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Abstract— In this work, a control law for an unstable, non-
minimum phase model of a hypersonic vehicle is developed.
The control problem is difficult due to the locations of the
plant poles and zeros. For an unstable system, feedback is
required to stabilize the plant. However, one cannot make the
loop gains arbitrarily large without driving one or more of the
closed-loop poles into the right-half of the s-plane, since the
system is nonminimum phase. Thus, there is a limited range
of feedback gain that results in a stable system. The nonmin-
imum phase behavior also places restrictions on the closed-
loop bandwidth. For the hypersonic vehicle control problem,
low frequency control is desired and a rule of thumb is that the
closed-loop bandwidth must be less than one-half the right-
half plane zero location. A right-half plane zero located in the
region of the desired gain-crossover frequency makes it im-
possible to achieve the desired level of tracking performance.
The achievable closed-loop bandwidth might be so small that
adequate control of the system is not achieved. Direct can-
cellation of the right-half plane zero with an unstable pole
in the controller is not an option. In this work, a modified
dynamic inversion controller is developed for a linear, time-
invariant model of a hypersonic vehicle. This modified dy-
namic inversion controller differs from the standard dynamic
inversion approach in that it does not attempt to cancel the
right-half plane zero with a pole, instead, it retains right-half
plane zeros in the closed-loop transfer functions and uses an
additional feedback loop to stabilize the zero dynamics.
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1. HSYV MODEL

The model to be controlled in this case is given by

x = Ax+Bu
y=Cx+Du @

where A € R™", B € R™*™, C € RF™, D € RP*™, and
n =9, m = p = 2. The model outputs are velocity (ft/sec)
and flight path angle (deg), while the inputs are elevator de-
flection (deg) and temperature addition in the combustor (deg
R). More specifically, the state-space matrices, derived from
a nonlinear model [1], are
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The state vector is
. . 4T
x=[V a Q h 0 n 9y N 7] ®)

where V' denotes velocity or true airspeed, o denotes the an-
gle of attack, g denotes the pitch rate, 4 is the altitude, 6 is
the pitch attitude, and the last four states represent tempo-
ral modal coordinates that describe the first bending mode of
the fore and aft fuselage. The outputs of the model that we
wish to control are the velocity V' and the flight path angle
v = 6 — «. The idea in this work is to use a dynamic inver-
sion type scheme to control the plant and provide a desired re-
sponse. Unfortunately, this plant is nonminimum phase, with
poles and transmission zeros at the following locations:

—0.39 4+ 520.03
—0.324+ 716.94
—1.0035
Poles = 0.9392 9
—5.6e 4

—3.88+50.041

0
1.949
—1.948 (10)
—0.391 + 519.58
—0.321 + 516.95

Zeros —

Hence, dynamic inversion [2] (DI) is not an option due to the
right-half plane zero. This is because DI will try to cancel
plant zeros, thus resulting in a right-half plane pole in the
closed-loop system. Fortunately, a DI type scheme can be
used to circumvent this issue. Dynamic extension [3] retains
the nonminimum phase zero (does not try to cancel it with an
unstable pole), yet still has the desirable trait of decoupling
the system. The following describes the development of a
dynamic extension algorithm for the system described above.

2. DYNAMIC EXTENSION

Consider the system described in Eq. 1. The vector y is a sct
of controlled variables (CVs). Dynamic inversion is used to
decouple the system and produce desired responses from the
CVs. To begin the development of the controller, consider
each CV:

y; = Cix + Dyu,i = 1,2 (11)

Since each D;, : = 1, 2 is a row of zeros (see Eq. 7), the input
does not explicitly show in the output equation. To obtain an
equation with the input, differentiate v to obtain

j; = Cii — C;Ax + C;Bu (12)

In this case, C;B £ 0, i = 1, 2, so there is no need to take any
more derivatives of the output. Now, the system dynamics are
given by

X — Ax+Bu
§ — CAx+CBu (13)

In order to decouple the controlled variables, the matrix CB
must be right invertible. If this is the case, then

u=(CB) ' (y;, — CAx) (14)

where y,;.. is a vector of pseudo-controls. In this case,

(15

where V; is the vehicle’s velocity and +y is the flight path an-

gle. Applying the vector » in Eq. 14 to the output and state

dynamics equations produces

¥ = CAx+CBu = CAx + (CB) (CB ') (y,., — CAXx) 16)
- yd@s

so that the controlled variables follow exactly the pseudo-

controls and

X = Ax+Bu = Ax + B (CB ') (¥,., — CAx)
- (A-B(CB)*CA) x+B(CB Yy, (7
=A"x+B(CB ')y,
where
A" —A-B(CB) 'CA (18)

As it turns out, the cigenvalues of A” are the poles of the zero
dynamics and are identically equal to the zeros of the original
system (see Eq. 10). So, the state dynamics are determined
by the inverse state space system

X=A+B(CB ')v

x=IxHv (19)

Let S be a matrix of left eigenvectors of A*. Then, Eq. 19 can
be transformed into the following Jordan form

£=A&+SB(CB Y)v (20)

where A = SA”S™!. The states in Eq. 20 are related to the
original states through the transformation & = Sx.

The transmission zeros, of a linear system with realization
{A, B, C}, are defined as the values of ¢, the vectors z;, wy,
the input zero directions or z o, wo, the output zero directions
that satisfy

el w

or

[ Zo Wo ] { (CIC;A) (_jg } =0 (22)



From the output zero case, solve for z to get
~zoB+wo (CB™') =0 (23)
Solving for wg yields
wo =27oB (CB 1) 24)

Substituting Eq. 24 into the first output equation in Eq. 22
yields

70 (C1-A) + woCA =7, (CI-A + B(CB ') CA)

o 25

Hence, the transmission zeros are the eigenvalues of the ma-
trix (A —B (CB ') CA), which is identically equal to the
matrix A” defined in Eq. 18. This result shows that the trans-
mission zeros of the original system are poles of the zero dy-
namics of the dynamic inversion. Thus, if the original system
is nonminimum phase, then applying standard dynamic inver-
sion will result in zero dynamics with right half plane poles.
In order to obtain stable zero dynamics, the desired dynamics
of the CVs must be modified. This requirement is due to the
nonminimum phase behavior of the original system. Addi-
tionally, the vectors zo are the eigenvectors of A”. Gathering
all these eigenvectors into a matrix, Zg, it is seen that Zg is a
matrix of left eigenvectors of A*. Hence, Zy = S. Then, from
Eq. 24,

Wy =ZoB(CB ') = SB(CB ') (26)

3. MODIFIED DYNAMIC INVERSION
CONTROLLER

Case 1

Suppose that one transmission zero, ¢;, is in the right-half
plane and would thus result in unstable zero dynamics. With-
out loss of generality, suppose that the output zero direction
is given by

wilt? = [0 wit?y ] 27)

This means that only pseudo-input 2 excites the unstable
zero state (the state corresponding to the nonminimum phase
zero). Hence, select ¢4..2 to include a stabilizing term, from
the unstable zero state (€F#HF), such that

V) = Yges + ki THE (28)

In Jordan form, the dynamics of the unstable zero state be-
come

GRHP _ ¢ ¢cRHP 4 W RHFP { v1 }

v
29
— GERHE | vyt wlHE o 29)
- CigRHP + wé%HPQ ('.Ydes + kigRHP)
Thus,
¢RHP _ Wi (g (30)

§— (Ci + wé%HPQki)

Standard Dynamic Inversion
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Figure 1. Standard Dynamic Inversion.

Note that k; is selected so that (¢; + wpi12k:) < 0. Substitut-
ing this result into Eq. 28, the new pseudo-control becomes

RHP
R Wy 2 Vdes
V2 = Ydes + Ifz
§— (Ci + wé%HPQki) G1)
_ $—G .
— - (Q I wé%HPZki) Ydes
With perfect inversion, vq = Vt and vy = . Thus,
BEE
= ¥
Y Y
(32)

_ [ . 0 ] { Vi, }
=19 1 5—G .
s S*(Cz’wLwé%HPQki) Vdes
So, as desired, the system is now decoupled, however, the
right-half plane zero is still present. This is unavoidable for
a nonminimum phase plant. Figure 1 shows a standard dy-
namic inversion controller, while Figure 2 shows the modifi-
cations necessary to implement the modified dynamic inver-
sion control law. Note that both Figures 1 and 2 are drawn
assuming that the D matrix in Eq. 1 is identically zero and
that the matrix CB, Eq. 12, is nonzero and invertible. A slight
modification must be made if these conditions are not met.

Case 2

Again, suppose that one transmission zero, ¢, is in the right-
half plane and would thus result in unstable zero dynamics.
Now, let the output zero direction be given by

RHP RHP RHP RHP
wfHP (33)

Wo = [ wg™ wgtt,
In this case, multiple pseudo-inputs excite the bad zero state
(the state corresponding to the nonminimum phase zero).
In order to stabilize the system, select one pseudo-input to
stabilize the state associated with the right-half plane zero
(€ P Hence, let

Vg = y.desz' + /fszHP (34)
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Figure 2. Modified Dynamic Inversion.

Then, from the form of w22 ¥

of the bad zero state become

given in Eq. 33, the dynamics

U1

‘RHP RHP rup | 2

5 - ng + w; R

Up

RHP RHP RHP RHP
=G¢ +wo o Hwg e gt

RHP RHP RHP RHP
=GE +wyt o wg T, v Fwgt

# (Ges, + ki) + 0l o+ 0l oy
(33
Solving for £ *7 7 yields
£RHP _mn + p2 eré%Hpiydesi (36)

8 — (Cl —+ wé%HPlkl)

where p; = wé%levl + -+ wé%HPFlvi,1 and p, =
wiE vy + -+ wiPE v, Substituting Eq. 36 into
Eq. 34 and simplifying yields

p

s — (3 - C’L) ydesi + ks Pr1+p2
[ 8_(Cl+wé%HPlkl) 7 8_(Cl+wé%HPlkl)
37
Thus, exact decoupling is not achieved. In order to achieve
decoupling, it is necessary to add another term to cancel the
effects of vy, k = 1,2,--- | p: k # p. Hence, modify Eq. 34
to the following:

. i ‘ydesj'
Vi = Ydes; + kifRHP + Z SJJF—C (33
.57 ¢

Substituting Eq. 38 into Eq. 35 produces

U1
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Solving for ¢ #7 ¥ in Eq. 39 and substituting this result into
Eq. 38 gives

Vi = ydesi‘f“
. QijYdes ;
. wé%Hpiydesi + Zj,j;éi (”jwé%HPj + wé%HPi;+—gij)
' §— (Ci + wé%HPi/fi)
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Grouping like terms and simplifying Eq. 40 gives

(8 B Cz) ydesz’
s — (& +wff? k)
25 (ki”jwéij + 212 qijydESj)
s — (& +wlH? k)

V; —

(4D

+

For complete decoupling, the second set of terms in Eq. 41
must be identically zero. Using this constraint and solving
for v; gives

vs — - (8 - Ci)qijydesJ' (42)

J (8+C¢)/€iwé%HPi

Letting
Qig = kiwé%HR 43)

produces
B (8 B Cz) ydesJ'
(s+¢i)

As before, with perfect inversion, v; = V, and vy = 4. Then,
in this case, the expression between the desired and actual
controlled variables becomes (Eq. 45)

44

@j:

So, as desired, the system is now decoupled, however, the
right-half plane zero is still present. This is the penalty for a
nonminimum phase plant.



U1 ro—(s—G) ydes
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4. RESULTS Actual and Ideal Responses

For the system described by Eqs. 1- 7, one zero is located in
the RHP (see Eq. 10). In this case, wy associated with the
nonminimum phase zero is

wo; = [ —0.000844 18.866 ] (46)
For an initial design, assume that
wo; = [0 18866 |~ [0 18.866 | 47

so that case 1 applies. Thus, it can be seen that only the
pseudo-input associated with the flight path angle, -, affects
the bad zero state. Let

v = ydesl ~ ‘/tdes

; ; 48
V2 = Ydess + kgRHP = Ydes + kgd@s ( )
Then,
¢RHP _ \RHP¢RHP 4 8 8660, )
_ )\RHPgRHP T 18.866 (’.Ydes T kgRHP)
Solving for £ * 7 yields
18.866
RHP .
- es 50
$ s — (1.949 + 18.866k) ' (59)
and
vy = '.Ydes + kgRHP
A 4k 18.866 .
e s —[1.949 1 18.866k) ) 1% (51)

B s — 1.949 .
~ \5— {1949t 18866k} ) 1**

Selecting £ in Eq. 52 to yield an all-pass filter, &£ ~ —0.20667
s — 1.949)

yields
2 <s +1.949

Note that a right-half plane zero has two effects on the sys-
tem, the first a magnitude and the second a phase. Unfortu-
nately, the phase effects cannot be altered with this technique,
however, the magnitude effects can be eliminated by choos-
ing k so that an all-pass filter is obtained. Thus, the pole has
been placed at the mirror (about the jw axis) location in the
left-half of the s-plane. Now, the pseudo-input relationship

becomes
{ ; i } {
= s—1.049
0 sT1.040

'.Ydes (52)

(53
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Figure 3. Velocity and Flight Path Angle vs. Time - Case 1.

With perfect inversion, the following closed-loop system is
obtained

Figures 3 and 4 show the velocity and flight path angle re-
sponses along with the ideal response found using Eq. 54 and
the control deflection time histories. A small amount of error
exists and this is directly related to the assumption in Eq. 47.

&)

_ { ; 0
0 s—1.949 Hes

‘./tdes :|
s(s+1.949) )

It should be pointed out that prefilters were wrapped around
the inversion controller. For the velocity channel, a simple
proportional-integral prefilter was used, while for the flight
path angle channel, a proportional-integral-derivative prefilter
was used. The prefilters were the same for the simulation runs
of cases 1 and 2.

Now, relax the assumption in Eq. 47 so that case 2 applies.
Using Eqs. 42, 43, and 44 and selecting v to stabilize the
bad zero state yields

q21 Vides

V2 = Ydes, + KEFHE = Ageq + KERHE 4 —arr 39
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Figure 4. Control Deflections vs. Time - Case 1.

RHP

Selecting g21 = kwy | gives
s — \RHP
vl = 8+)\RHP‘/tdes
o _ \RHP (56)
Uy = es
2 (NEHP o THT Ly Vd
Now, the pseudo-input relationship becomes
)
VvV =
U2
s—ARHP : (57
stARHT 0 ‘/tdes
0 s_\RHP .
s— (ANRHP 1 oIHP Vdes

With perfect inversion, the following closed-loop system is
obtained

v
y*{ V}
1 (s A\RHP

s <s+>\RH] > g
s A\RHP

_ [ Vides }
L 0 1 (W?) J YVdes

Figures 5 and 6 shows the velocity and flight path angle re-
sponses along with the ideal response found using Eq. 58.
Notice that the error between the actual and ideal responses
is much less than that seen in Fig. 4. Again, this is directly
attributable to utilizing the case 2 work.

5. CONCLUSIONS

In this work, a dynamic inversion type controller was devel-
oped for an unstable, nonminimum phase hypersonic vehicle
model. The technique used here allows decoupling of the sys-
tem, in the same way that standard dynamic inversion allows
decoupling. The difference is that the nonminimum phase
zero cannot be cancelled by an unstable pole. Hence, the non-
minimum phase zero is retained in the closed loop and a user
selected gain is used to place the left-half plane pole.
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