0(5,.)|

Sme\llm(T)

Tom)|+ Q21

The probability of a discrete measurement to target
conditioned on measurement, z

tr?

assignment variable, k

7

equals

p(ktr = m‘ tr’ ;m)
(Z tm’ tr) (ktr = m) (22)

i( b )olk, =)

In order to maximize the auxiliary function, Q(X,X ’),

with respect to the collection of all the target state vector
sequences, the maximization step (M-step) of the EM
algorithm must maximize each of the functions in (21) with

Given that (21) contains the
natural logarithm of a sum, the maximization problem

appears to be difficult. However, following [1, 2], taking
the exponential of (21) yields

respect to X _ separately.

CREAED

t

[Tl

t=1r=1

> »(X,]5,)p(8,)

5 v, (T)

ﬁm? )} ':ntw l (23)

X

?

which 1s equivalent to the original optimization problem
because the exponential function is monotonic. Now the



optimization problem for each target becomes

Xm = arngax{exp[Qm (Xm ‘Xﬁ; )]}(24)

m

Before discussing how to solve this optimization problem, it
is worth making some simplifying assumptions.

The expression in (23) is simplified further under the
assumption that

mﬁmim) = Cﬁmeg(%’a}m)- (25)

p(zﬁr

When this assumption holds, the first term on the right hand
side of (23) becomes

N,

T
zzw;ntrg(ztr?wim) .

t=1r=1

(26)

exp

Defining

Z wmtr (Ztsﬂ wtm ) (27)

(Zt?wtm)

where z, represents all the measurements m scan f, (23)
simplifies to
p(Gm:Xm) = GQM(XM’X;") =

T -
Iz, e
t=1
DRVIEAERTIER

8,0, (T)

(28)

X

?

where ¢, 1s an appropriate normalization constant and

G, = {22}, (29)

(28) 1s a fairly general form of the observed data PDF for a
jump Markov process where the measurement or output
distribution is not switched.

Multiple Model Smoothers—The objective now 1s to find the
sequence of target state vectors that maximize (28) to obtain
the MAP estimate. Alternatively, as suggested and explored
with the IMM PMHT algorithm [6-8] for linear Gaussian
models with Markov chain target model assignments, a
multiple model smoothing algorithm [14, 15] can be used to
obtain approximate estimates of the target states for the
Jump Markov PMHT. The IMM PMHT algorithm uses an
IMM smoother [14, 15] to compute the target state

estimates. More generally, one could defined and use the
GPB(n) PMHT algorithm by using a higher order
generalized pseudo-Bayesian (GPB) smoother [14, 15] to
estimate the target state vectors. However, multiple
smoothing algorithms are approximations to the posterior
minimum mean square estimator and not the MAP estimator
[14-16]. Because (28) is multi-model, the posterior
minimum mean square estimates will not equal the MAP
estimates, and therefore, using a multiple model smoothing
algorithm will not maximize (28). In the early iterations of
the PMHT algorithm using a multiple model smoothing
algorithm will cause the observed data likelihood function
(19) to increase but at some point this monotone ascent will
stop because the posterior mean square error estimate does
not find the mode of a multi-model posterior distribution.
Comparative performance results for linear Gaussian
models in [6-8] show that an IMM smoothing algorithm
does not perform as well as MAP methods.

MAP Estimates—An EM algorithm can be used to solve the
optimization problem in (28) where the discrete target
model switching variables are the missing information. To
obtain the MAP estimates of the target states using an EM
algorithm, the complete data distribution is given by

PG, X,,,5,) =

m? T m

Clmp(mlm ‘Slm)p(slm) (30)

T
o o5
XHctme p mtm :Et—lwwstm p Stm ?

=2

when the model assignments are independent (from (10) and
(28)), or by

p(G,X .8 )=

m?” m! Tm

Elme (zl,mlm)p(wlm|slm)p(slm) (31)

T .
x Hamg(zwwMJ ( ﬁm| —1lm? Sﬁm)p(sﬁm|5ﬁflm)
=2

when the model assignment evolve via a Markov chain
(from (11) and (28)). Dividing (30) or (31) by (28) and
using (15) or (18) for the unconditional target state
distribution gives

(G Xm,Sm)
S 16 X = 7 " =/
Mfoﬂ(%%fﬁ @”
7pXmSmpSm B
BERRTE S R S L

as the expression for the posterior distribution of the discrete
target model assignment variables conditioned on the
measurements and the target’s state where the expression in

(15) 1s used for p (Xm ),



’meg- _ Jp(wﬁm |wﬁ71m78ﬁm)p(8ﬁm = j) :(33)

Zp(:""ﬁm ‘ :"wﬁflm?sﬁm )p(sﬁm = 5)
=1

for 2 < ¢t < T,and

Tty = f(wlmsm)p(slm L), (34)

;p(wlm‘%m)p(sm = l)

for the first time update. These last two expressions follow
directly from (11) and (15) for the mixed-model PMHT, but
the validity of (33) and (34) for the jump Markov PMHT is
less obvious. The forward-backward (Baum-Welch)
algorithm [4, 11] provides a straightforward method to
evaluate the expressions in the numerators in (33) and (34)
for Markov model assignments. Using the definition of

a, from (16) and (17),

2

and defining the backward

probability as
By =
4 (35)
Z:p(ﬂ”.ﬁ+lm ‘mﬁmJE)p(z‘Sﬁm )ﬂmﬁ+157
=1
where Brg = 1 then (33) becomes
O5m I’Gm i
Yoty = (36)

Z amtl mil
=1

With this in hand and using (30) through (36), the auxiliary
function equals

Q. (X, X )=C +

e

[]=

g(zﬁwﬁm) =+
1

.
1

!

Vot log[ (:Ulm‘j)]—o— (37

ML.

T

zg o8l o103

=2

for both the mixed-model and the jump Markov PMHT
where ém contains all the terms independent of the target
state vectors. The target state estimates are obtained by
maximizing Qm with respect to X, which is solved using a

dynamic program (Viterbi algorithm). The exact form of
the solution depends on the particular distributions on the
measurements and the target states. The solution for linear
Gaussian targets 1s given in Section 5.

Joint Algorithm

In this algorithm both the discrete measurement to target
assignment variables and the discrete target to model
assignment variables are treated as missing information.
The complete data likelihood function is given in (6), and
the observed data likelihood function equals the product of
(12) and (18). Since these two sets of missing information
are statistically independent, the PDF of the missing
information conditioned on the measurements and a
previous estimate of the target states is a product of two
terms:

p(K,8|%,X)
_ (7] X’f()zp\(x}{)iap((xx)w)p(s) (38)
= (K|, X)p(s[x).

The auxiliary function is then defined as

> log|p(Z|X, K )p(K)p(K|2,X') (39)

i

+ 2 )10g{P(X\S)p(S)lp(S\X’)-

The PDF of the discrete measurement to target assignment

variables conditioned on the measurements and a priori
estimate of the target states equals

T M N,
p(K|ZX) =111 1lwme- (40
t=1m=1r=1
where w, .. 1s defined in (22). The PDF of the discrete

target model assignment variables 1s given in (32). The
auxihary function is obtained by substituting (40) and (32)
into (39) and simplifying. The resulting auxiliary function
has the same form as (20), but in this case

J
Z’Y:ﬂlj log[p(:&lm‘j” +
j=1

r ., _ (41)
szmtjIOg[p(mtm‘mt—lmJH+
t= 2j 1
t
ZZw;trlog{ (zw‘“"tmv )L
t=1r=1

which 1s the same as the auxiliary function from [5].
Because the auxihary separates into a sum over functions
for each target, the maximization problem can be solved
separately for each target. Assuming (25) holds and using
the definition from (27), the auxiliary function, (41), for a
target simplifies to the expression given in (37) which



shows that the nested and joint algorithms are nearly
identical. The difference 1s that, in principle, the nested
algorithim iteratively maximizes (37) before updating the
data association (i.e. recomputing (22) and (27)).

5. LINEAR GAUSSIAN TARGETS

Linear Gaussian targets are an interesting and commonly
used special case that results in a closed form solution for
the target state estimates. This estimator turns out to be a
Kalman smoother. This is demonstrated in [5-8] and [9]
when the target model assignment variables have a discrete
Markov chain distribution and only the process noise
covariance matrices are switched or a control input is
switched respectively. However, it will be shown in this
section that a Kalman smoother can obtain the target state
estimates under more general conditions for the mixed-
model PMHT and the jump Markov PMHT. In particular,
the switched process noise model from [5-8] will be shown
to be a special case.

For linear Gaussian targets, the measurement PDF for each
target equals

p(ztr‘wtm7kt"‘) - N(Zi?";BtmwtmiRim)i (42)

where N(o) represents the Normal density (Gaussian
PDF). Hence,

g ( ztr ? mtm ) = (43)
1
- §(Zﬁr - Bﬁrwﬁm )t R;ni (zﬁr - Bﬁrwﬁm )

Substituting (43) into (27) gives

-a(zﬁwﬁm) =

1% (44)
o 5 Z w:ntr (zrt o Btmmtm )ﬁRtTn: (zrt o Btmﬂ;tm )
r=1

The target state density for each target and each model 1s
given by

p(mtm ‘mt—1m78tm) =

: (45)
N ( By Ay 117> Qi )5[3 = S ]

and

p(wlm ‘Slm) = (46)
N(wlm’fmwpﬂmj)&[-j - Slm]

where § H denotes the Kronecker delta function. Taking
the natural logarithm of (45) and (46) and substituting the

result into (37) along with the expression for §(zt,mtm)

from (44) and simplifying the measurement term yields

Qn(Xm?‘X:m) - ém o

T
- ‘Bﬁmwﬁm )i@;i (Eﬁm - Bém:vﬁm) -

2 15,

i=l

T g
ZZV;W ( T, — Awﬁﬁilm)ﬁ % ( z, — Awwmm) _

=25=1

J
Z;%Iw'(%m _%)ﬁ Ptﬂig(%m —%),

(47)

where the terms that do not involve the target state vectors
have been absorbed into é‘m and the “synthetic” or perhaps

more appropriately the expected measurement and
measurement covariance equal

Ny
’zﬁm - Zwv’;ﬂrzﬁr (48)
r=1
and
o~ N¢
By = | 22 e | B (49)

r=1

respectively. These last two equations perform the data
association and generate the sequence of expected
measurements and their covariance matrices for each target.
By Theorem 4.1 from [17], {(47) is maximized with respect
to the target state vectors by the Kalman smoother given in
Algorithm 1T from [17]. Unfortunately, [17] failed to
discuss whether or not or prove that the effective process
noise nformation matrices (inverse effective process
covariance matrices) are positive definite.  The Kalman
smoother requires that these matrices be positive definite.
This oversight on the part of the authors of [17] 1s addressed
in the following paragraphs.

Theorem 4.1 from [17] states that an equivalent form of (47)
18

T

Z(Ztm o Btmmtm )ﬁRt:nl (Etm o Btmﬂ’;tm) o

) ﬁ ) (50)
Z(mtm o Atmﬂ’;t—lm) St_wi (:Etm o A z ) o

tm ™ t—1m
$
~ _1 ~
(ﬂ”.lm o mm) Slm (mlm o mm)ﬂ

where ém 1s the sum of all the terms that do not involve the

target state vectors,



J
i=1
R J
By = Z ’ytrij O;zlj7 (52)
=1
sl=x 4+ B (53)
Siot = Tt + i (59)
~ J
Q{nzl - szijﬁ;%l': (55)
=1
-1
Etm -
d . . (56)
/ -1 -1
Z7tmjAfijtmjAtmj - Attm‘gtm A
=1
Yriim = 0, (57)
and
~ J
TP
A, = StmzfytijtmjAtmj' (58)
=1

The matrices {S;nl} represent the effective process noise

information matrices, and because each E;& 15 the

difference of two positive definite terms it is not obvious
that each effective process noise information matrix is
positive defimite (this is the problem with Theorem 4.1 from

[17]).

To prove that the effective process noise covariance
matrices are positive definite, it suffices to prove that E;ﬂi
is positive semi-definite for 2 < ¢ < T 4+ 1. The matrix

E;ﬂlﬁ 1s positive semi-definite 1f and only 1f

y'Sly > 0 (59)
forall y. Let
b
H,, = nytlmjAfij;mletmj' (60)
=1
Because H,  Is positive definite for all £ it suffices to

show that the maximum value of the constrained
optimization problem

max {4 4} S;1A, y} <1 (61)
v
subject to the constraint
y'H, y=1 (62)

forall ¢. To simplify the notation, let

y, = A (63)

2

and
0
Gj = 'ththmj- (64)

The Lagrangian corresponding to the optimization problem
is defined as

L(yl,...,yJ) =
b f 7
-1
DG | S | 2.0, (63)
=1 =1
J
b
= A DouiG |
=1
The solution for each Y; is given by
y, = A7, (66)
where
A =8, Q1S v (67)
and
J
v="> Gy, (68)
i=1
The maximum value of (61) 1s then
fvtSth;ml Stht:nl Stmv ] (69)
fvtStm Qt:nl Stmv

Note that {66) requires all Y, and hence, all Atmj to be the

same 1n order for the maximum value to be attained. Let
0= QS (70)

where @ﬁ—}{ is a symmetric square root matrix of @;ﬂl, then

Y



(69) becomes (using (54)) the Rayleigh quotient

- - -1
wt |G s j,g+f u

tm T i+1lm

: 7
oo

By the Rayleigh principle, (71) achieves its maximum value
when « 1is the eigenvector corresponding to the largest

If 27!

1$
t+1lm
positive semi-definite, then the maximum value of (71) 1s
less than or equal to one. For { = T, this holds because of

eigenvalue of the matrix in the numerator.

(57); hence, E}fn and anll are positive semi-definite and

positive definite, respectively. At ¢ = T — 1, since E;; is
positive semi-definite, the maximum wvalue of (71) is less
than or equal to one. Consequently, Z}l_lm and Sfim are
positive semi-definite and positive definite respectively.
The remaining E;ﬂi and Stfml are positive semi-definite and

positive definite by induction.

To relate this result to the process noise inflation model
given in [5-8], consider the case where a target’s state
feedback matrices at each time update are all equal:

Ay = Ay, (72)

for all 1 < 7 < J. This requirement on the state feedback

matrices is the same as the process noise inflation model
described in [5-8]. This happens because the maximum
value of the optimization problem given in (61) and (62) is
attained at each time update (this follows from (66)), and

=q,  for
all ¢, To demonstrate this, note that (56) simplifies to

therefore, ;! equals the zero matrix and S,
e

for each ¢. For ¢t = T, from (54) 8, = QTm due to (57),
S0 E%fn equals the zero matrix and S, , = QT_lm.

Therefore, at time ¢ = T — 1, '

matrix. Now consider some time 2 <¢t< T —1 and

also equals the zero

assume X!

i i1 ©quals the zero matrix, then 5, = @, and

by (73) E;ﬂi equals the zero matrix. Hence, by induction,

Zgﬂ} equals the zero matrix and S, = th for all
2<t< T+ 1.

6. SUMMARY

In this paper, the problem of incorporating multiple target
models into the PMHT algorithm has been discussed. The
discrete random variables that determine which target
motion model is in use at each time update are modeled by a
discrete Markov process or treated as statistically
independent and results in two variants of the PMHT
algorithm called the jump Markov and the mixed-model
PMHT. The label jump Markov PMHT 1s used in place of
the previous name multiple-model PMHT to more
accurately reflect the statistical assumptions on the discrete
model assignment random variable and clearly distinguish
the jump Markov PMHT from the mixed-model PMHT.
The name mixed-model PMHT reflects the fact that
statistically independent discrete model assignment
variables result in a finite mixture distribution over the
target motion models. The observed data likelihood
function and a method for computing it are given for both
the mixed-model PMHT, the jump Markov PMHT and
MM PMHT.

Two closely related methods for estimating the target state
vector sequences for the jump Markov PMHT and the
mixed-model PMHT are presented. The first method is a
nested algorithm that is very similar to the original PMHT
algorithm in that the associated data for each target is passed
to a separate algorithm that computes the MAP target state
estimates for each target (a bank of Kalman smoothers for
linear Gaussian targets). While multiple model smoothing
algorithms from [12, 13] can be used to obtain approximate
target state estimates for the jump Markov PMHT (the IMM
PMHT is a particular version of this), the observed data
likelihood function for the jump Markov PMHT will not be
maximized because these multiple model smoothing
algorithms minimize the posterior minimum mean square
error rather than find the MAPF estimate. IHence, a MAP
estimation algorithm for the target states is derived for both
the jump Markov PMHT and the mixed-model PMHT using
an EM algorithm where the discrete target model
assignment variables are treated as missing information.
The second method for estimating the target state vector
sequences modifies the PMHT algorithm so that the discrete
measurement to target and the discrete target to motion
model assignment variables are treated as missing
information jointly as in [5-9]. In this joint approach, data
association and target motion model association are
performed during each iteration of the algorithm, where as
in the nested (first) approach, for each iteration of the
PMHT algorithm (data association), multiple iterations of
the MAP target state estimator can be performed (target
motion model association). Fmally, it 1s shown that for
linear Gaussian targets, the MAP target state estimates
obtained by the jump Markov PMHT and the mixed-model
PMHT can be computed using a Kalman smoother.
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