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dimensional surface corrections are most often described by for a given Azimuthal Frequency .. 6
a truncated set of the Zernike polynomial basis functions. III-C Convergence of the Bessel (Alternating)
Simultaneously, there exists a requirement in active lightweight Series and Associated Truncation Error 7
membrane mirrors to resist the effects of vibration disturbances
which could build at resonance and adversely distort the mem- IV Modal Transformation Method for Circular
brane surface. The spatial content of this motion is typically IV

7
described by a finite set of Bessel-function based vibration modes Apertures 7
below a frequency of interest. To control the vibration modes, it IV-A Projection of the Zemike Modes onto
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of attenuation. Perfect surface control would therefore have IV-B Existing Analytical Relationship 8
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I. INTRODUCTION several researchers. A complete review of the Zernike poly-
nomials follows, but for now it suffices to say that Zernike

Spaceborne telescopes, whether used for terrestrial observa- . .
tion or celestial discovery, have their performance ultimately polynomials will always have some displacement at their
governed by the size of their light-gathering aperture. Future boundary, while the tensioned membrane structures envisioned

telescopes are envisioned withapertures ofmetes in n this application are characterized by a fixed, non-displacing,telescopes are envisioned with apertures 10s of meters in' boundary.diameter. This leap in scale must overcome the packaging Tokovn. e
limitations that have heretofore restricted today's meter-class
mirror diameters. These large telescopes must be designed and actuator electrostatic membrane mirror, where only the interior
fabricated to allow for collapsed packaging which then may 35-mm "pupil" was actuated. Although the mirror, which

relied on a stiff backing structure, was not scalable to largebe unfurled once in orbit.
This class of collapsible large scale space-based reflectors space structures, the solution methodology of using numerical

was outlined by Agnes and Dooley [1] and is proposed by solutions to Poisson's equation (the govering equation for
membrane structures) with an unused "transition zone" be-

NASA for use in the L2 observatory [2]. The mirror retains teenrthe sured ite ar and thesbon sow te
it shape primarily by acting as an edge-tensioned membrane, ltweenthe measuredmnteror area and the boundary show the

with embedded active elements for fine surface shape control. .fltan Deno mersoete feas o usin in- lane
An artist's conception of a space-based telescope with an actuatr toy ty g i

annular membrane reflector is shown in Figure 1. The edge- produce Zerike polynomial mode shapes on the
interior region of a circular membrane mirror [9]. Their resultstensone mebran wih ativ eleent isthe rimry ype showed the promise of the mirror type, but were tempered by

of structure explored in this structure, although the emphasis
ioncniuuvruanuacicaaprue. difficulties in computing influence functions due to numericaliS on continuous versus annular circular apertures. Other . .

strategies forpre-straining a m r i e u g a sic nstabilities. Another observation of Flint and Denoyer's was

tension field orpre-ri a irin g a n itr that the Zerike mode shapes were best observed when the
tensione [3],ace [ interior 80-90 percent of the circular aperture was utilized formembrane surfaces [5], [6], [7]. th smlto.X' ~~~~~~~~~thesimulation.

The purpose of this paper is to cast the surface control
problem to one in which desired surface shape, expressed in
terms of Zernike polynomials, inside of a region we will define
as the "clear aperture", can be achieved. The terminology
"clear aperture" was used in a figure in a 1977 work by
Pearson and Hansen [10] to describe an area on a deformable
mirror where data was taken, and thus is similar to our
purpose. A notional mirror is displayed in Figure 2 which
shows a Zemike tilt surface deflection achieved inside of a
clear aperture region in blue.

Fig. 2. A notional mirror with a surface tilt deflection achieved inside of
the dark blue interior "clear aperture."

Fig. 1. Artist's conception of a space based telescope Sobers for the Air
Force Institute of Technology, 2002 To achieve static surface control, an analytic formula-

tion designated by the authors as the Modal Transformation
Regardless of the tensioning mechanism, the problem of Method is developed. A brief outline of the technical devel-

static surface shape control is twofold. The first is ensuring opment in the paper is summarized here:
an initially non-aberrated surface, and is a function of both . Section II reviews the two commonly-used basis sets
correctly applied initial strain fields and material manufacture. to describe a circular aperture. The Zernike polynomial
The second problem is quasi-static shape control, particularly basis set is favored by the optics community, while the
the ability of the mirror to act as an active element in an Bessel-based vibration mode set is applied to physical
optical system to impart conjugate surfaces, usually expressed solutions of the partial differential equation modelling
in terms of Zernike polynomial basis elements, to correct for a tensioned membrane. The fundamental premise of the
known beam-path errors. The displacement functions are often modal transformation method is casting the problem of
referred to as influence functions. Furthermore, these same obtaining Zernike polynomials using a linear combina-
influence functions could be used to remove error induced by tion of statically-actuated Bessel-function based vibration
thermal and/or mechanical loads. modes.

Active quasi-static shape control of circular apertures to . Section III develops the transformation matrices for the
produce Zemnike polynomial surfaces has been explored by radial behavior of the Zemnike polynomials and approx-
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imated vibration modes in terms of an intermediary rations in an incoming wavefront. The Zernike polynomials,
radial polynomial basis. The vibration modes must be Zi, are orthogonal over the interior of the domain of circular
approximated due to the infinite series representation of aperture of unit radius through the relationship
the Bessel functions, thus convergence and associated
truncation error for a maximum radial polynomial degree f f -Z,,ZrdrdO (1)
is investigated. J 0 7r
Section IV outlines the modal transformation method. where 6ij is the Kronecker delta. The polynomials, Zi, are
The method is inspired by the projection theorem and defined as:
an existing analytical relationship between the Zernike
polynomials and the Bessel functions. The transformation
matrices of the preceding section are combined, and Zevemj= An c mO (2)
scaled to allow for increased accuracy inside of an Zodd= AnRn sinmO,
interior, clear aperture region. Numeric issues with the Z= AmRm7 m 0. (3)
transformation matrices are explored.

To show the significance of the methodology, the results are with An is the normalization constant and Rn is the radial
applied to a deformable membrane mirror modelled with finite polynomial for azimuthal frequency m and radial degree n.
elements in MSC.Nastran that utilizes piezoelectric in-plane The radial polynomial, Rn is defined as
actuation to create changes in surface curvature. Advantages
in ease of numerical computation of actuator gains, combined (n-m)/2 (1)s (n - S)I
with theoretical a priori knowledge of expected error are Rnm(r)= S nr2s (4)
shown. Specifically, surface error is shown to be a function of S=0
design criterion such as mirror diameter, fineness of actuation where the values of the azimuthal frequency, m, are less than
grid, and diameter of the clear aperture region, and order of or equal to the radial degree, n, (m < n) and n- m is even.
the Zernike mode achieved. The radial polynomials are presented in Table III [11].

The normalization constants, An, are defined to maintainII. BASIS SETS FOR CIRCULAR APERTURES n
II. BAISSESFORCIRCULR APETURESthe orthonormal relationship with respect to the weighted

Deformable membrane mirrors are employed to form conju- function in Equation 1:
gate surfaces to remove atmospheric distortions in an incoming
wavefront. For a flat circular aperture, the two-dimensional Am(v 1) m# 0, (5)
surface corrections are most often provided in the form of Am ( .+1) m 0. (6)
a scaled, truncated set of the Zernike polynomial basis func-
tions. Simultaneously, there exists a requirement in lightweight The normalization constants are the coefficients of the terms in
membrane mirrors to actively resist the dynamic effect which Table IV. The Zernike polynomials may be alternately referred
could build at resonance and adversely distort the membrane to as Zernike mode shapes, recognizing that for the purpose
surface, modelled as a finite set of Bessel-function based vi- of this document the Zernike mode shapes represent desired
bration modes below a frequency of interest. However, Zernike surface deflections.
modes and vibration modes fundamentally differ in that a
Zernike mode always has a vertical displacement at the edge, B. Definition of Vibration Modes
while the vibration mode does not displace vertically from While the Zemike mode shapes represent the commanded
the mirror frame. Pictorial representations for Zernike and desired static shapes we wish the circular aperture to obtain,
vibration modes are provided in Tables I and II respectively. the dynamic motion of the circular membrane is govered by

Inspired by the understanding of the pictorial representation vibration mode shapes. The vibration mode shapes represent
of the two basis functions, we begin this section with a dis-
cussion of the mathematical properties and notation associated te eienfunctiona oe wht ues of the
with the Zernike polynomial, and a matrix representation of membrane of radius (o < r < R) edge tension Tc mass
the Zernike polynomials is derived. The vibration modes are d p s a p a e
then reviewed for a circular membrane, and an analogous w(R, 0, t) 0 may be found by solvingthe partial differential
transformation matrix is created, with the primary difference tion
being that the matrix was formed from an infinite series q
representation. Next, a direct Zernike to vibration mode trans- TV2W(r, t, t) pliqr, 0, t) = O (7)
formation is created, both in integral form and then using radial
coordinates. Definition of a clear aperture region-an interior through separation of variables where the separation constant
region on a circular aperture where Zernike mode shapes will A = w2 such that the spatial mode equation is
be formed-is then proposed and a series of examples follow. p

A. Definition of the Zernike Polynomial '2( '9 + Mwr()=O T (8)
The optics community has used the modified set of Zernike Using separation of variables technique to simplify the par-

polynomials, as first defined by Noll [11], to describe aber- tial differential equation for the case of a pinned boundary
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TABLE I
PICTORIAL REPRESENTATION OF ZERNIKE MODE SHAPES SUCH THAT n= RADIAL DEGREE, m AZIMUTHAL FREQUENCY.

n\M 0 1 2 3 4
piston

0
tilt

defocus astigmatism

.;D.'m.tS,i0T_E~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~........
2

coma

3
spherical

4

TABLE II
PICTORIAL REPRESENTATION OF VIBRATION MODE SHAPES WITH NORMALIZED NATURAL FREQUENCY Wmn SUCH THAT nt RADIAL DEGREE, m

AZIMUTHAL FREQUENCY.

1 2 3 4
2.4048 3.8317 5.1356 6.3802 7.5883

Z _'dl. S"E_'.\ .Aw d'.'S 'V.s~~~~~~~~~~~~Aw

5.5201 7.0156 8.4172 9.7610 11.0647

2
8.6537 10.1735 11.6198 13.0152 14.3725

3
11.7915 13.3237 14.7960 16.2235 17.6160

\.. CA'X,

4

4ALEI



TABLE III
RADIAL POLYNOMIALs Rm, nm RADIAL DEGREE, mn AZIMUTHAL FREQUENCY

Tn 0 1 2 3 4 5

O 1

2 2r~
3 3r3- 2r
4 -r4 6_r2 + 1 4r4 3 2 r4
5lr5 1r3+3 5r 5 -4r3 5

6 26 - 3 4+ 1 2 4 + r2 54
12r2 -1

7 35r7 6or 2r7_ 0 + lo 7r7 - r

8 7Or8 -14Or6 + 56r8 - ios 6 + 28r8-42 6+15r4
-o 2Or2 + 1 o 4 lor2

9 1269 28Or 7 + 84r~9 168r 7 + 69 5 7215
21Or~ - 60O3 + 5r 1O5r~ - 20W3

TABLE IV
ZERNIKE POLYNOMIALS USING NOLL'S ORDERING [1 1]WHERE R27 ARE DEFINED AS IN TABLE III

n\ 0 1 2 3 4

0 ZI R0 ~~Piston

1 Z2 2R?1Cos0

Z3 2R sin 0
Tilt

2 Z4 3FRo Z5 16R2sin20
Defocus 6H2R co0s 20

Astigmatism
3 = 8H1 sin 0 R3 sin 30

3 ~~~~~~~~~~~~~~~~~3
Coma

4 Zll v/5HR Z1 POR 2 cos20 Z1 OR4cos404 4 ~~~~~~~~~~~~~~~~~~~~~~~~~4
Spherical V- 0ioR 2 sin 20 Z15 l-1OR4 sin 40

5 Z6=V1-2-RiCos0 Z18 V1-2R3 cos 305 ~~~~~~~~~~~~~~~~~5
Z17 =V1-2RIsin0 Zl _12R?3ssin 305 ~~~~~~~~~~~~~~~~~5

(W(R, 0) 0), the static mode shapes are obtained. The III. MATRIx REPRESENTATIONS OF MODAL
derivation may be found in a structural dynamics textbook, TRANSFORMATION
such as the text by Meirovitch [12]. The mode shapes are

W m r, ) cB'Jn (3,n) co mO M, =
1 21...(9) The purpose of this section is to formulate a matrix repre-

Wnr ) BJ(3mronO,m , , () sentation of the radial Zemike polynomial and vibration mode
Wn(,O) 7J(/mn snm,m,n 1 , ... (10) basis sets (note the azimuthal, or angular, behavior is identical
wo(,0 Bo%JO(30nr), n =1, 2,.. (11) for both basis sets). To do that, the radial behavior of each

where basis set is cast in terms of an intermediary polynomial basis.
2

~~~~~~~~Since the Bessel function component of the vibration modes
Bn -pR(J.+±I (O.n R))I,=1 2, . (12) consists of a infinite series i the intermediar-y basis, the
Bm ~ ~ p(J(3~)' m =0. (13) resulting modes are therefore an approximation to the vibration

n-\I_-F_p_R( Ji (0. n R) ) Imodes, subject to truncation error.
The indices m and n represent the azimuthal frequency and

radial frequency respectively. The radial frequency is actually
the nlth zero of the associated mh order Bessel function, and
may be thought of as the number of times the Bessel function
crosses the radial axis between the center of the membrane and A. Zernike Transformation Matrix for a given Azimuthal Fre-
the boundary'. The vibration modes of the circular membrane quency
are orthogonal through the relationship



N Jm (/3mnr) =
AmRm = J>(a7m,n)2krm 1 0'(I )k( l; r)2k (19)

(m=)2 (/3mnr)m S2(k+m)!k
= (ao ' ) + a2m)r + (15) 0k

+a(7mn) rTn-m)rm Ea (m,n)r2k+m (20)

(ao l r ( (m,n) + mmn)r2 +...)rm (21)
a~~mm) ~ r (16)

mn) (mmn) {T2ml a(m,n) g tr2N ao[(m 2 ..] r (22)
aJ

Furthermore, we can write a series of equations for a given Next, we apply the vibration mode shape normalization co-
azimuthal frequency m that encompass all radial degrees from efficients from Equations 12 and 13 such that b2km'n)
m to a maximum degree of n such that Bmcjm,n), we arrive at

{AmRm Ao00
Am+2Rm+2 BmJm (/3mnr) SE(b2m) jr2krm

dj *le= ~~~~~~~~~~~k=0
Am±2NRm+2N 2I m m [(m, n) b1m,n)... ] (23)

a(m,m) b0m2a0
(m,m+2) (m,m+2)ao a2

We desire to write a transformation matrix analogous to
Equation 18 for a given azimuthal frequency m. Therefore,

a(m,m+2N) a(m,m+2N) a(m,m+2N) we construct a series of equations from Equation 23 such thatL0 a2 a2N

Ir2 1 (lmJ (Qmir)
*' < . > rm(17) {BmJm(/3m2r)}

bom1 b2,1
...

1

The Zemike transformation matrix Am may therefore be [bm,2) bm,2) 2
defined as the lower diagonal transformation matrix of size b 2 . {
N+1 x N+1 for an azimuthal frequency m with a maximum
polynomial degree 2N + m from above. Am is here defined We then construct a series of N + 1 equations and truncate
as: the approximations to a maximum radial polynomial degree

of 2N + m. The equations are

mNm- ) BmJm(/3mir)
a| BmJm (/3m2r) |

a(m,m+2) a(m,m+2) j

a0 a2 (18) ~~~~~~~~~~~~~~~~~Bm±lJm(Qm(2N))J
a(m,m+2N) a(m,m+2N) a(m,m+2N) b(ml) b(m 1) b(ml)
LO a2 a2N J0 2 . 2N

b(m,2) b(m,2) ... b(m,2)
0 2 . 2N

B. Vibration Mode Transformation Matrix for a given Az- bm,N±1 b(m,N±l) b
imuthal Frequency 0 2 2N

It is our desire to expand the vibration mode shapes from l 2
Section II-B. We will accomplish this by creating a vibration < m(25)
mode transformation matrix for a given azimuthal frequency. t2

To obtain our transformation matrix, begin by writing ther
series representation of the Bessel functions in terms of From Equation 25, we define our N + 1 x N + 1 vibration
boo:kkeeping coefficients ()j2mm) modal transformation matrix, BmN as such,
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Because the Bessel function is an alternating series the error in

Bm _truncating the series is no worse than the first term neglected,
BN= ( ) that is

bb(m, 1) (m, 1) b2N
0 2 2N 1b(m,2) b(m,2) b(m,2) (26) m < k2h'm(2

Lbom+±1 b2m,N± I ) +l). b~ ±6)mJ
The invertibility of the matrix Bm is discussed in Section V- Further, because m > 0 we have
D. Furthermore, the Bessel terms in Equation 25 will only be l )2K+m ( r)2+m
correctly represented to the precision of the next section. _2_ _<_ (22____ (33)

(, + m)L'! (,!)2
C. Convergence of the Bessel (Alternating) Series and Asso- For large values of i, Stirling's formula may be used to
ciated Truncation Error simplify large values of the factorial expression J!:
Our goal is to be able to transform information of the surface

deformation from our Zemike subspace to vibration modal v/ee-2 (34)
coordinates and vice-versa. To write the Zemike polynomials
in terms of the modal coordinates, we will need a finite ex- Applying Stirling's formula, the magnitude of the error be-
pression of the Bessel functions in our intermediate coordinate comes
system of radius and azimuthal angle.
By definition the Bessel functions may be written as the e2 ( 2/mmr)2,±m

series [13] 2w 2K+1 < . (35)

Jm(/mmr) (113 r E(i1)k ( 3mnr)2k Upon further simplification, our error bound formula is
Jm (/3mnr) - /3mn+r)m Z (272 ~~~(k+mT)!k! (27)

2_ _< (36)

For the symmetric modes, m 0, and Equation 27 may be 27K 2/
reduced to

This truncation error represents an error bound on the
CX) _1k 1 2k radial portion of the truncated modes. In future constructs,

JO(Q3nr) =kE ()(2Qo12) (28) when approximating Bessel functions, enough terms should
k=o be chosen so that this error is negligible.

For instance, the first zero of Jo(/3R) 0 is o, = 2.4048 andR
the infinite summation where r =j R IV. MODAL TRANSFORMATION METHOD FOR CIRCULAR

APERTURES
Jo(2.4048iD 1l- .4458ir2 + 0.52258r~4 + O(r~6). (29)

In this section, a method is developed which allows Zernike
Returning to the general case of any non-negative integer surfaces to be projected on an interior region of a circular

m, to accomplish our desired transformation, we must approx- aperture by a linear combination of Bessel-based vibration
imate the Bessel functions by a truncated series. We note here mode shapes. In short, by comprising a desired optical surface
that in the future sections we will relate the Zemike modes in terms of physically realizable mode shapes, steady-state
with the Bessel-based vibration modes. The two basis sets surface control should be readily achievable.
have exactly the same azimuthal behavior. Thus, it is error
in the radial terms that will contribute to overall error in the
relationship. A. Projection of the Zernike Modes onto the Vibration Modes

To this end, the degree of truncation is estimated to ensure
accuracy to within some approximation tolerance, e. The Zernike polynomials of Section 1I-A are related to the

Begin by defining Bessel function of the first kind by the formula presented by
Noll [l]:

B'j/3m ) 'V()kQmh)±m (30)E mnr)_ ( (k+m)!k!
where again r-f . From this point we will drop the tilde, Rn(r) 2W(-1)(-m)/2 Jm±l(27F()Jm(27rr)d&
realizing that our r is a normalized value. Note this is simply (37)
the first ,N terms of the Bessel series. Therefore, we expect it is reasonable to express Zernike mode

Next, choose ,N such that shapes in terms of vibration mode shapes. To do so, we'll
develop an approach based upon the orthogonal properties of

|Jm(/mrr) -Bm(Qmr)| <ce. (31) the two basis sets and the projection theorem.
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B. Existing Analytical Relationship C. Zernike to Vibration Mode Matrix Transformation

To define a Zernike mode in terms of a vibration mode, let's While Equation 38 allows the Zemike modes to be written
look at the case of the axisymmetric modes first. We desire in the form of integral equations, we may alternately apply

the results of Sections III-A and Ill-B to write an approximate
° .( modal transformation. Begin by defining a vector of Zernike

Zi = E c(i)Wn° (38) and vibration modes for a given frequency for radial degrees
n=O up to 2N. For simplicity, we define the axisymmetric case:

Therefore, we may write (assuming both mode shapes have RO
been normalized to the same unit radius) 0 lRA]f.l, (

f~ fO (WZ(r)Wn0(rrdOdC(i) = 2la (39) 2N.+12NJT

noting there is no dependence on 0 such that the azimuthal and
integral term is replaced by the quantity 27. The term 1 (1
is required because Noll's scheme as presented in Equation W2l2
1 requires a linear weighting, which in our relationships is Wo BON (43)
equally distributed among the Zemike modes. Further note {
the vibration modes are already normalized, thus Equation 39 WN+1)r2N
reduces to

, ,r ...rNTSolve for radial vector, { 1, ..., r2N } in Equation 43:

c$i) = 27 1 Zi(r)Wn(r)rdr. (40)

Substituting the results of mode shape Equations 11 and 13 . (Bu) WO, (44)
with unit density (and R = 1) yields L2NJ

c(=A Jo(3nr)rdr. (41) and then substitute into Equation 42 to yield the expression:
ZXJ((iod ()Zo = AO(Bo)W . (45)

The approximation of the piston Zemike mode using Equa-
tion 38 through Equation 41 arbitrarily truncated at 40 terms Through a similar manner write the non-axisymmetric equa-
(axisymmetric modes) is presented in Figure 3. tions:

ZSm
= Am(Bm)1WCm, (46)

ZCm = Am(Bm)_W (47)
1.5 where the modal vectors of length N + 1 are composed of

.o modes of axisymmetric mode shapes (ZO ,WO), modes with0
cosine angular dependence of frequency mn (Zcm, WCm),
and modes with sine angular dependence of frequency m
(ZSm, WSm).

0.5
D. Near Singularity of the Modal Transformation Matrix

0 The modal transformation matrix, BNQ, is most conveniently
0r 0.5 1 applied by defining it as a square matrix in Section III-B, so

that its inverse in Section IV-C is unique. Non-square issues
Fig. 3. Piston Zernike mode (Z1) approximated by a linear combination of addressed with the pseudo-inverse are not included herein.
the first 40 axisymmetric vibration mode shapes. The size of Bm is determined by the number of (or

highest degree) of vibration modes the designer will be able to
From this section, we make the following observations. In actuate-those modes are essentially dependent on the fineness

Figure 3, even with a linear combination of 40 mode shapes, of the actuator grid. The value ofN should be large enough so
we observe nearly 20 per cent error at a normalized radius of that actuated modes are represented with a small to negligible
0.9-1.0. Also, the representation is computationally intensive truncation error as derived in Equation 36. However, the
due to numeric integration. Thus, we seek a simpler solution resulting (BNQ) is ill-conditioned, and is not readily invertible
where integration is avoided, and a bound on relative error for large values of N. A method for decomposing the matrix
may be forecast. into a diagonal matrix N and remaining components BN was

8



applied to allow inversion on 32-bit processors for values of Again, as in previous sections, the transformation matrix is for
N < 20. an azimuthal frequency m with a maximum polynomial degree

Begin by defining: 2N+m. For Zernike shape control of the clear aperture region,

BN-NBm] m(48) the governing equations, Equations 45 - 47 scale to become

where the diagonal elements of N are defined as Zo = AO So (Bo )-'Wo, (55)

~ii = (Bm)ii (49) ZSm = AmSm(Bm)1WC,m (56)
Zcm = AmSm(Bm) 1WSm. (57)

The remaining off-diagonal elements of N are zero. Thus
constructed, much of the ill-conditioned nature of BN is E Application of Modal Thansformation Method
shifted to N, for which an analytical inverse readily exists.
As a simple example, for the case where N =2 and mn 0 With the underlying theory thus provided, a series ofs

and Rimenormaled tor the facore 1 is removed specific application of the modal transformation method forp and R are normalized to 1, and the factor iS removed,
the matrices are:

circular apertures is presented to show the applicable design
the matrices are. criterion for deformable mirrors.

To begin, the method is compared to the projection theorem
[1.0868 -1.5712 0.5679 used in Section IV-A. In Figure 4, the radial behavior of

BN I-1.6581 12.6310 -24.0552 (50) a surface composed of the first 10 axisymmetric vibration
2.0784 -38.9115 182.1229] mode shapes is constructed to approximate the axisymmetric

1.0868 0 0 1 Defocus Zernike mode, Z4 = 3(2r2 1) over the entire
N 1 0 12.6310 0 1 (51) surface (effectively, the clear aperture as previously presented

L 0 0 182.1229] is one). In Figure 4(a), the representation is constructed using
[1.0000 -1.4458 0.5226 1 coefficients from the projection theorem, and in Figure 4(b),

BN i313 1.0000 -1.90451 (52) the coefficients were generated using the modal transformation
L0.0114 -0.2137 1.0000 J method for N = 20. The error between the desired Zemike

surface and the vibration modal representation was calculated
In this example, the original condition number of Bm 2redued rom2409 t 213 wiletheconitin nmbe of using the discretized weighted Euclidean norm (the plots were
reduced from 240.9 to 21.3 while the condition number of calculated using 104 points).
N is 167.5831, of little impact due to the ease of inverting te i0a points).
N analytically, allowing (Bm) -1 -1 m-1 Wth the clear aperture thus set to one, the projecton theo-N analyhcally allow1ng (BN)N TN) TB rem results in the smaller error between the desired surface and

its modal representation (Error = 0.2407 versus Error =
E. Defining a Clear Aperture Control Region 0.3604), and of course is the best achievable perfornance.

To this point, every effort made has focused on projecting However, the shape of the modal surface in Figure 4(a) has
a Zemike space onto a Bessel-based vibration mode space. evidence of distortion throughout its surface, while Figure 4(b)
A valiant effort, yet one that will prove frustrating due to the shows significant distortion only at the outer edge to meet the
incompatibility of the boundary conditions for these competing boundary condition.
basis sets. To avoid this inherent difficulty, it is proposed to Next, in Figure 5, the clear aperture is adjusted to values
define a clear aperture region as a subspace of the Bessel- less than one, and the Defocus Zernike mode is constructed
based vibration mode space. Simply stated, the clear aperture as before in Figure 4 using the modal transformation method.
region will be a circular region with some radius a < R, as
was first introduced in Figure 2. Defining the scaled variable 2The discretized weighted Euclidean norm A in cylindrical coordinatesfor radial grid spacing A\r and azimuthal spacing AO i1S
r = r/a for the Zernike polynomials in this subspace, and
noting that on the clear aperture boundary r = 1, we relate N 1
the polynomial vector, {1, r2, . ... i2 }to the radial vector lf - g A (ArAOZ ri[fi(ri, 2-rOi) - gi(ri, 27rOF)12) 2 (58)
{1, r2,.. r2N } with the diagonal matrix Sm. The matrix i=1
Sm is Assuming a circular domain with unit radius, this limit of the vector norm as

the step size decreases yields the functional 2-norm:

SN [ 1 (53) Air,mO- f-g A (fI / [f g]2rdrdO 2 = Ilf 9112 (59)
am*.

This result will give us a stable error term to use. Compare this norm to the
a2N familiar Root Mean Square error, which does not account for the weighting

factor ri, and does not readily account for differing grid spaces on orthogonal
such that axes within the vectors themselves:

1\ > m =[s] {7 rm. (54) i=1
| . . . || . . . | ~~~~~Further note that in some cases presented only radial error is reported, and
t r2N Jt r2N ) ~~~~~~~thusthe azimuthal terms (0 dependence) is not required.
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4S Modal surface into design criterion for construction of a deformable mirror.
Zernike Beginning with a desired optical surface error budget and a

2- :desired radius of the aperture region, the engineer may choose
. to actuate a greater number of vibration modes or reduce the

a) clear aperture to achieve the desired performance. Actuating
a) 0 0 , = \the number of modes (within the error budget) will be limited

0- by the fineness of the available surface actuators and comput-
ing and energy requirements. With a fixed reflective area pre-

-2 defined, decreasing the clear aperture will effectively increase0 0.5 1 the radius of the overall structure, with whatever associated
normalized radius r weight penalties that entails. However, it is aptly demonstrated

(a) Projection theorem. Error norm 0.2407. that setting a clear aperture region to an arbitrary value, such
as eighty percent, is neglecting the design optimization that

4 could be performed by the engineer.
Modal surface
Zernike

V. EXAMPLE: FINITE ELEMENT MODEL
o In this section, the techniques developed are applied to a
qa) .. =finite element model of a piezoelectric actuated deformable
-o 0- . \mirror. The finite element model is a simplified version of

experimental hardware under development at the Air Force
Institute of Technology (AFIT). Experimental results of ver-

-2 sions of the mirror have been reported on previously [14]," nm0 0.5 1 [15]. The current AFIT deformable mirror testbed is a circularnormalized radiusr
5-inch laminar composite structure with a piezoelectric actu-

(b) Modal transformation (N=20). Error norm 0.3604. ating layer of polyvinylidene fluoride (PVDF), a substrate of

Fig. 4. Comparison of modal representations of the axisymmetric Defocus silicone, and a near-optical quality reflective layer of gold. An
Zernike radial behavior using the first 10 axisymmetric vibration modes. electrode pattern comprised of seven actuators is etched onto

the PVDF film. Voltage induces a strain in the piezoelectric
layer offset from the neutral axis, termed in-plane actuated

In Figures 5(a)-(c), the radial behavior is plotted for clear unimorph actuation, a visual depiction of which is shown in
apertures of 0.7, 0.8 and 0.9. It is quite apparent that for Figure 7. The experimental hardware is pictured in Figure V.
clear aperture of 0.7, the deviation between the desired Zernike
shape and the modal surface is indistinguishable at the scale
shown. ..

Base 10 log of the error for clear apertures between 0.1
and 1 is presented in Figure 5(d). For this specific example, u n i mornh
the error was at a minimum for clear aperture of a = 0.67,
the location of which was invariant when a finer increment in

tvtlocation Fig. 7. Unimorph actuation occurs when an actuating layer offset from the
the vecorwaschsenan evluted ent ngheneutral axis contracts or expands and thus induces a surface curvature. In the

of minimum error in general terms is an area of further AFIT deformable mirror, the actuating layer in orange is PVDF material, and
investigation. the substrate in blue is silicone.

With the clear aperture set at 0.7, another series of plots was Future developments of the experimental hardware include
constructed for Figure 6, again using the modal transformation the refinement of the actuator electrode pattern from sevenmethod for N = 20. For these plots, the variable was the to 61 actuating regions. A 61-actuator region is sufficient to
number of axisymmetric vibration modes that were used to . .
construct the desired Defocus Zernike mode, and a overallshwtevldyofhecnrlagihm peetdinhscschdr D c Z i m ,nin paper. In lieu of experimental data, a high-order finite elementplot of error for 5 through 20 actuated modes is presented in model of the AFIT deformable mirror was chosen to provide
Figure 6(d). Note that for the modal transformation matrix, the simulated results
value ofN caps the number of actuated modes which may be
used. The use of one to four modes was calculated, but errors
in excess of 0.1 were off-scale for the plot provided. For this A. MSC.Nastran Finite Element Model
example, the error decreased steadily until n = 10, and then A finite element model of the the AFIT deformable mir-
remained steady. It is hypothesized that this error is due to ror testbed was created in MSC.Nastran. The model used
the truncation error of the approximated vibration mode, a the same dimensions of the experimental hardware, except
function of Equation 36. Relation of the truncation error to instead of seven actuating regions, the surface was divided
the number of actuated modes is an area of investigation, into 61 regions. The 3601 node model was comprised of

For the structural engineer, these results may be transformed 3384 CQUAD4 elements and 72 CRIA3 composite plate
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(a) Clear aperture 0.7. (b) Clear aperture 0.8. (c) Clear aperture 0.9.

0

0
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0)
0
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-14
0 0.5 1

Clear Aperture
(d) Log lO(Error) versus clear aperture.

Fig. 5. Impact of Clear Aperture on representation of the Defocus Zernike by the first 10 axisymmetric vibration modes using the modal transformation for
N = 20. Figure 5(d) shows the error throughout the range of clear aperture settings, which for this case was at a minimum when a = 0.67R.

4 4 4
-Modal surface -Modal surface -Modal surface
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(a) k: 3. (b) k: 6. (c) k I10.
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0)o O
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Number of actuated modes

(d) LoglO(Error) versus number of actuated vibration
modes.

Fig. 6. Impact on representation of Defocus Zernike by varying the number axisymmetric vibration modes (k) using the modal transformation for N =20
and Clear Aperture =0.7. Figure 6(d) shows the error for 5 to 20 vibration modes.
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The out-of-plane surface displacements were extracted for
analysis. Zemike coeffiens were calculated for the area
inside of the clear aper e, which could then be used to
formulae conclusions abou te behavior of various control
methodologies.

"M......................B. Static Control Methodology for Membrane Mirrors

miale sandcalulaed thayehvbatind maodsexshapes Winthi rlaegion,
Fig. 8. AFIT ~~~~ ~ ~~ th deformableirrtsrilsTemrosae5ic,sld nnlna npaemirr iorwas ctmo elledcsatiedbhoundryin

aluminum~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ebrn struture Thctreforcin functionsewere,modelledd VDlyes

foringth aciv fae.The7-atutorelctrdepaternisclerl viibe acteuatior boudry.hdforacmpbletderrrwivtio ofatheathory, the

the left mirror, which is viewed from the back (non-reflective) side. A pair of
blue, eye-protection goggles provides a sense of scale.

TV2w(r,O0) = MV2ZEFi(r,O0), (61)
i=l1

elements. The substrate and actuating layers were modelled, where
while the gold reflective layer and copper-nickel electrode
layers were considered negligible. Piezoelectric forcing was M= F-d3 1 (62)
introduced using the linear piezoelectric-thermal analogy [16] 1 -vi t 2
at the locations in Table V. For the purposes of this example, In the above equation, T is membrane tension, F is the
the directionality of the piezoelectric dielectric constants was substrate modulus, vi is the substrate Poisson's constant, d31 is
removed. Material properties are presented in Table VI. the piezoelectric constant, t is the thickness ofthe piezoelectric

layer, h is the thickness of the substrate layer, and Vi is the
TABLE V voltage across the electrodes. Note that we have assumed a

ACTUATOR LOCATIONS FOR 61-ACTUATOR, 0.0624 M RADIUS MODEL. negligible structural contribution of the piezoelectric layer to
the deformation of the surface.

inner outer number of degrees For our example, Fi is the area of electrode as shown in
radius () radius () azimuthal per Figure 9. Theath region may be defined through heaviside

I~~~~~~~~~~~ .llln millvisiuaeon irainmoesaesi hs ein

divisions division functions with radial boundariesng andcio and azimuthal

N/A 0.0071 1 360 boundarieso ti and ao
0.0071 10.0212 16 160
0.0212 10.0353 112 130*U
0.0353 10.0494 118 120..X
0.0494 10.0622 124 115

......~~~~~~~~~~~ ~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~......................

................~~ ~ ~~ ~ ~~ ~ ~~~ ~ ~~ ~ ~~ ~ ~~~~~~~ ~~ ~~ ~~ ~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...........................................................

TABLE VI l
MATERIAL PROPERTIES yU

Parameter Silicone PVDF |rUnits x (L

Young's modulus 1 1.013 740001at06N/m2 Fig.9.ectractuatrtboundaresefromEuatio
Poisson's ration 0.497 0.3Iof scar o t
d31 ~~N/A |23 |10-12 rn/r

l or ~~~C/rn2
l |~~~~~o N/rn2

thickness .0015 52.OE-6 m Fi(r,T0) = {) =M-( 2}-{ (r- o) (61)
(63)

A uniform edge tension was applied using an enforced Therefore, it is quite obvious that solutions to the partial
displacement boundary condition in the radial direction. Then, differential equation are simply a series of scaled step func-
using a non-linear static solution, the stiffness of the model tions corresponding to the applied voltage on the actuated
was updated, and an equivalent thermal load was introduced to electrode. We later take advantage of the orthogonal nature
simulate voltage application at the various actuator locations, of the solution. For a unit voltage, these shapes are defined
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here as Ti modes. To obtain a desired shape on the membrane between the chosen mode shapes. The scaling issue existed
surface, it is simply a matter of using the projection theorem for both methods, however, it was not the same. Therefore,
to find the individual actuator gains. the input voltages were scaled in each method to produce

For the direct projection method of control, the desired consistent coefficients between the defocus and tilt modes.
Zemike is constructed directly from the 4 mode shapes. In the The scaling coefficients for the defocus mode were 0.6366
proposed modal transformation method, the 4 mode shapes for the modal transformation method, and 0.7518 for the
are actuated to replicate the membrane vibration mode shapes, direct projection method. All other responses were linear
and then the transformation constructs the desired Zemike for the micron level surface displacements in this simulation
surface on the clear aperture region using linear combina- corresponding to input voltages between -500 to 500 Volts (the
tions of the approximated vibration mode shapes. Again, it practical limit for PVDF material).
is emphasized that the modal transformation method always
satisfies the fixed edge boundary conditions, and further limits The surface deflection and error plots are compared in
steep transitions if the Zemnike modes are implemented on the the remaining plots of Figure 11. To calculate surface error
interior clear aperture region. the desired defocus and tilt coefficients were subtracted from

the generated surface inside of the clear aperture region, as
well as the piston mode. The removal of the piston term is

C. Static Control Simulation and Results of no consequence in optical systems as it is generally not
In the simulation example, voltages were applied to the measurable nor does it affect the mirror's optical performance.

MSC.Nastran non-linear finite element model. The desired
shape was a simultaneous surface deflection corresponding While the absolute error plots in Figure 11 give some idea
to the axisymmetric Zemike defocus mode and the non- of the performance achievable using the modal transforma-
axisymmetric tilt mode associated with cos(0). The clear tion method, a break down of the surface terms by Zemike
aperture region was set to 0.78, inside the boundary of the last coefficients is presented in Figure 12(a) and (b). In both
ring of actuators. A logic flow chart depicts these operations graphs, the desired (and achieved) Zemike coefficient was
in Figure 10. In this modal transformation method, the value normalized for approximately 1 x 10-6 to one. The next three
of N was set to 20, and the number of actuated vibration Zemike coefficients for next three higher radial order at the
modes at a given azimuthal frequency was limited to five. This same azimuthal frequency were then normalized and plotted.
limit corresponded to the number of actuation "rings", and thus The coefficients (and thus contribution to the error) for the
the maximum number of zero crossings that was theoretically sin terms and the higher azimuthal frequency terms (such
obtainable. The value of N ensured the truncation error of as cos 20, cos 30, etc) were not significant and thus are not
Equation 36 would be negligible. presented (except in the absolute error plots of Figure 11).

When comparing the modal transformation method with the
direct projection method in Figure 12(a) and (b), the advantageVk) 2 R Zk 61 of the modal transformation method is evident. The error,v()-j 2rdrdO Zk zv(k)Wi

/
2 which shows as non-zero coefficients in the first and second

Zernike projection higher order modes of both the symmetric and non-symmetric
Direct Projection modes is lower for the modal transformation method. Only for

the third highest radial order mode does the direct projection
/m\lwi] method enjoy a slight advantage, although the relative error at

j) = /27r R tV3if, a [Am Sm BmV -](l l5rol) E tv W t that high radial frequency in either case is low.

Modal transformation The overall effect is that the modal transformation method
may be used to generate Zemike data inside the defined clear

Modal Transformation Method with Projection aperture region with less error than a competing strategy.
The other significant conclusion is that to apply the modal

Fig. 10. Pseudocode for computing the voltages in Figure 11(a) and (d). transformation method, actuated regions must occur outside
In the direct projection method, the Zernike shapes are constructed in the
clear aperture from a linear combination of the actuator (Ir) modes. In this of the clear aperture region, thus icreasing the complexity
application of the modal transformation method, the vibration mode shapes of the system. In this example, 39 per cent more actuators
are approximated using the projection theorem to form linear combinations of were required when using the modal transformation method,
actuator modes, and then those shapes are used in the modal transformation which would require an attendant amount of power and system
method algorithm. In the figure, indices i correspond to actuator mode, j to
vibration mode, and k to desired Zernike surface. integration. However, it is the opinion of the researchers that

the performance gain, and the resulting decrease in the overall
The voltage inputs, finite element model simulation results, diameter of a mirror structure, would far outweigh the increase

and absolute error between the desired surface and the simu- in complexity. A systems level trade study is foreseen as a
lated surface are provided for both the direct projection and potential future effort. Manufacture of a 61-actuator mirror
modal transformation method in Figure 11. is under construction with the assistance of the Material
When calculating the voltage inputs for the 61 actuation Science Division of the Air Force Research Laboratory which

regions in Figure 11(a) and (d), there was a scaling issue is projected to undergo testing in the spring of 2006.
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(a) Voltage distribution (in volts) on piezoelectric (b) FEM surface deflection for direct projection (c) Absolute error for direct projection method.
actuating grid for direct projection method. method.
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(d) Voltage distribution (in volts) for proposed (e) FEM surface deflection for proposed modal (f) Absolute error for proposed modal transforma-
modal transformation method. transformation method. tion method.

Fig. 11. Comparison of non-linear finite element model of proposed modal transformation method versus direct projection method for obtaining simultaneous
defocus and tilt Zernike mode shapes across the clear aperture region. The clear aperture region is indicated by a black line at 0.78 of the surface radius.
The error displayed is absolute error minus the Zernike piston mode error, which is the dominant error for both methods but of little consequence for optical
reflectors. All dimensions are in meters unless otherwise indicated.
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(a) Axisymmetric modes. (b) Non-axisymmetric modes corresponding with cos 0
behavior.

Fig. 12. Comparison of Zernike mode coefficients for actuated surface for matrix modal transformation methodology versus direct projection methods as
described in text. The desired Zernike modes were 2 and 4. Values of coefficients for other modes represent undesired surface deflection.

VI. CONCLUSIONS In the example presented, a non-linear finite element model
simulation of deformable circular mirror with 61 -piezoelectric

The static shape control of a membrane mirror has been unimorph actuators showed the advantages of the proposed
explored. Development of a methodology which prescribes the modal transformation method to determine actuator gains to
desired surface displacement of an interior, "clear aperture" create a desired surface when compared to a direct projection
region in terms of physically achievable mode shapes has been method based solely on solving the governing membrane
developed. In the development, surface error can be seen to equation.
be a function of the clear aperture radius relative to the mirror
radius, and also as a function of the number and accuracy of Areas of further research as a direct result of questions
achievable mode shapes, themselves a function of the fineness posed in this paper include further efforts to accurately (and
of the actuating grid, simply) model the structure to obtain the piezoelectric-actuated
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vibration mode shapes essential to the use of this method. [13] Zwillinger, D., CRC Standard Mathematical Tables and Formulae, 31st
Also, the need to invert the modal transformation matrix Edition, CRC Press, 2003.

as presentedin Section IV,Dfor higher order systems may
[14] Wagner, J. W., Agnes, G. S., and Magee, E., "Optical Metrology ofas presented in Section IV-D for higher order systems may Adaptive Membrane Mirrors," Journal of Intelligent Material Systems

require more advanced techniques. Finally, the unresolved and Structures, Vol. 11, 2000, pp. 837-847.
scaling issues between represented Zemike modes observed [15] Sobers, D. M., Agnes, G. S., and Mollenhauer, D., "Smart Structures

for Control of Optical Surfaces," 44th AIAAIASMEIASCEIAHSIASC
In the finite element simulation are not fully understood and Structures, Structural Dynamics, and Materials Conference, American
merit future study. Institute of Aeronautics and Astronautics, Inc., 2003.

Despite these areas of research interest, the methods pre- [16] Cote, F., Masson, P., Mrad, N., and Cotoni, V., "Dynamic and Static
Modelling of Piezoelectric Composite Structures Using a Thermalsented should be suitable for incorporation in the control of Analogy With Msc/nastran," Composite Structures, Vol. 65, No. 3, 2004.

larger scale structures, and although presented for the contin- [17] Nayfeh, A. H. and Pai, P. F., Linear and Nonlinear Structural Mechanics,
uous circular mirror, there is nothing in the method presented Wiley series in nonlinear science, Wiley-Interscience, 2004.
which prevents a similar strategy from being developed for
annular or parabolic reflectors.

Greater complexity in the system due to the increase in
number of actuators and the subsequent increased power
requirement appears to be the main tradeoff for the increased
accuracy in quasi-static surface deflection performance when
applying this control methodology. Michael Shepherd is a Ph. D. Candidate at the

Air Force Institute of Technology. Maj Shepherd's
research interests include structural dynamics of
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