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Abstract In this work, a control law for an unstable, non- 1. HSV MODEL
minimum phase model of a hypersonic vehicle is developed. The model to be controlled in this case is given by
The control problem is difficult due to the locations of the
plant poles and zeros. For an unstable system, feedback is x = Ax+Bu
required to stabilize the plant. However, one cannot make the y=Cx+Du (I)
loop gains arbitrarily large without driving one or more ofthe
closed-loop poles into the right-half of the s-plane, since the where A C RI... B E IRnx?n C e RPxnI, D C RPxm, and
system is nonminimum phase. Thus, there is a limited range n 9, m = p = 2. The model outputs are velocity (ft/sec)
of feedback gain that results in a stable system. The nonmin- and flight path angle (deg), while the inputs are elevator de-
imum phase behavior also places restrictions on the closed- flection (deg) and temperature addition in the combustor (deg
loop bandwidth. For the hypersonic vehicle control problem, R). More specifically, the state-space matrices, derived from
low frequency control is desired and a rule ofthumb is that the a nonlinear model [1], are
closed-loop bandwidth must be less than one-half the right-
halfplane zero location. A right-halfplane zero located in the
region of the desired gain-crossover frequency makes it im-
possible to achieve the desired level of tracking performance. A [ Al A2 ] (2)
The achievable closed-loop bandwidth might be so small that where
adequate control of the system is not achieved. Direct can-
cellation of the right-half plane zero with an unstable pole - -4.8e4 2.05 0 -5.le-6 -32.17 -
in the controller is not an option. In this work, a modified -5.8e7 -.077 1 1.9e 7 0-1.29e-5 .07 0 2.39e-6 0
dynamic inversion controller is developed for a linear, time- 0 -7846.36 0 0 7846.36
invariant model of a hypersonic vehicle. This modified dy- A1 0 0 1 0 0 (3)
namic inversion controller differs from the standard dynamic .068 7368.3 0 059 0
inversion approach in that it does not attempt to cancel the o 0 0 0 0
right-half plane zero with a pole, instead, it retains right-half L -.076 -5668.22 0 .018 0
plane zeros in the closed-loop transfer functions and uses an
additional feedback loop to stabilize the zero dynamics.
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In this case, CiB t O, i 1, 2, so there is no need to take any

c[ I 0 0o o o o o o more derivatives ofthe output. Now, the system dynamics are
-Lo -1 0 0 1 0 0 0 0 (6) givenby

=CAx+CBu (13)

D [ ° ° ] (7) In order to decouple the controlled variables, the matrix CB
The state vector is must be right invertible. If this is the case, then

xl::: [ V a Q h 0} ri31f 1/f 1a1o a T (8) u = (CB)-(ydes CAx) (14)

where V denotes velocity or true airspeed, a denotes the an- where Ydes is a vector of pseudo-controls. In this case,
gle of attack, q denotes the pitch rate, h is the altitude, 0 is
the pitch attitude, and the last four states represent tempo- Ydes [ tdes (15)
ral modal coordinates that describe the first bending mode of L des
the fore and aft fuselage. The outputs of the model that we where Vt is the vehicle's velocity and - is the flight path an-
wish to control are the velocity V and the flight path angle gle. Applying the vector u in Eq. 14 to the output and state

0= 0 a-. The idea in this work is to use a dynamic inver- dynamics equations produces
sion type scheme to control the plant and provide a desired re-
sponse. Unfortunately, this plant is nonminimum phase, with y CAx+CBu = CAx + (CB) (CB-1) (Ydes - CAx)
poles and transmission zeros at the following locations: (16)

Ydes

-0.32 ±j16.94l so that the controlled variables follow exactly the pseudo-
-.2±j169 controls and

Poles -1i0.90322 (9 Ax+Bu = Ax + B (CB-1) (Ydes - CAx)
-5.6e-4 }-

3.88 ± jO.041 = (A - B (CB)-' CA) x + B (CB-1) Ydes (17)
= Axx + B (CB-')Ydes

0
1.949 ] where

Zeros{ -1.948 (10) Ax=A-B(CB)- CA (18)
-0.391 ± j19.58 As it turns out, the eigenvalues of Ax are the poles of the zero
-0.321 ± j16.95 dynamics and are identically equal to the zeros ofthe original

Hence, dynamic inversion [2] (DI) is not an option due to the system (see Eq. 10). So, the state dynamics are determined
right-half plane zero. This is because DI will try to cancel by the inverse state space system
plant zeros, thus resulting in a right-half plane pole in the x = Axx + B (CB-1) v 19
closed-loop system. Fortunately, a DI type scheme can be x=Ix+Ov ( )
used to circumvent this issue. Dynamic extension [3] retains
the nonminimum phase zero (does not try to cancel it with an Let S be a matrix of left eigenvectors ofAx. Then, Eq. 19 can
unstable pole), yet still has the desirable trait of decoupling be transformed into the following Jordan form
the system. The following describes the development of a
dynamic extension algorithm for the system described above. A + SB (CB1) v (20)

2. DYNAMIC EXTENSION where A = SAxS-l. The states in Eq. 20 are related to the
original states through the transformation ( Sx.

Consider the system described in Eq. 1. The vector y is a set
of controlled variables (CVs). Dynamic inversion is used to The transmission zeros, of a linear system with realization
decouple the system and produce desired responses from the {A, B, C}, are defined as the values of (, the vectors zI, WI,
CVs. To begin the development of the controller, consider the input zero directions or zo, wo, the output zero directions
each CV: that satisfy

YiCix+Diu,i 1,2 (11) [(ct-A) -B]l(21)
Since each Di, i =1, 2 is a row ofzeros (see Eq. 7), the input L CA CB0(1
does not explicitly show in the output equation. To obtain an or
equation with the input, differentiate y to obtain

yi = i ix+CB (12) [ o0 ° i [ CA CB j] (22)
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From the output zero case, solve for zo to get

-zoB + wo (CB-1) = 0 (23) Standard Dynamic Inversion
Solving for wo yields

wo = zoB (CB-1) (24)

Substituting Eq. 24 into the first output equation in Eq. 22 YdE + . xA B
yields

zo (CI- A) + woCA zo ((I - A + B (CB-') CA) (25)

Hence, the transmission zeros are the eigenvalues of the ma-
trix (A - B (CB-1) CA), which is identically equal to the
matrix Ax defined in Eq. 18. This result shows that the trans-
mission zeros of the original system are poles of the zero dy- Figure 1. Standard Dynamic Inversion.
namics ofthe dynamic inversion. Thus, if the original system
is nonminimum phase, then applying standard dynamic inver-
sion will result in zero dynamics with right half plane poles.
In order to obtain stable zero dynamics, the desired dynamics Note that ki is selected so that ((i + woil2ki) < 0. Substitut-
of the CVs must be modified. This requirement is due to the ing this result into Eq. 28, the new pseudo-control becomes
nonminimum phase behavior of the original system. Addi- RHP
tionally, the vectors zo are the eigenvectors of AX. Gathering V2 =des + ki W0 2)des
all these eigenvectors into a matrix, ZO, it is seen that Zo is a s - ((i + wRHP2kf) (31)
matrix of left eigenvectors ofAx. Hence, ZO = S. Then, from s - (i
Eq. 24, s +WR

WO = ZoB (CB-') = SB (CB-') (26) ( P2 ki) es

With perfect inversion, v1 = Vt and v2 = . Thus,
3. MODIFIED DYNAMIC INVERSION 1 l

CONTROLLER L a
Case] [ 1 0 1 ~~~~~~~~~~~~~~~~1(32)Case I

S
0O 1 s (i 1[ Vtdes ]

Suppose that one transmission zero, (j, is in the right-half [ S S-((±+WRHP2ki) ides
plane and would thus result in unstable zero dynamics. With-

outlos ofgeeraity sppoe tat heoutut er diecton So, as desired, the system is now decoupled, however, theistgiven byeelt,upstath right-half plane zero is still present. This is unavoidable foriS given by a nonminimum phase plant. Figure 1 shows a standard dy-

RHP P 0 (27) namic inversion controller,while Figure2 shows the modifi-
cations necessary to implement the modified dynamic inver-

This means that only pseudo-input 2 excites the unstable sion control law. Note that both Figures 1 and 2 are drawn
zero state (the state corresponding to the nonminimum phase assuming that the D matrix in Eq. 1 is identically zero and
zero). Hence, select Ides2 to include a stabilizing term, from that the matrix CB, Eq. 12, is nonzero and invertible. A slight
the unstable zero state (tRHP), such that modification must be made if these conditions are not met.

V2 = Ydes + kjfRHP (28) Case 2

In Jordan form, the dynamics of the unstable zero state be- Again, suppose that one transmission zero, (j, is in the right-
come half plane and would thus result in unstable zero dynamics.

Now, let the output zero direction be given by
RHP = (,WHP+ WRHP ]vlHP [ RHP RHP (33)

=((RH +Ovl+ ORH20 In this case, multiple pseudo-inputs excite the bad zero state
= (tH + w0RHP2 (i/des + kit(HP) (the state corresponding to the nonminimum phase zero).

In order to stabilize the system, select one pseudo-input to
Thus, stabilize the state associated with the right-half plane zero

HPP R(tRHP) Hence, let

,yRHP ~~~- V2wo w 1w2 ...es {3 (33

(,9~R s- (h + wRHP2k_) (30) =i Ydes + kitRHP (34)



Substituting Eq. 38 into Eq. 35 produces

Modified Dynamic Inversion vl 1
(RHP = (tRHP + WRHP |2 |

y ~~~~~~~~~VP]
L'k. + v+ u ==Ax+Bu -RHP RHP

lU +WoRHPV2+ 'RPH+WPRHP0 (CBY x (i~~ +W0 1V +0 2 Vp

+T - | . =Di RHP + wRHP HP
* + wR Vj 1+

RHP (. + R~HP + ~qjjyde +

Wo i |Ydesi +ki&H P+ (i +

diag(O,.. .,O,k,,O,...,O)SX RHP RH0Pwo i±ivi±l +.' '+wo PvP
(39)

Figure 2. Modified Dynamic Inversion. Solving for (RHP in Eq. 39 and substituting this result into
Eq. 38 gives

Vi = Ydesi+

Then, from the form ofwoHP given in Eq. 33, the dynamics Y +W0 + W0 Yd.' 1
of the bad zero state become (i s +wRHP, i)

+ 1: qjjydesj
V2 jlj:Ai~~~~~~~~~~~~~~~~+ &(j

tRHP = aRHP +wRHP (

VP Grouping like terms and simplifying Eq. 40 gives
=(tHP + WRHP V + RHP

V2 + RHP+W P (

(,0H + RHP V, +wRHP Vi1+WRHP=+ +i-1 P i s- ( +wRHP iki)
(idesj + kjRHP) + wo i+vil + + w RHP + s-0i . 3 (41)

(35) Ej,j:Ai 0iVW S+(i 2ds

S- ((i + wR HPki)
Solving fortRHP yields For complete decoupling, the second set of terms in Eq. 41

must be identically zero. Using this constraint and solving

RHP pl + P2 + WRHP Yd for vj gives(HP s- ~~~0(36) - (s - 0j qjjydesj42s h+to ii s +wi iSRHP ki (42)0 i vj ~~~~~~~~(s+ (j) kiWR?HP
where p1 = wRHP , + + wRHPivi-i and P2 = Letting
WoRHP i+lv+l + + WORHPp Substituting Eq. 36 into q P (43
Eq. 34 and simplifying yields produces

V= (S-(i) 'desj (44)

(S-(i)Qdesi + Pl + P2
s- (hi + w+ P ki) s - (h + wHP kik) As before, with perfect inversion, v1 = Vt and v2 ..Then,

(37) in this case, the expression between the desired and actual
Thus, exact decoupling is not achieved. In order to achieve controlled variables becomes (Eq. 45)
decoupling, it is necessary to add another term to cancel the
effectsofvk,k =1,2, ,p: k 7z4p. Hence, modifyEq. 34
to the following:

So, as desired, the system is now decoupled, however, the
vi=Ydesi + kit(HP + E UJIS (38) right-half plane zero is still present. This is the penalty for a

, 3+A t nonminimum phase plant.
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v -(s- 0 0 0 .0. 0- Ydesi
V2 (s-() ±eSo o 0 0 ... 0Yds

(s±(i)

Thj . . . . . Ydes~~~~~~~~~~~~~~~~~ (4

0 ... 0 0-C~ ... o
0 0 s( ±wiHP~k 0

VP L 0 0 0 0 .. 0 (s±(i) - des~

4. RESULTS Actual and Waal~Responses

For the system described by Eqs. 1- 7, one zero is located in 80K t __
the RHP (see Eq. 10). In this case, wo associated with the .--- ---- -----i-----..-.-.-._.___

nonminimum phase zero is 40 L-- -i-\-I-- ----l

Woi [-0.000844 18.866
] (46)

: I i I
Actual 4 50 100 150 200 250 300 350 400 450 500

For an initial design, assume that

woi = 0 18.866 ][0 18.866] (47) X_

so that case I applies. Thus, it can be seen that only the E-''
pseudo-input associated with the flight path angle, , affects O ..l-----
the bad zero state. Let 0 1 250

-
50 100 156 ,5 250 300 350 400 460 500

V Y= Ydesi = Vtdes Actual Timrne sec)

V2 = deS2 + k(RHP = des + kfdes (48)
Figure 3. Velocity and Flight Path Angle vs. Time - Case 1.

Then,
RHP = ARHP RHP + 18.866v2

ARHP RHP + 18.866 (ides + k( HP)

Solving for RHP yields With perfect inversion, the following closed-loop system is
obtained

(HP - 18.866
s -(1.949 + 18.866k)~ds (0

vt ~~~0iFVtdes1and V [j= s 1.949 ides (54)
L /2 L °~s(s+1.949) j des

V2 = Ydes + kH

18.866 0
=~~des{1949 + (51

ides +k( - { 1.949 + 18.866k des (51) Figures 3 and 4 show the velocity and flight path angle re-

8 -1.949 sponses along with the ideal response found using Eq. 54 and
18=866k} ides the control deflection time histories. A small amount of error

exists and this is directly related to the assumption in Eq. 47.
Selecting k in Eq. 52 to yield an all-pass filter, k --0.20667
yields It should be pointed out that prefilters were wrapped around

(s-1.949 .d the inversion controller. For the velocity channel, a simple
s + 1.949 /des proportional-integral prefilter was used, while for the flight

path angle channel, a proportional-integral-derivative prefilter
Note that aright-hal ane ze seto effe onfth - was used. The prefilters were the same for the simulation runs
tem, the first a magnitude and the second a phase. Unfortu- of cases 1 and 2.
nately, the phase effects cannot be altered with this technique,
however, the magnitude effects can be eliminated by choos-

.-- .-._---1' A____1 Now, relax the assumption in Eq. 47 SO that case 2 applies.ing k so that an all-pass filter iS obtained. Thus, the pole has No,rlxteasmto nE.4 ota ae2apis
been~~~~~~~ ~~plceattemro.aottej xs oaini h Using Eqs. 42, 43, and 44 and selecting v2 to stabilize the

left-half of the s-plane. Now, the pseudo-input relationship bazeosteyld
becomes

v [ v ] =[10 I-94 [ ajs 1 (53) V2 = Ydes2 + 1&7RHP = vd + kg$RHP + q21 Vld(55)l
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Actual and Wdaal Responses
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Figure 4. Control Deflections vs. Time - Case 1. Figure ~~~O5. Veoct.ad.lgh.PtAngle.vs....Tim..Cas. 2

Selecting~~~~~~~~21 kw --------gives--
< Em~~~3

T(rHP +tt Tirnek) sede

Now,utepseudo-nptroreflactionshi becoTmes 0ae1 00gu100 100cit 200200gh 300h 300l 400 400e 000s2

0~~~~~~~~~~~~~~~~~~~~~0

s~ARHP s~ARH +AHVtdes (7

s~~~(ARHP±w~~~~~~~~~H 2)56 1 --[----Fiur 0-1---00 200 300 ---0400 400-000RHP~ ~ ~ ~ 00~ -- --- ---- ------

s+RH 0AH iFW(58)
[ HEIP jL ~~~7dek
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