Blueprint of the Common European Energy Data Space

Version 2.0

July 2024

PUBLISHER

Interoperability Network for the Energy
Transition (int:net)
c/o Fraunhofer-Gesellschaft zur Förderung
der angewandten Forschung e. V.
Hansastrasse 27c, 80686 Munich
Germany

COPYRIGHT

Blueprint of the Common European Energy Data Space © 2024 by Interoperability Network for the Energy Transition (int:net) is licensed under CC BY 4.0

DOI

10.5281/zenodo.12635358

AUTHORS

Alberto Dognini (Fraunhofer FIT)

Antonello Monti (Fraunhofer FIT, RWTH Aachen)

Antonio Kung (Trialog) Arturo Medela (Eviden)

Charukeshi Joglekar (Fraunhofer FIT)

Christoph Schaffer (FH Hagenberg)

Daniele Stampatori (EUI)

Diana Jimenez (Trialog)

Erik Maqueda (Tecnalia)

Fabio Coelho (INESC TEC)

Florian Mancel (EDF)

Foroogh Sedighi (RWTH Aachen)

Georg Hartner (Hartner Consulting)

Gianluca Lipari (EPRI)

Javier Valiño (Eviden)

Joseba Jimeno Huarte (Tecnalia)

Laia Guitart (E.DSO)

Laurent Schmitt (Digital4Grids)

Leonardo Carreras (RWTH Aachen)

Ludwig Karg (B.A.U.M.)

Maarten Kollenstart (TNO)

Maider Santos Mugica (Tecnalia)

Marc Kurz (FH Hagenberg)

Marion Arles (Gireve)

Markus Stroot (Fraunhofer FIT)

Maro Baka (Que Technologies)

Martina Galluccio (RINA)

Massimo Bertoncini (Engineering)

Maurizio Fantino (Links Foundation)

Oliver Hödl (FH Oberösterreich)

Olivier Genest (Trialog)

Ricardo Bessa (INESC TEC)

Rita Dornmair (B.A.U.M.)

Sonia Jimenez (IDSA)

Tasos Tsitsanis (Suite5)

Thomas Strasser (AIT)

Volker Berkhout (Fraunhofer IEE)

Data cellar

The research leading to these results has received funding from the European Union's Horizon Europe Research and Innovation Programme, under Grant Agreements no 101070086, 101069831, 101069694, 101069839, 101069287 and 101069510.

CONTENTS

1.	Intro	oduc	tion	6
	1.1.	Sco	pe	6
2.	Data	a Sp	aces Concept	8
	2.1.	Ove	erall Strategies	9
	2.2.	Def	ining Data Spaces Across Diverse Uses	9
3.	Bus	ines	s Use Cases for Energy	12
	3.1.	Use 16	case #1 - "Collective self-consumption and optimized sharing for energy commun	ities"
	3.1.	1.	Scopes	16
	3.1.	2.	Description	16
	3.1.	3.	Scenarios	17
	3.2. aggreg		case #2 – "Residential home energy management integrating DER flexibility"	20
	3.2.	1.	Scopes	20
	3.2.	2.	Description	20
	3.2.	3.	Scenarios	21
	3.3.	Use	case #3 - "TSO-DSO coordination for flexibility"	23
	3.3.	1.	Scope	23
	3.3.	2.	Description	23
	3.3.	3.	Scenarios	25
	3.4.	Use 28	e-case #4 - "Electromobility: services roaming, load forecasting and schedule plan	ning"
	3.4.	1.	Scopes	28
	3.4.	2.	Description	29
	3.4.	3.	Scenarios	30
	3.5.	Use	case #5 – "Renewables O&M optimization and grid integration"	32
	3.5.	1.	Scopes	32
	3.5.	2.	Description	32
	3.5	3	Scenarios	33

	3.6.	G	Grid codes requirements	6
4.	Ρ	ropo	osed Architecture for CEEDS38	В
	4.1.	C	Components of the Data Space Federated Side42	2
5.	lr	ntero	perability Aspects47	7
	5.1.	Т	Fechnical Interoperability47	7
	5	.1.1.	Building Blocks47	7
	5	.1.2.	Actors	8
	5	.1.3.	Data Formats49	9
	5	.1.4.	Data transmission protocols	9
	5.2.	S	Semantic Interoperability	O
	5.3.	G	Governance interoperability5	1
6.	Е	DSC	CP Implementations	5
	6.1.	G	Governance aspects	5
	6.2.	D	Data value creation aspects57	7
7.	C	Concl	lusions6	1
8.	R	Refer	rences	2
9.	L	ist of	f Figures63	3
10	. L	ist of	f Tables64	4
11	. L	ist of	f Abbreviations65	5
12	. 0	Sloss	sary67	7

1. Introduction

The shift in the energy sector, outlined as a key aspect of the Green Deal and detailed in the REPowerEU plan, necessitates a widespread substitution of fossil-fuel-based power generation with low-CO₂ technologies. Although substantial progress has been made towards meeting the targets, achieving a complete transformation remains a lengthy and intricate process. Central to this transformation is the electrical grid, which already plays a crucial role in facilitating our contemporary lifestyle. However, its significance has now heightened due to the increased electrification of sectors like mobility as well as temperature control of buildings. Now more than ever, Europe requires an electrical network that is resilient, cyber-secure, flexible, and reliable. Meeting this demand is contingent on the implementation of advanced automation and power flow optimisation solutions as well as the comprehensive digitalization of entire energy systems.

Data spaces play a pivotal role in advancing the digitalization of electrical energy systems, ushering in a new era of efficiency, reliability, and sustainability. In fact, data spaces address both the new business opportunities as well as the existing technical challenges. As the energy landscape undergoes a profound transformation, characterized by the integration of renewable sources, electrification of various sectors, and a growing emphasis on decarbonization, the need for intelligent and interconnected systems becomes increasingly evident. Moreover, data spaces facilitate predictive analytics, enabling proactive maintenance and reducing downtime in critical components of the electrical grid. Additionally, data spaces support the deployment of advanced automation and grid capacity optimisation solutions, enabling adaptive and responsive grids that can dynamically adjust to changing energy demands and supply conditions. Furthermore, the interconnected nature of data spaces promotes collaboration among various stakeholders, including utilities, regulators, technology providers, and consumers. This collaborative environment fosters innovation, accelerates the development of smart technologies, and ensures a more inclusive and participatory approach to the energy transition. Hence, data spaces emerge as catalysts for the digital transformation of electrical energy systems, offering a comprehensive and interconnected approach to managing the complexities of modern energy landscapes. Through the integration of data spaces, the energy sector can harness the power of information to build resilient, efficient, and sustainable electrical systems for the future.

1.1. Scope

This document addresses the concept of a Common European Energy Data Space (CEEDS), providing detailed approaches and recommendations for its real-world realization. In particular, the main objective of this blueprint is to guide on enhancing the existing data infrastructures, the energy domain, towards the full embracement of data space solutions. Bridging this gap will empower the introduction of novel energy services, which will increase the efficiency and reliability of the energy systems while providing substantial benefits for every stakeholder.

The key scope of this document is to present (i) a framework for new economically feasible business use cases and (ii) the general data space architecture that can enable them. This architecture aims to

interconnect the existing data infrastructures, composed of a diversity of heterogeneous systems operated by different actors, with federated data spaces; at this scope, technical specifications have been included.

int:net has cooperated with the sister projects, forming the Energy Data Space Cluster Projects (EDSCP), and the energy community to identify the specific vertical capabilities that are needed in an energy data space. The result is the CEEDS architecture blueprint that meets the need of the domain. The objective in the future is that the CEEDS architecture is a specialization of the mandatory part of DSSC and of future data space standards. This will require further coordination with future initiatives for convergence, e.g., a description of DSSC structured into a reference part and a pattern part as recommended in current standards on reference architectures (ISO/IEC/IEEE 42042 - reference architecture, ISO/IEC 40131 - guidance for reference architecture). It is recommended to the European Commission to start a transversal task force between the data space architects in the various initiatives to enable this alignment.

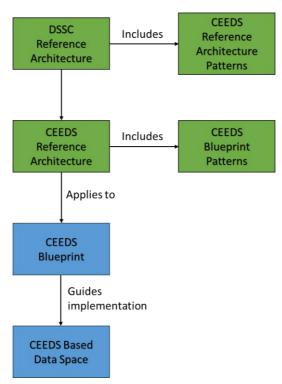


Figure 1 - Ensuring alignment between the DSSC and the CEEDS Blueprints.

The blueprint is organized as follows: Section 2 provides general insights into the data space concepts and, particularly, specifically related to the energy domain; Section 3 describes the reference use cases for CEEDS while Section 4 presents the proposed architecture that enables their realization. Notable insights and references for the technical, semantic and governance interoperability of energy data spaces are discussed in Section 5. Section 6 concludes the document.

2. Data Spaces Concept

The conceptualization of data spaces was initiated several years ago, providing the basis for characterization in specific domains like energy. Considering a domain-agnostic perspective, a data space is defined in the DSSC Blueprint [1] as "a distributed system defined by a governance framework, that enables trustworthy data transactions between participants while supporting trust and data sovereignty. A data space is implemented by one or more infrastructures and supports one or more use cases".

In light of this definition, three transversal features must be considered in the data space deployment:

- **Security and Privacy**: Concentrating on ensuring the security and privacy of the exchanged data within the designated data space.
- **Quality and Integrity**: Relating to the quality and integrity of the data residing within the data space. This encompasses elements associated with metadata, such as data validation, data cleansing, data accuracy, and data consistency.
- Governance and Policy: Encompassing the structure of governance and policies dictating the
 data spaces, addressing decision-making, data governance frameworks (comprising rules and
 practices for management and operations), policies for data sharing and access, as well as
 energy-related policies and regulations.

Furthermore, the deployment of a data space is performed according to five main dimensions, which reflect the transversal features described above. These dimensions correspond to:

- **Business:** examining the business model related to data exchange, such as utilizing consumption data for managing flexibility transactions in the wholesale market and delineating the business roles of involved parties.
- Legal: Delving into the legal framework, encompassing (a) overarching legal frameworks, (b) organizational aspects, and (c) contractual instruments.
- **Operation:** Providing insights into the operational framework, including use cases, processes, and activities.
- **Functional:** Describing the technical and governance building blocks, deployed based on necessary technical services (and their dependencies), as well as adherence to data standards
- Technology: Offering specifications on adopted standards or required software components, as identified in the energy domain through the Smart Grid Architecture Model (SGAM). A primary objective is to ensure interoperability among internal parties and with other data spaces.

The realization of a data space in the energy domain must, then, address every indicated dimension and implement the required measures to achieve interoperable solutions; even if existing solutions are already in place and well advanced for individual dimensions (e.g., an operational framework for grid management or a standardized data model, with associated data exchange profiles, that addresses a specific interoperability point), consistent work must be deployed to synchronize and align all the different dimensions simultaneously and in a defined system.

2.1. Overall Strategies

From the overall viewpoint at the highest level, the CEEDS is foreseen as the common framework that federates different data spaces (each of which is implemented at the national, sub-national level or international level) and allows the participation of the single users. Different layers are then defined, from the local data space solutions to the federated ecosystem of data spaces, following a decentralized configuration. Considering the representations in Figure 2, from a closed ecosystem (on the left, panel I), a further expansion consists of implementing data exchanges with external participants (who, in any case, subscribe to the governance rules) achieving an open, interoperable ecosystem (panel II). Additionally, as the next expansion, the structured interactions among different ecosystems (i.e., following the interoperability of the specific governance rules) allow to reach the ecosystem of data space solutions, as a federation (panel III). It is worth highlighting that the participation of single users, defined in the CEEDS through the Harmonised Electricity Market Role Model (HEMRM)¹, remains a foremost feature in the federation of ecosystems.

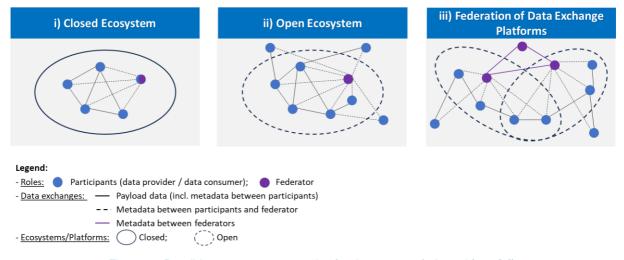


Figure 2 - Possible ecosystems strategies for data spaces (adapted from [2]).

The federation of ecosystems is the model that will be pursued to interconnect the data space instances of the cluster projects, paving the way for the CEEDS. This federation relies on specific measures for technical, semantic and governance interoperability, which will be described in section 5 of the present document.

2.2. Defining Data Spaces Across Diverse Uses

In the evolving landscape of digital transformation, data spaces have emerged as a foundational element for fostering innovation, enhancing interoperability, and ensuring governance across various sectors. These collaborative environments² enable stakeholders to share, access, and manage data securely, fostering a new era of efficiency and innovation. The concept of data spaces transcends

¹ The harmonised electricity market role model (HEMRM) - https://www.entsoe.eu/data/cim/role-models/

² https://datacollaboratives.org/

traditional data management approaches by emphasizing user control, privacy, and the seamless exchange of information across diverse interoperable, orchestrated ecosystems. As we delve into the specifics of data spaces, it is crucial to understand their multifaceted roles and the objectives they serve, which include:

- Educational Purpose and Research: Facilitating access to vast datasets and fostering collaborative research environments, the data spaces enhance educational outcomes and drive forward scientific inquiry and innovation.
- 2. **Data Exchange and Interoperability:** By enabling the secure and efficient exchange of data between actors of the energy value chain, data spaces overcome interoperability challenges, ensuring seamless interaction across different systems and platforms.
- Innovation and New Business Models: Data spaces act as incubators for new business
 models, supporting startups and established businesses alike in developing innovative services
 and products through shared data insights and access.
- 4. **Data Analysis and Visualization:** Providing powerful tools for data analysis and visualization, data spaces empower organizations to derive meaningful insights from complex datasets, enhancing decision-making processes.
- 5. Governance and Regulation: Data spaces can act as data-driven frameworks, evidence-based for supporting public authorities and national agencies at different levels to enhance decision-making processes, streamline regulatory compliance, and foster transparent governance mechanisms. This infrastructure enables the effective monitoring, analysis, and dissemination of information critical to societal welfare, economic stability, and environmental sustainability.

Table 1 summarizes the different data spaces categories across uses.

Table 1 - Categories of data spaces.

<u>Data Space Categories</u>					
Categories	Scope and Description				
Educational Purpose and Research	Data spaces support the sharing of educational resources, academic research, and collaboration across institutions and countries. They enable access to a wide range of data, fostering innovation and knowledge dissemination.				
Data Exchange and Interoperability	They are crucial for enabling the exchange of data between different entities, improving interoperability among diverse systems and platforms. This facilitates seamless data sharing and collaboration across sectors, enhancing service delivery and operational efficiency ³ .				
Innovation and New Business Models	By allowing secure and controlled access to data, data spaces drive innovation, supporting the development of new business models, products,				

³ https://www.gradiant.org/en/blog/data-spaces-europe/

	and services. They enable companies to leverage shared data for creating value-added services and improving competitive advantage. ⁴
Data Analysis and Visualization	Data spaces facilitate the transformation of data into actionable insights through advanced analysis and visualization tools. This enables more informed decision-making and reveals hidden trends, driving efficiency and strategic initiatives.
Governance and Regulation	Data spaces can empower public authorities and agencies to enhance regulatory frameworks and improve the governance of society and systems. By providing a reliable infrastructure for data governance and compliance, they support the development of more effective policies and governance models.

⁴ https://www.geograma.com/en/blog/common-data-spaces-their-usefulness-and-current-situation-in-the-european-union/

3. Business Use Cases for Energy

The energy system is in need of strong digital advancements that can enable more efficient, secure and carbon-free power generation, distribution and consumption. At this scope, new energy services are required, which seamlessly interconnect various stakeholders including consumers, local communities, TSOs, DSOs, Significant Grid Users (SGUs), multi-energy utilities, e-mobility operators as well as new flexibility service providers, Renewable Energy Sources (RES) developers and operators, and non-energy service providers. Energy services relate to new business opportunities for these energy stakeholders; in particular, a set of high-level Business Use Cases (BUCs) has been defined by the cluster of energy data spaces projects, which exploit and fully rely on the use of data space technologies while taking into account the specific areas of the EU action plan "Digitalising the energy system"⁵. Nevertheless, a crucial prerequisite for maximizing the advantages of the data spaces in the energy domain is the integration of data from diverse sources and with standardized data models and ontologies; the BUCs describe the specific data exchanges that occur among the involved actors. The scope of this chapter is to present what are the new business opportunities that are emerging in the energy sector, putting an emphasis on their business and technical feasibility.

The five BUCs foster and support the large-scale deployment of the CEEDS, maximizing the benefits of data exchanges via the data spaces approach towards the enablement of new energy services.

The BUCs correspond to:

- Use case #1 "Collective self-consumption and optimized sharing for energy communities"
- Use case #2 "Residential home energy management integrating Distributed Energy Resources (DER) flexibility aggregation"
- Use case #3 "TSO-DSO coordination for flexibility"
- Use case #4 "Electromobility: services roaming, load forecasting and schedule planning"
- Use case #5 "Renewables O&M optimization and grid integration"

Blueprint of the CEEDS

⁵ Digitalising the energy system – EU action plan. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52022DC0552

Figure 3 - Identified reference use cases for CEEDS.

The following sub-sections describe the technical details of every BUC. They are presented according to the general scope, the technical description of implemented services and the scenarios (i.e., the involved actors and the technical details of the data exchange instances, represented in sequence diagrams). It is worth highlighting that every actor of the BUCs corresponds to a data space participant, with the role of data provider or data consumer.

Table 2 compares and summarizes the five BUCs with respect to (i) Scope, (ii) Data Exchange Focus and main (iii) Key Actors, while Table 3 presents a taxonomy for different data space uses: (i) Educational Purpose and Research, (ii) Data Exchange and Interoperability, (iii) Innovation and New Business Models, (iv) Data Analysis and Visualization, (v) Governance and Regulation.

Table 2 - Summary of the BUCs.

Use Case ID	Use Case Title	Scope	Data Exchange Focus	Key Actors
#1	Collective self-	Residential and	Data collection/sharing	Energy service companies,
	consumption	Commercial Energy	for flexibility and	Energy traders, Market
	and optimized	Communities; energy	energy savings; non-	information aggregators,
	sharing for	sharing optimization	intrusive load	Resource aggregators
	energy		monitoring	
	communities			
#2	Residential	Optimization of DER	Real-time data	Prosumers, DER operators,
	home energy	through data spaces for	exchange and	Flexibility Service Providers
	management	reducing grid congestions	streaming; leveraging	(FSP), Local energy
	integrating	and critical peak prices	IoT, edge computing	management providers
	DER flexibility		and V2X interactions	
	aggregation			

#3	TSO-DSO coordination for flexibility	Enhancing resilience and integration of large RES; non-cable solutions for congestion and voltage issues	Forecasting of loads and generation for resource scheduling; real-time control	TSOs, DSOs, DER operators, FSP
#4	Electromobility: services roaming, load forecasting, and schedule planning	Optimization of EV charging infrastructure and services; predictive charging consumptions for grid management	Booking and scheduling of EV charging services; predictive analytics for EV charging demand	Charge Point Operators (CPO), e-Mobility Service Providers (eMSP), EV users
#5	Renewables O&M optimization and grid integration	Optimizing Operation & Maintenance (O&M) of renewable energy assets; efficient integration of distributed energy sources into the smart grid	Leveraging data for fault detection, automated diagnosis, and maintenance; smart grid integration analytics	RES plant owners/operators, DSOs, Original Equipment Manufacturer (OEM), Component manufacturers, Data analytics service providers.

Table 3 - Data spaces objectives with respect to the BUCs.

Data Spaces Objectives	BUC #1: Collective Self- Consumption and Optimized Sharing	BUC #2: Residential Home Energy Management	BUC #3: TSO- DSO Coordination for Flexibility	BUC #4: Electromobility: Services Roaming, Load Forecasting, and Schedule Planning	BUC #5: Renewables O&M Optimization and Grid Integration
Educational	Developing	DER	Advanced grid	EV public charging	Innovative
Purpose and	community	optimization	management	patterns and	O&M
Research	models and	strategies and	and flexibility	infrastructure	techniques for
	energy sharing	technologies	solutions	optimization	renewables
	mechanisms				integration
Data Exchange	Exchange of	Real-time data	Sharing of	Interoperability	Sharing of
and	energy	streaming	flexibility	between CPOs,	operational
Interoperability	consumption	from IoT	needs and	eMSPs, and	data for O&M
	and generation	devices	resources	EMRSPs	optimization
	data				
Innovation and	Novel	Home energy	Market-based	New business	Data-driven
New Business	community	management	approaches for	models for EV	O&M and grid
Models	energy sharing	solutions,	flexibility	charging services	integration
	models	including V2X			solutions
Data Analysis	Analysis of	DER	Forecasting	Analysis and	Visualization
and	energy patterns	performance	and	forecasting of	of O&M
Visualization	for optimization	and	visualization of grid status	charging demand	insights and

		optimization		and infrastructure	grid
		analytics		needs	performance
Governance	Governance	Regulations	Coordination	Standards and	Regulatory
and Regulation	frameworks for	for mass-	frameworks	protocols for	compliance for
	community	produced DER	between TSOs	electromobility	renewables
	energy sharing	integration	and DSOs	services	integration

3.1. Use case #1 - "Collective self-consumption and optimized sharing for energy communities"

3.1.1. Scopes

The general scope of this use case is the instantiation and operation of Jointly Acting Self-Consumers (JASC), Residential Energy Communities (RECs) and Commercial Energy Communities (CECs), aiming at the collective self-consumption, inside the communities, and the optimization of energy sharing, with the electrical system.

The specific objectives include:

- Size the technical components and conduct an economical evaluation for the deployment of energy communities, based on consumption and generation profiles as well as market data, weather data and the possibility of assets sharing business models.
- Provide the mechanisms for the collection and sharing of data, with appropriate granularity at the device level, of the energy consumption and generation, with the final goal of enabling flexibility and energy savings mechanisms.
- Extract approximated flexibility models for smart appliances (e.g., using non-intrusive load monitoring data), enabling an overall quantification of flexibility and estimation of energy savings from intelligent load control.

3.1.2. Description

The effective and large-scale deployment of energy communities, for collective self-consumption and regulated energy sharing, involves the optimization in both the network design phase (i.e., the size and location of distributed energy resources) and in the deployment of energy sharing mechanisms within the community and with the active role of electrical grid operators.

This use case includes two optimization problems, the first one aims at determining the optimal installed capacities in the REC / CEC, considering typical consumption profiles, availability of renewable energy sources, costs of technologies (both capital and operational cost) and opportunity costs of the community members (retailing tariff for the electricity consumed from the grid, and selling price for the electricity sold back to the grid). The second optimization problem considers the operation of the community constrained by the installed capacity from the first optimization problem, in particular its electrical energy sharing / trading, where the optimized dispatch of controllable energy resources (e.g., storage, thermal loads, electric vehicles) is obtained considering the opportunity costs of the community members, together with an internal electricity pricing mechanisms to settle the internal energy transactions among members, which can be computed with different approaches or algorithms, to be used to study different financial schemes for communities.

The data space environment enables the exchanges of data that are necessary for the execution of the optimization scenarios among actors, whose roles are described in [3]. In particular, the Service Provider offers, via its broker, the technical algorithms as services to which the Service Consumer has

subscribed. Technical parameters (including the type of available devices, assets, and capacity constraints), pricing and financing specifications as well as consumption and generation data profiles are used as the inputs coming from the Data Provider. The consent for data sharing is obtained from the Data Owner; additionally, the data space Clearing House (which is a service for logging data exchange transactions relevant for clearing and billing as well as usage control) works as an intermediary to keep the log of the transactions. The output data are received by the Service Consumers and correspond to the optimal installed capacity, the estimated flexibility schedule and the pricing for internal and external transactions, differentiated according to the energy sharing mechanism. As an additional service, the provision of information regarding the required device maintenance is also included. Moreover, the data exchange outputs allow improving the forecasts on available flexibility (I.e., aggregated demand side flexibility potential of the energy community).

The enablement of data space capabilities becomes key given the multiple stakeholders and service providers in this use case, often enrolled through a value-chain enabler (legal or digital platform with an established governance scheme). Thus, the need to procure a data exchange environment built around data sovereignity guarantees allows the translation from common legal contracts to smart contracts, which guides data exchange limits (i.e., usage policies) and the long-term and post-exchange traceability of all data and associated data transactions. Moreover, as exploring aggregated and anonymized models representing the profiles of the community members may be included in as a data monetization scheme, there is a real need for ensuring pre and post data exchange guarantees with identity verification and validation of the involved organizations, or the traceability of data flows as part of a digital passport for data as an asset.

3.1.3. Scenarios

The system encompasses three sub-use cases, each designed to address specific aspects of energy management within RECs and CECs:

DER Sizing and Economic Evaluation of REC/CEC Business Model: Users subscribe to data space for DER sizing and economic evaluation, combining real consumption profiles from historical data. They provide parameters, request data (e.g., real consumption profiles (historical data), and solve optimization problems to determine optimal capacities and schedules, aiming to maximize of collective self-consumption of energy.

Estimation of Flexibility Potential and Energy Cost Savings from Thermal Domestic Loads: Consumers subscribe via a Broker for flexibility estimation services. Data is requested, consent is obtained, and an optimization problem enhances the Electric Water Heater (EWH) operation. Output metadata, including flexibility potential, is transferred.

Computation of Internal Transaction Price based on REC/CEC Operation: Consumers subscribe to internal pricing and REC/CEC operation services via a broker. Data is requested, consent is obtained, and the selected pricing mechanism is executed. Output metadata, including energy transacted and

prices, is transferred. The objective of this service is to simulate the operation of an internal market and extracts price curves that can be used to evaluate different business models (e.g., in terms of asset sharing) and the economic potential of communities for different stakeholders, such as inclusive communities for vulnerable consumers.

In the following table, the sub use-cases are detailed with respect to the involved actors and the triggering events, which cause the data exchange and transition from the pre-condition to the post-condition of available data and accomplished actions. The use of a data space infrastructure allows trading data between organizations (i.e., the REC/CEC members and service providers, as developers of the running algorithms) while enforcing the data sovereignty stack.

Table 4 - Scenarios for the use case #1.

		<u>Scenarios</u>		
Scenario name, description	Actors	Triggering events	Pre-condition	Post-condition
DER sizing and	Consumer, Energy	Service consumer	Consumption and	Information
economic	service company,	requests service	generation profiles /	available about
evaluation of the	Energy trader, Market		time series available	REC / CEC
REC / CEC	information aggregator,		in the data space &	optimal sizing
business model	Resource aggregator,		tariff data	
	FSP, Sub-meter data			
	hub operator			
Estimation of	Consumer, Energy	Service consumer	Technical	Data available
flexibility potential	service company,	requests service	information from the	about estimated
and energy	Energy trader, Market		EWH available;	energy cost
savings from	information aggregator,		typical profiles or	savings and
thermal domestic	Resource aggregator,		historical info about	flexibility
loads	FSP, Sub-meter data		shower duration and	
	hub operator		start; sensor for	
			outlet water	
Computation of	Consumer, Energy	Service consumer	Consumption and	Collective and
energy price within	service company,	requests service	generation profiles /	individual
the REC / CEC	Energy trader, Market		time series available	operation costs
	information aggregator,		in the data space &	or energy bills
	Resource aggregator,		tariff data	
	FSP, Sub-meter data			
	hub operator			

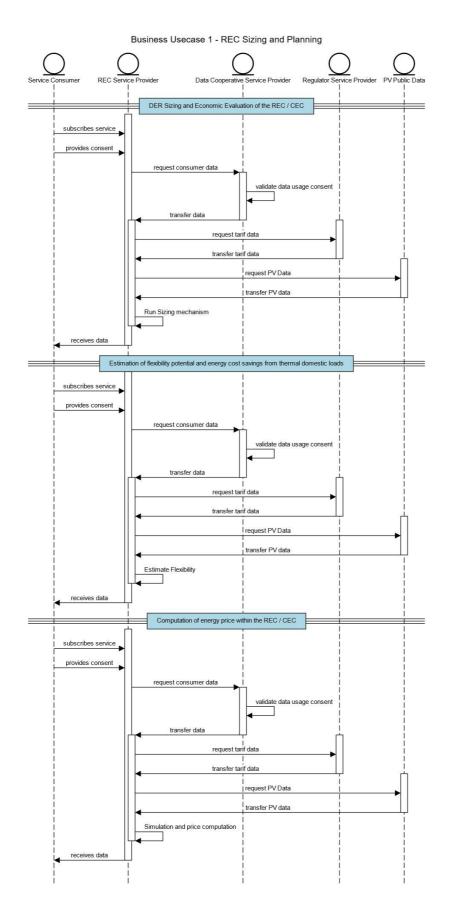


Figure 4 - Sequence diagram for the use case #1.

3.2. Use case #2 – "Residential home energy management integrating DER flexibility aggregation"

3.2.1. Scopes

Prosumers – whether residential, community, city, or industrial scale – are playing a new central focal role to enable cross-sectorial integration using their energy and flexibility data to actively contribute to a variety of flexibility markets. Moreover, the use of flexible DER located in residential environments allows to mitigate critical peak prices through wholesale markets as well as reduces TSO and DSO grid congestions. In this context new digital platforms are leveraging IoT, edge computing as well as federated cognitive cloud architectures with strategic digital features to optimally orchestrate DER through energy data spaces; this is pursued at the lowest voltage levels of the energy value chain, which includes home appliances and behind-the-meter DER and managed by resources operators and FSP that optimise the associated flexibility through their balancing portfolio. This approach requires rethinking the way data is generated from dedicated measurement devices, attached to DER, and exchanged throughout different federated actors of the electricity value chain: requirements involve real-time data exchange and streaming, taking advantage of a variety of domain-specific data exchange standards through consistent data space dictionaries.

3.2.2. Description

Future carbon-neutral houses will soon require providing new net-zero analytics as defined through the directive "Energy Performance of Buildings ⁶" and, hence, provide near real-time indications to homeowners about their home energy efficiency as well as their available flexible capacity to respond to grid congestions and emergency events. The home energy use will be continuously optimized while maximizing local PV self-consumption and minimizing electricity costs (associated with new real-time energy and flexibility prices). New flexible DERs are in the meantime introduced through the home environment, such as heat pumps, EV bidirectional chargers as well as home batteries; these devices require new local home edge optimization across these resources. New integration approaches are considered to automate and facilitate the associated integration, such as all-in-one residential home energy stations that integrate bidirectional EV and home stationary battery and solar PV (directly with DC technology, resulting in the default consumer data interfaces).

Local home energy management solutions are becoming essential building blocks to share residential DER data through multi-sided data exchange platforms, which are operated through distributed cloud infrastructures of OEM and integrate advanced real-time energy optimization as a service. Multi-sided platforms are accessed, on one side, by prosumers through their DER-specific app or high-level energy management apps while the other side is accessed by FSP accessing consumer data to enrol them (with their consent) in DER-specific flexibility programs.

 $^{^{6}\} https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_energy-efficient-buildings/energy-performance-buildings-directive_energy-efficient-buildings/energy-performance-buildings-directive_energy-efficient-buildings/energy-performance-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-efficient-buildings-directive_energy-ene$

This BUC is typically associated with large residential assets offering flexibility to home owners, namely heat pumps, smart heating equipment, EV chargers (V1G and V2G) as well as residential hybrid inverters for solar and storage applications.

Reference DER data dictionaries are managed to enable plug-and-play registration of DER infrastructures in TSO-DSO flexibility markets; moreover, new real-time data stream across key actors of the energy flexibility value chain: from DER operator to energy community managers as well as with FSP and grid operators (TSOs and DSOs), hence automating associated residential DER transactions. The associated data space should allow managing all types of DER integrating the latest power electronics, edge computing and data streaming technologies to exchange relevant residential energy data (obtained from the main smart meter as well as from any other accessible DER submeters/dedicated measurement devices). The data space should be distributed through different federated cloud infrastructures and enable consent based on data exchanges across actors.

3.2.3. Scenarios

Table 5 - Scenarios for the use case #2.

	<u>Scenarios</u>	
Scenario name, description	Actors	Additional information
Residential energy and	Prosumer, Resource aggregator	
carbon footprint		
monitoring		
Residential DER	Prosumer, Resource aggregator,	Registration consists in messages to registers
registration by DER	Consent administrator, Flexibility	customers in the DSO flexibility register.
operators	register, Flexible product qualifier	
Residential home	DER, Local energy management,	
energy optimization	Weather forecast provider, FSP,	
	Balancing responsible party	
Residential baseline	Data provider, Resource	Provision of baseline data calculated by the
calculation	provider, Resource aggregator,	service provider or the final customer, also
	Balancing service provider, FSP	based on weather/carbon/other data.
Residential flexibility	Data provider, Resource	
intraday calculation	provider, Resource aggregator,	
	Balancing service provider, FSP	
Residential flexibility	Balancing service provider, FSP,	Onboarding to market platform (and activation
bidding	Market operator, TSO, Flexibility	tests/product prequalification). Data exchange
	buyer	and communication requirements need to be
		tested for balancing services.
Residential flexibility	Market operator, TSO, Flexibility	When flexibility is activated (either through a
activation	buyer, Balancing service	bare execution of a bid, or via set points), a
	provider, FSP, Resource	controllable unit can receive these signals
	provider, DER, Prosumer	either via the Service Provider or directly from

Residential flexibility observability	Market operator, TSO, DSO, Resource aggregator, Resource provider, DER	the System or Market Operator. Service Providers may use the Kafka-based streaming infrastructure for both communication with the market, but also with their units under control. After the delivery phase, measurements at different points need to be transferred to the Flexibility Registry Operator, to make them in turn available to the Settlement Responsible Party for service validation and perimeter correction.
Residential flexibility	Flexibility settlement party,	
transaction	Metered data responsible,	
management	Metered data collector, Balancing service provider, FSP, Resource provider, DER, Prosumer	

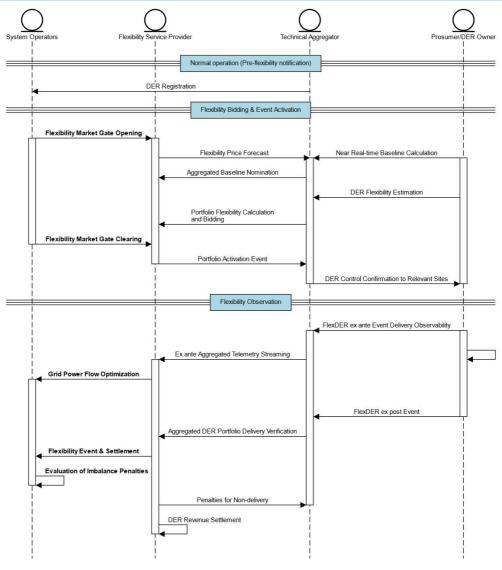


Figure 5 - Sequence diagram for the use case #2.

3.3. Use case #3 - "TSO-DSO coordination for flexibility"

3.3.1. **Scope**

With the increasing decentralization and decarbonization of the energy system, TSOs and DSOs are faced with the challenge of ensuring the resilience of the energy system, while enabling the integration of large RES to contribute to the achievement of ambitious RES deployment targets. The uncertainty of loads and generation flows poses increased challenges over-optimized network operations. Congestions and voltage issues that have been typically addressed with costly network upgrades need to be tackled with smarter, cheaper, non-cable alternative solutions that flexible DER offers through their power electronics interfaces and technologically existing aggregation potential. Active network management regimes for network control need to be developed, which require advanced forecasting of loads and generation for resource scheduling and real-time control. Moreover, a variety of analytics are necessary to ensure that appropriate measures exist to satisfy compliance with evolving reliability standards and security of supply. In their role as system operators, TSOs and DSOs are required to explore, evaluate, and deploy non-network alternatives that include the operation of market-based approaches such as frequency containment and reserves.

The development of new market-based approaches shall be non-discriminatory and services might be offered from all eligible participants (either aggregated or direct end-users) at different voltage levels, while the operation of the transmission and distribution networks shall be performed collaboratively between TSOs and DSOs to ensure synergetic service provision and avoidance of conflicting actions while co-optimizing the operation of both systems (distribution-transmission-national) and reducing the overall OPEX. As electricity network management evolves towards more collaborative management structures, it is of utmost importance that TSOs and DSOs are involved in bilateral data-sharing agreements (facilitated by energy data spaces) towards exchanging flexibility requirements, enabling the identification of critical operational events at both levels of electricity grid operation and allowing for their common criticality prioritization while identifying available flexibility resources. This is pursued through federated flexibility registers, as defined through the new demand side flexibility code, towards ensuring the optimal operation of power grids under evolving real-time conditions via optimal collaborative operational scheduling, maximisation of capacity usage, activation of offered flexibility as well as deployment of flexible connection agreements. System operators also need to engage in data sharing with FSP (as identified in the use case #2) towards gaining increased visibility over available flexibility sources and proper clusters of them based on information shared by the relevant actors.

3.3.2. Description

The exploitation of flexibility, stemming from generation, demand, storage and EV assets, for solving network issues, such as balancing and congestion, is not a novel idea. However, on the one hand the sparsity of adequate real-time information about the available flexibility and on the other hand the fact that the majority of flexible assets and several sources of flexible generation are connected to the

distribution system, poses significant barriers to the efficient exploitation of the flexibility by the transmission system operator. To this end it is of utmost importance that novel approaches (data-driven and intelligence-enabled) are defined, at first for the real-time or near-to-real-time aggregation of the available flexibility provided by distributed energy resources located in the distribution network. Since the majority of the resources located in the distribution system are small-scale, they need to be aggregated to be efficiently included in the operational planning of either DSO or TSO. Moreover, tools enhancing the fast and efficient coordination between TSO and DSO should be developed, so that flexibility from the distribution system to be transferred to the TSO for balancing the system or solving network issues.

In fact, electricity networks are progressively being dominated by small, dispersed prosumers (as also highlighted in use case #2), not only in terms of number but also in terms of criticality for the system resilience since they are associated to the ever growing number of small-scale DERs connected to the network, that continuously expand the energy system "edge", in terms of controllability and operational complexity. The progressive decentralization, which is also accompanied by the introduction of new digitalized assets (EVs, IoT, batteries), poses significant challenges for the resilience of the system, while introducing increased uncertainty in traditional control routines, given the stochastic and intermittent character of renewable generation and the new control variables (not currently addressed in existing tools for the system management) introduced by new assets. Under these circumstances, energy systems need to evolve towards integrated ecosystems and, more specifically, integrated data value chains, to enable the data-driven optimization at system and DER level in a coordinated manner, by stepping on trustful data (intelligence) sharing models facilitated by energy data spaces. Such models and approaches will increase stakeholders' data outreach, enhance their intelligence and facilitate the realization of innovative energy services and collaboration models for improving networks operations in a resilient manner by utilizing the untapped flexibility potential of small-scale dispersed DERs.

As technology advances and becomes more affordable, prosumers and DER owners are no longer perceived as passive elements of the energy system, but are transforming themselves into active nodes that can effectively contribute to its optimized operation since:

- they comprise in a huge source of flexibility able to support distribution and transmission system
 operators with the needed services to balance demand & supply and manage power quality and
 system resilience, and, at the same time,
- they are associated with the generation of vast amounts of asynchronous streamed-data, spanning smart metering and sub-metering information, IoT device information (sensing/control), distributed generation (RES), storage, building systems (heating/cooling) and electric vehicle data, becoming more and more essential for improving observability and orchestrating the resilient operation of a decentralized and complex energy system that effectively achieves the decarbonization advantages that come with the increasing penetration of RES and the progressive electrification of the mobility and building sectors.

Hence, it becomes obvious that the real value of data produced by prosumers and DERs at the edge of the energy system (and beyond it) is hidden in the (real-time) sharing of such (previously non-reachable)

information with the rest of the energy data value chain stakeholders that their operations are directly or indirectly linked to prosumers' distributed assets. The value of energy data spaces and the data sharing functions enabled through them. for network operators, lies on the fact that they can further optimize the stability and resilience of their network through enhanced asset observability, improved forecasting and flexibility analytics resulting from detailed prosumer and DER data.

The coordination between TSOs and DSOs is critical for effective flexibility management, as identified in the recent flexibility code deployment. Both types of operators need to work together to prioritize and address the flexibility needs in their respective networks. To achieve this, improved forecasting approaches and flexibility analytics are needed, as well as coordinated and collaborative scheduling and dispatch practices and tools, for the accurate identification and effective prioritization of critical events expected to occur across the electricity grid. Both System Operators will need to obtain access to previously non-reachable data from DERs across their networks (including local demand data from flexible loads, RES generation data, along with flexibility-relevant data from storage assets/ inverters and associated short- and mid-term forecasts) and fuse them with their own SCADA and metering data so that they can effectively forecast their flexibility requirements, match them to the available flexibility offered by the variety of prosumers, DERs and other flexible assets, prioritize procurement strategies (according to the criticality of events and based on the transparent sharing of operational data and flexibility requirements among them, through the CEEDS) and successfully dispatch the respective signals to ensure the end-to-end resilience of the energy system in the most favorable economic terms.

3.3.3. Scenarios

Table 6 - Scenarios for the use case #3.

	<u>Scenarios</u>						
Scenario name, description	Actors	Triggering events	Pre-condition	Post-condition			
Performant data	Data asset	A party needs to	Raw data, analysis	The party is able to			
search across	consumers	create a service	results, reports,	consume the data			
federated data	(role	without having at	visualizations allowing for	asset that has been			
spaces	obtained	its disposal all the	automated consumption.	acquired based on a			
	by TSOs,	necessary data		valid asset contract.			
	DSOs and	assets					
	FSPs)						
Sharing, trading	Data asset	Request for access	1) Raw data, analysis	A data asset (raw data			
and bartering of	providers,	to previously non-	results, reports,	or computations on			
raw and derivative	Data asset	reachable data	visualizations allowing for	data in the form of			
data assets,	consumers		automated consumption;	analysis results,			
available in	(both roles		2) Availability of	reports or			
federated data	obtained		mechanism to search for	visualizations) is			
platforms/ hubs	by TSOs,		data and other data-based	shared between two or			
	DSOs and		assets				

(incl. OEM	FSPs			more data value chain
platforms)	involved in			stakeholders
	bilateral			
	data			
	sharing)			
Al-enabled Grid-	DSOs,	On demand by the	1) Metering and acquired	Consolidated forecasts
level energy	TSOs	operator	DER data for training and	of demand and
demand and			executing the respective	generation across the
generation			forecasting models;	entire network
forecasting			2) Access granted to Al	
			analytics results referring	
			to individual and	
			aggregated DERs	
Al-enabled Grid-	FSP	On demand by the	DER data for training and	Detailed flexibility
level flexibility		FSP	executing the respective	profiles and forecasts
profiling and			analytics models	at individual DER and
forecasting				aggregated levels
Operational	DSOs,	On demand by the	1) Detailed data for the	Identification of
events	TSOs	operator	existing transmission and	anticipated critical
identification in			distribution network	operation events and
the short and mid-			topology and	their occurrence
term			infrastructure;	probability
			2) Availability of short/	
			mid-term Demand and	
			Generation forecasts	
Short-/ Mid-term	DSOs,	On demand by the	1) Detailed data for the	1) Definition of margins
Network	TSOs	operator	existing transmission and	and requirements for
Operation			distribution network	flexibility to address
Planning			topology and	the anticipated events;
			infrastructure;	2) Specification of the
			2) Flexibility profiles and	flexibility sources to
			short/ mid-term forecasts	effectively tackle the
				identified critical
				operation events

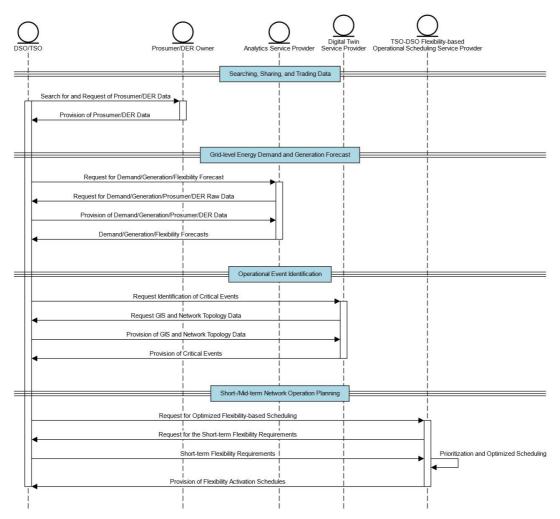


Figure 6 - Sequence diagram for the use case #3.

Regarding the data needs for the realization of use case #3, the following datasets are needed:

- GIS data of MV/LV lines including information about electrical connection (cable or overhead line, length, type, routing).
- Transformer electrical data: Capacity (nominal apparent power), voltage primary & secondary, degree of load Velander's formula constants, etc.
- SCADA Data: Power grid measurements for voltage and current, power factor, tap changer
 positions at the 10 kV side of the 60/10 kV feeders, frequency measurements, active and
 reactive measurements for power generators on 10 kV feeders.
- AMI Data Consumers Smart metering data from MV & LV telemetered consumers (Active+, Reactive or Q1 or both).
- AMI Data Producers Smart metering data from MV & LV telemetered producers PV/ Wind (Active-, Active+, Reactive or Q1 or both).
- Metering data for non-telemetered: Aggregated metering data for non-telemetered MV & LV consumers & producers.

- Grid-level Flexibility Forecasting: Grid-level flexibility forecasting on a 15-minute interval prior to real-time operation.
- Grid-level Energy Demand & Generation Forecasting: Grid-level Demand and generation
 Forecasting on a 15-minute interval prior to real-time operation.
- Total generation: Network peak and average total generation.
- Total demand: Network peak and average total demand.
- Congestion problems: Investigation and detection of network constraints violations.
- Flexibility requirements: Based on the detected congestions.
 - Storage device operational data.
 - Flexibility offers: Offers of the available flexibility at each time instant/period from the FSPs.

3.4. Use-case #4 - "Electromobility: services roaming, load forecasting and schedule planning"

3.4.1. **Scopes**

Given the peculiarity of this sector in the energy domain, the interfaced actors are introduced; they correspond to:

- Charge Point Operator (CPO): party responsible for provisioning and operating EVCI (EV Charging Infrastructure), optimizing the costs & revenues from charging sessions (on the behalf of one or several EVCI owners).
- e-Mobility Service Provider (eMSP): party responsible for providing high-value service related to
 the use of an EV (e.g. booking service). All these services require a subscription to the eMSP from
 the EV user. Users can access to the services with an application (System actor: e-Mobility Service
 Provider Application). Moreover, this actor can also exchange data on consumption schedules with
 DSOs and TSOs and provide flexibility services to the grid.
- Electro Mobility Roaming Service Provider (EMRSP): party responsible for offering a universal intermediation service between CPOs and eMSP. It can also offer interface services with other EMRSPs, thereby broadening the range of responses available to subscribed eMSPs.
- Electric Vehicle User (EVU): person or legal entity using the vehicle and providing information about driving needs and consequently influencing charging patterns.
- Al Service Provider: party responsible for provisioning Al data processing services.

In the electromobility context, this BUC aims to address the following objectives:

- Offer a standardized roaming booking service for electric vehicle users and Charing Point Operators (CPOs) across Europe;
- Provide DSOs/TSOs with charging consumptions schedule based on CPOs' charging schedules and reserved powers, to enhance the accuracy of system operators' forecasts and planned operations.
- Provide flexibility services to the DSOs/TSOs to optimise smart grids management.

3.4.2. Description

In this use case, an EVU who wants to book a charging service must connect to an eMSP, as an application or platform. On this application, he is going to have visibility on the existence of infrastructures, their availability, and will be able to reserve a charging point.

Once connected to the application, users can search for available charging points according to their criteria of location, time and technical specifications for charging. Moreover, the user can compare the different rates applied according to operator and charging criteria.

Furthermore, the user can then reserve a charging slot by specifying the information required for accessing the charging pool, charging his car, and paying for the session (physical characteristics, means of authentication at the charging point, etc.) He/she can access an estimate of the final charge price (calculation based on the selected criteria and provided details). Once the charge has been completed, the user will be able to access his detailed invoice from the eMSP application and will be charged the final amount due. The aim is to make this service available throughout Europe, aggregating all CPO services and facilitating access to them for all electric vehicle users similarly to the mobile roaming services.

In addition, the data on the energy consumption, associated with the scheduled and performed charging session, is exchanged between the EMSP and the DSO/TSO to improve the load forecasting and electrical grid operations. Equally, the DSP/TSOs can send flexibility orders to EMSP to modify the charging schedule. Hence, this use case aims to be the bridge between the mobility and energy data space providing flexibility from EVs to TSO/DSOs for optimising the management of smart grids.

All in all, this use case shares certain pre-requisites related with a European data space, starting from the initialisation of European data space connectors. This macro activity corresponds to the fact that the EMSP (in charge of the booking of charging services), the CPO and the EMRSP are registered on the marketplace of a European data space, the EMRSP has subscribed to the CPO's service (and that the CPO has accepted it), and the EMSP has subscribed to the EMRSP's service (and that the EMRSP has accepted it). Then, the EMRSP exchange its tariffs with CPO and EMSP.

3.4.3. Scenarios

Table 7 - Scenarios for the use case #4.

<u>Scenarios</u>							
Scenario name, description	Actors	Triggering events	Pre-condition	Post-condition			
EV Booking	EVU, eMSP,	Action of the EVU	1) EVU is authenticated	1) Reservation			
Roaming	EMRSP, CPO	in the eMSP app.	to the eMSP App;	contract			
Service			2) eMSP is registered as	2) DSO/TSO			
			a consumer of EMRSP	receives data on			
			services;	energy consumption			
			3) CPOs are registered				
			as providers on EMRSP				
			app;(Optionally) EMRSP				
			are registered as				
			provider of other EMRSP				
EV Flexibility	TSO/DSO	TSO/DSO detects	1)The TSO/DSO has	1)EMSP sends the			
Service	EMSP	a flexibility need in	received the baseline	modified charging			
		the grid.	data on energy	schedule of EVs.			
			consumption from the	2) DSO/TSO			
			EMSP	receives the updated			
				data on energy			
				consumption			

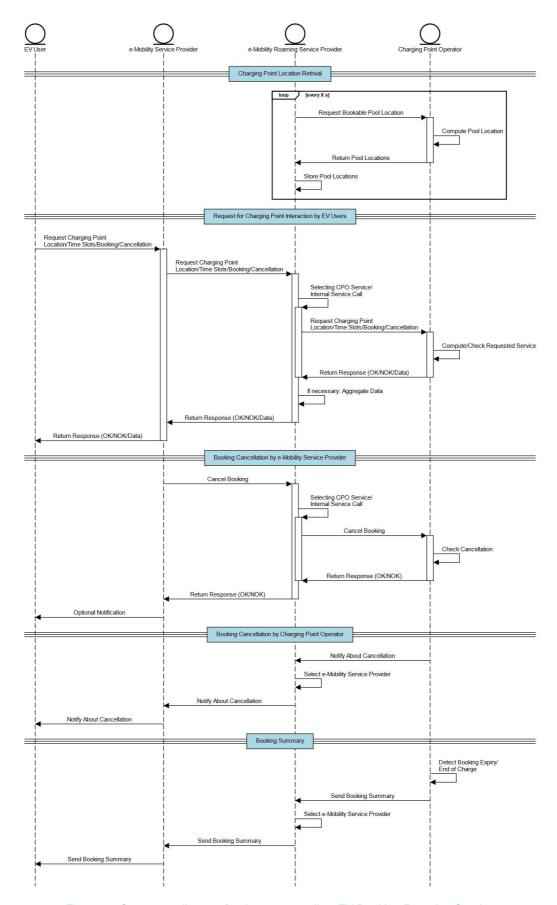


Figure 7 - Sequence diagram for the use case #4 - EV Booking Roaming Service.

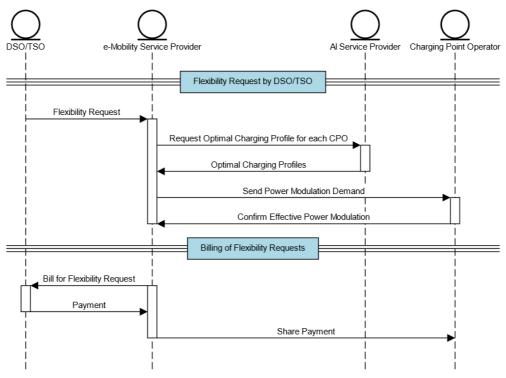


Figure 8: Sequence diagram for the use case #4 - EV Flexibility Service

3.5. Use case #5 - "Renewables O&M optimization and grid integration"

3.5.1. Scopes

The main challenges of renewable energies for getting larger deployment are cost competitiveness and smart grid integration. Therefore, the scopes of this use case are:

- Develop more robust algorithms for optimizing the O&M of renewable energy assets by leveraging data from multiple renewable energy plant owners. This will allow a more reliable and earlier fault detection, automated diagnosis and maintenance prescription resulting in reduced operation and maintenance costs (OPEX).
- 2. Develop data analytics to enable efficient integration of distributed energy sources into the smart grid by monitoring data from different actors such as consumers and producers and data from the grid itself anticipating potential issues, like congestion or voltage volatility, impacting on quality and security of service. This can facilitate decision making on the optimal location and size of renewable resources in the overall system.

3.5.2. Description

An optimized O&M of renewable assets along their lifetime is key to reduce the Levelized Cost Of Energy (LCOE) by increasing the Performance Ratio (PR) and reducing O&M costs and Weighted Average Cost of Capital (WACC). However, nowadays data are normally kept in silos within companies. This is one of the main blockers for AI since the ability of the algorithms to learn and generalize is limited by the company's data, which generally covers a limited range of possible operating conditions. Data

Spaces enable access to a wider range of information than the one related to one single portfolio, enhancing the generalization capacity of AI algorithms for different operating conditions. Furthermore, in some domains, such as wind energy, some relevant actors such as component manufacturers (Tier 2-3 categories), ICT companies, SMEs and academia do not have access to operational data, causing the block of their capacity to improve existing products and develop innovative digital services.

Moreover, high penetration rates of Renewable Energy Sources require special measures by the DSO to ensure the quality and security of energy supply. In this context, it is crucial to develop innovative digital services that leverage existing data from different stakeholders (prosumers, DSO, aggregator) to optimise the power flows in the gird. Consequently, it is necessary to foster data exchange amongst different actors of the energy system, while ensuring data security, privacy and sovereignty.

In this BUC, the category of data providers includes RES plant owners, RES plant operators, OEMs, DSOs and consumers/producers; while the data users are component manufacturers (Tier 2-3 categories) and data analytics service providers.

3.5.3. Scenarios

In terms of the crucial datasets for exchange, this encompasses SCADA data for RES operation, meteorological data, smart grid data, and prosumer energy consumption (smart meter) data.

Regarding the extent of data exchange, it varies with the specific application. For O&M optimization purposes, the scope is global, aiming to gather real operational data from similar assets in diverse operating conditions worldwide. On the other hand, for smart grid integration, the scope is more localized or regional. The majority of the required datasets are proprietary and, in some instances, contain business-critical information. Additionally, certain datasets, such as prosumer data, may include personal information that needs to comply with GDPR. Notably, meteorological data is typically open source.

Concerning the willingness of data providers to engage in a European data space and share data across borders, this largely depends on the renewable technology involved. For example, solar PV data are typically owned by PV plant owners/operators who are open to sharing data. Conversely, in the wind energy sector, this data is predominantly owned by OEMs who are less inclined to share. This difference is because the wind energy sector is shifting its business model from selling wind turbines to provide O&M services, and data is a key competitive advantage to provide this type of services.

The data is exchanged through the Common European Energy Data Space through the so-called connectors ensuring data privacy, security and sovereignty. This data is used to provide energy services by processing raw data through data-driven Al algorithms. These services include for example, RES O&M optimization service, Digital Twins for RES assets and Smart Grid, Prosumer Energy Demand/Generation forecast, smart grid reinforcement planning service, etc.

Table 8 - Scenarios for the use case #5.

<u>Scenarios</u>								
Scenario name, description	Actors	Triggering events	Pre-condition	Post-condition				
RES O&M	OEM, RES plant	RES plant	RES operational data	Early detection of				
optimization	owners/operators,	owners/	available in the data	failures, optimized				
	TIER2-3 component	operators	space	maintenance				
	manufacturer, Data	requests		schedule, optimal				
	analytics service	service		operation				
	providers			prescription.				
RES smart	RES plant operators,	DSO requests	Smart meter data and	Anticipate potential				
grid	prosumers, DSO	service	RES operational data	issues (congestion or				
integration			available in the data	voltage volatility, etc.)				
			space.	and prescribe				
				corrective actions.				
Optimal RES	Consumer/Producer,	Customer/	Generation, consumption	Provide optimal size				
sizing	Data analytics service	Community	and storage data	for RES integration				
(prosumer/	providers, DSO	request	available, geographic					
community)			parameters, EV and					
			prices					
DSO	DSO, Consumer/	DSO Request	Generation, consumption	Provide optimal				
resources	Produces, Data		and storage data	location for DSO				
optimal	analytics service		available, grid model (info	resources				
location	providers		for digital twin) grid					
			information (existing					
			problems), assets that can					
			be installed					

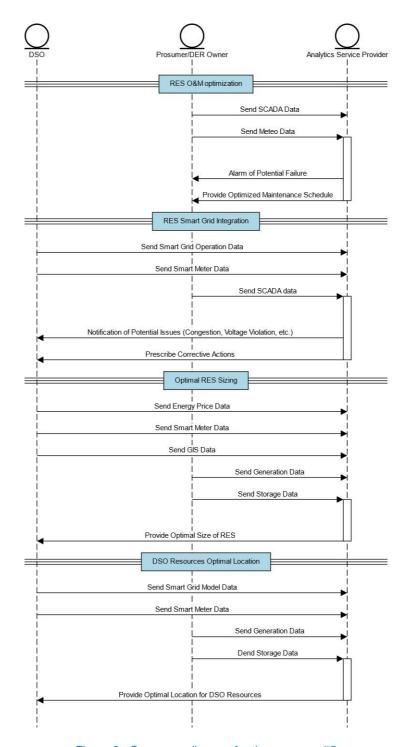


Figure 9 - Sequence diagram for the use case #5.

3.6. Grid codes requirements

A crucial area where energy data spaces can potentially act as a game changer is in the implementation of new rules mandated by the network code on demand response; particularly relevant for the presented use cases #1 "Collective self-consumption and optimized sharing for energy communities" and #2 "Residential home energy management integrating DER flexibility aggregation".

Experts from the EU DSO Entity and ENTSO-E are collaboratively drafting the legal text proposal in close cooperation with European stakeholders. Market actors are increasingly calling for efficient value-stacking options between market platforms and various participants on the demand side. To gain a better understanding of the matter, it is worthwhile to review how future legislation is likely to define specific concepts and allocate responsibilities.

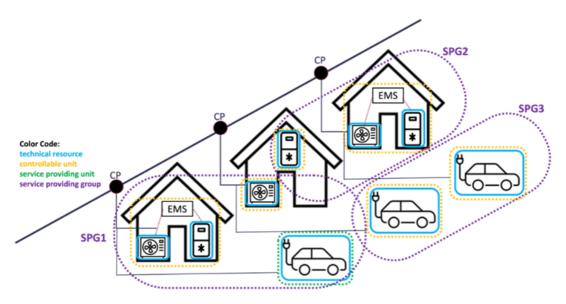


Figure 10 - Definitions as basis for rules on demand response.

To allocate responsibility in the future energy scenario, it is necessary to categorize key assets that play active roles in the market mechanisms under transformation. Referring to Figure 10, assets will be categorized as follows:

- "Technical resource": an individual power generation, energy storage, or demand module.
- "Controllable unit": a single technical resource or a group of technical resources behind the same connection point, provided that these technical resources can be collectively controlled. In this context, the controllable unit remains under the full sovereignty of the final customer, who has the authority to decide which aggregator or service provider will market the flexibility of the asset.
- "Service providing unit" (SPU): a single controllable unit or a group of controllable units, a "service providing group" (SPG), connected to the same connection point. SPUs and SPGs are defined by the service provider to deliver local or balancing services.
- "Service provider" or "aggregator" is a market participant with a legal or contractual obligation to supply local or balancing services from at least one SPU or SPG.

With this conceptual framework as a foundation, regulations govern complex services and the markets associated with them. High-level real-time monitoring requirements will need to be managed by service providers. Simultaneously, the provision of local services must be coordinated and potentially constrained by system operators to avoid violating grid limitations, through local congestion basedmarkets and, potentially, flexible connection agreements. Submetering, together with embedded measurement devices in control unit equipment, will be integrated into the European regulatory framework, and multiple FSP, as well as multiple suppliers, will be permitted to operate behind a final customer's single connection point. Controllable units are required to be "switchable" between aggregators (through dedicated control units), restoring grid users' sovereignty over the hardware they have purchased and effectively separating hardware from aggregation markets. These rules represent a significant leap forward, posing substantial data management challenges for all stakeholders in the field. Relevant data exchange standards are currently discussed by ENTSO-E, the DSO Entity as well as industries to ensure the end-to-end interoperability of demand side flexibility data through harmonised ontologies, as defined in the Common Information Model (CIM). Anyway, the markets they facilitate will not function without full digitalization and efficient data exchange environments, defined at European level to ensure level playing access to distributed control units (such as those associated with heat pumps and EVs).

4. Proposed Architecture for CEEDS

The reference BUCs for CEEDS, described in Section 3 of this document, are based on an ecosystem of data spaces (following the approaches presented in section 2.1) that is strictly necessary to deploy regulated and efficient exchange of energy-related data. In fact, the scenarios of BUCs exploit the availability of data and services, indexed, and discovered in the data spaces catalogues, to operate the energy services. The implementation of this data space approach allows, moreover, to enlarge the set of involved actors as active participants in the energy systems operations, with socio-economic benefits (in terms of monetary savings as well as the quality of the services and reliability of electricity distribution) for every actor of the energy value chain.

As already mentioned, the data spaces ecosystem, which sustains the execution of the presented BUCs, will not be constructed entirely from scratch. Instead, it will constitute an extension and enhancement of the prevailing data exchange ecosystem, which presently operates in isolation in countries with very limited pan-European interconnections. The objective is to establish a data infrastructure that facilitates the seamless and equitable exchange of data at pan-European level, transcending local barriers and limitations. In the current section, the existing solutions for energy data exchange are taken as a starting point; the goal is to describe the necessary adaptations to realize the CEEDS through implementing the proposed energy data space infrastructure.

Focusing on the realization, the proposed model corresponds to the creation of an energy data space as the **combination of (1) multiple "distributed data exchange platforms" with (2) overarching layers defined as the "federated data space" orchestration framework (centralized or distributed).** This approach reflects the concept of DERA 3.0 (Data Exchange Reference Architecture 3.0⁷), which has been defined in the Bridge Data Management WG based on SGAM. Specifications of local and federated parts of the architecture are described hereafter.

The (1) "distributed data exchange platforms" layer (with reference to Figure 11) of the architecture refers to data platforms (including the already existing ones), either associated with (i) regulated infrastructures or (ii) unregulated actors and entities, in line with the key applications and functions defined in the SGAM. On one hand, examples of regulated data exchange platforms typically include grid control room platforms – such as EMS and ADMS - market platforms, meter data hubs and flexibility registers; on the other hand, the category of unregulated actors and entities entails the DERMS, VPP, Charging Point Management, Community Energy Management, DER Technical Aggregators, Building Energy Management.

In general, these currently existing data exchange platforms are already capturing and persisting their own data, which is usually inputted into tailored applications; they are typically operated by energy stakeholders that assume the roles of actors as presented in the BUCs scenarios, each data exchange

_

https://op.europa.eu/en/publication-detail/-/publication/dc073847-4d35-11ee-9220-01aa75ed71a1/language-en/format-PDF/source-294051153

platform behaving as data providers and/or data consumers. The set of energy stakeholders typically include all actors defined through the HEMRM; namely, among many others: DSOs, TSOs, market operators, OEMs, energy communities, charge point operators, customers, BRPs and BSPs. Most of these actors already have such data platforms in place, to manage, process and visualize different sets of operational data. Therefore, since different data space participants are associated with different data exchange platforms, the CEEDS guarantees data exchange among them. The endpoints for energy-related data correspond to entities that act as sources and/or receivers of data, for example: field devices that provide real-time measurements (sensors, voltage and current transformers, PMUs, RTUs, smart metering devices and embedded dedicated measurement devices) and receive actuating commands, scheduled operational setpoints or price-based transactive controls (IEDs, tap-changers, switching devices, behind-the-meter DERs), SCADA, EMS and ADMS infrastructures that contains real-time databases and forecasts data, inputs from prosumers regarding the loads schedule, EVs and DERs actual and forecasted power consumption and generation. These data are bidirectionally exchanged with the distributed data ecosystems via the existing communication infrastructures, which accommodate different technologies such as 5G, LTE, fiber optics, PLC, secured internet, etc.

Looking inside the data platforms on the "distributed data ecosystems" side, various strategies for data collection and storage originate from various implementation approaches for data management. These existing strategies for data management are described by two significant sources: the TSO-DSO Data Management Report ⁸ and the GEODE Data Management Fact Sheet⁹. Notably, the latter extensively explores the implications of adhering to Article 23 of Directive (EU) 2019/944, which delegates the responsibility for shaping the approach to data management for energy services to Member States. This empowers them to address European legal requirements based on their specific subsidiary needs. Consequently, the strategies result in three primary architectural approaches observed in numerous Member States, often applied in parallel for different types of data (i.e., from different sectors or applications), and described hereafter.

- a) In the <u>decentralized model</u>, data remains at its point of origin (e.g., metering information at DSO, contract information at the supplier and generation for DER). Collaborative efforts among market actors are underway to establish standardized market communication and exchange data, either with explicit consent from the data subject or within clearly defined business processes. Examples of frameworks adopting this approach can be found in Austria (EDA), the German market communication, and France.
- b) The <u>centralized model</u> involves a data hub that receives and stores data. All business processes operate within this hub, and outcomes are transmitted back to its clients. This model is managed and developed by a specific entity or service provider, with market participants utilizing its functionalities. This approach is implemented, for instance, in Finland and Estonia.

Blueprint of the CEEDS

⁸ https://www.entsoe.eu/2016/07/27/tso-dso-data-management-report/.

⁹ https://www.geode-eu.org/wp-content/uploads/2020/05/202005-Fact-sheet-GEODE-Data-Management-FINAL.pdf.

The **(2)** "Federated Data Space" side of the architecture (with reference to Figure 11) refers to where data is indexed, making it discoverable and providing a sort of marketplace for sharing (and, possibly, trading) both data and data services. In doing so, the data space will rely on multiple actors and data platforms (the previously described ones, in the distributed data ecosystems side) federating through the data space connectors and offering their data under pre-recorded policies, verified credentials, data models and contractual agreements. At this scope, the federated data space side includes a set of components to implement foundational building blocks that perform the required functionalities of the data space; these components are described in detail in Section 4.1.

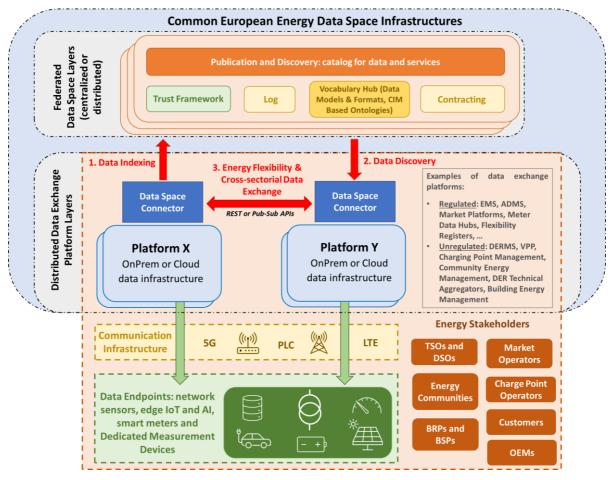


Figure 11 - Exchange of energy-related data among different data platforms (as data space participants).

¹⁰ DATADIS - https://aelec.es/datadis/

The different data space participants are connected through a software component commonly referred to as "data space connector" (the blue box in Figure 11), which realizes the interconnection and data exchange; in particular, the data space connector should be incorporated into the (pre-existing) platforms to enable identification, data harmonization and brokerage towards data spaces. This can be useful for integrating data from different sources, or for allowing multiple applications to access the same data without having to duplicate it in multiple places. Data space connectors typically use standardized data exchange protocols to facilitate the transfer of data between different systems. This can help to ensure that the data remains consistent and accurate across all the connected systems. Beyond trustworthy and interoperable data exchanges, it can provide seamless service utilization.

When implemented in the proposed model for the CEEDS, the data space connector also enables the exchange of energy data and execution of services among the existing platforms (in the "distributed data exchange platform" layers) and through the federated, overarching layer of the data space (with the mechanism explained hereafter). The data connector can be run by a participant (i.e., a data platform) or on its behalf. That provides connectivity with similar data connectors run by (or on behalf of) other participants. Moreover, the data connector provides more functionality than is strictly related to connectivity, for example: data interoperability functions, authentication interfacing with trust services and authorization, data product self-description, contract negotiation, etc. The data space connector therefore has links to many different building blocks located in the federated data space side (e.g., trust framework and vocabulary hub); this includes, in addition to the data exchange, the components reported in the federated side of the data space.

It is noteworthy the key role of the data spaces connector to operate the exchange of metadata (e.g., via the identity manager and credential manager components) and traded data (e.g., via the publication and discovery – catalog - component). Additionally, Figure 11 indicates how different platforms are deployed in the energy data space and, specifically, their exchange of energy-related data; the red arrows indicate cases of:

- 1. **Data indexing** of own data in a data space (between a data space participant and the federated data space);
- Data discovery in data space (between the federated data space and a data space participant);
- Bilateral exchange of the traded data among two data exchange platforms, based on REST or Pub-Sub APIs; the traded data can be associated, for example, with energy flexibility, also in cross-sector implementations.

The complete CEEDS architecture is shown in Figure 12. In this case, additional details are added for the components of the federated data space (i.e., for the trust framework as well as the log and contracting components), which are described in detail in Section 4.1; moreover, the representation of existing data platforms is enriched: the inner components manage the acquisition/provision of data, together with their storage and process in the dedicated analytics and energy services.

Regarding the data exchanged between the different instances of data spaces connectors and the federated data spaces, the approach of the **control plane** and **data plane**, proposed in the DSSC

Blueprint v1.0, is deployed. The control plane oversees decisions related to the management, routing, and processing of data, including tasks such as user identification and the enforcement of access and usage policies (i.e., commonly referred to as metadata). In contrast, the data plane is tasked with the physical movement of data, encompassing the actual exchange of information (i.e., the energy-related data). With respect to the specific data exchange instances reported in Figure 11, on the contrary, Figure 12 maintains a generic configuration while locating the use of control and data planes.

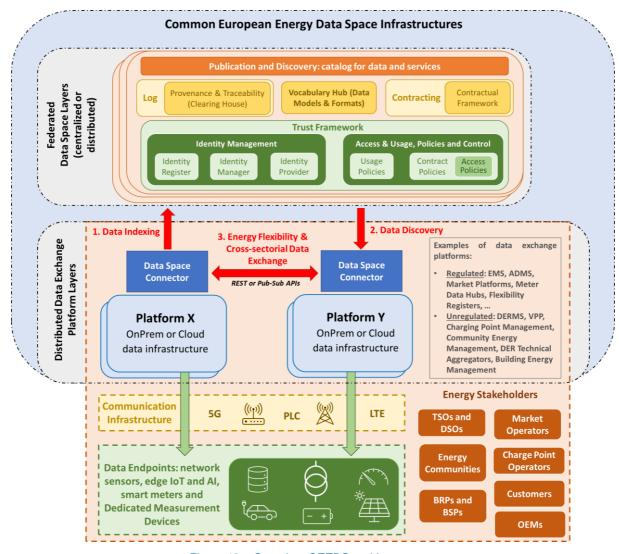


Figure 12 - Complete CEEDS architecture.

4.1. Components of the Data Space Federated Side

With respect to the proposed architecture for CEEDS, represented in Figure 12, the components that form the federated data space side are hereafter individually described [1], [3].

- Trust Framework, which is associated with two building blocks: "Access & usage policies and control" and "Identity Management".
 - Access & usage policies and control. This building block is connected to the concept of data sovereignty which, in the context of data spaces, is about the control of access

and usage of data. Different policies are normally used to express the rights and obligations to maintain the control of data usage; hence, one objective in data space management is the definition of interoperable policies, i.e. rules to give access to a specific energy service (e.g., booking a charging slot with a eMSP or executing a saving estimation in an energy community) and understanding the rules for the usage of the data (i.e., which energy services they enable, the privacy rules with respect to other energy stakeholders).

Two types of policies are defined:

- Access policies, which specify the conditions to access services and data.
- **Usage Policies**, which specify rights and obligations for the usage of the data, including the future usage of data.

To enable the decision-making process in evaluation policies, connection to other building blocks is required for identification, authentication and authorization. Expression of policies and rules are provided from different contexts (e.g. data space level, contractual relationship, law) and must be consolidated into a machine-readable and executable way. In addition, during a data transaction, the policies need to be evaluated and decisions on access to data and services and data usage need to be taken. Access and usage policies in a data space ensure a trusted data ecosystem within a data space; the two main policy groups that are central to the functionality of a data space are access policies (which control access to data and services), which can be included in the contract policies (which review attributes that must be provided at the contract negotiation). While the trust framework provides the existing possibilities for policies in the different categories, the implementation is performed via the data space connectors.

Identity Management. This concept relates to many practical use-cases: (i) identifying data space participants, via an identity registry in which parties are registered that have committed to the data space governance framework and comply with any other requirements, (ii) identifying connectors and other technical components and (iii) identifying trusted data providers (such instances enable data space participants to learn which parties have been certified to provide particular data).

Multiple sub-components form the identity management building block:

- Identity Governor: the data space role that is used to refer to the party that
 performs the identity governance function for a specific identity registry.
- Identity Manager, which is used to refer to the party that performs the identity management function for a specific identity registry.
- **Identity Provider**: the data space role that is used to refer to the party that performs the identity provisioning function for a specific identity registry.

The identity management enables authorization mechanisms based on identity attributes. The deployed functionalities are:

- <u>Security/Resilience</u>. Identity provision and management are critical parts of a cyber-secure system.
- Open Source. The way to implement identification, at any potentially interested infrastructure, should be kept as simple and as open as possible.
- Interoperability. It is very important not just to enable easy federation, but also to make sure the identification mechanism proposed is aligned at European level, maximizing the interoperability with other data spaces, either in the energy or different sectors.

In OPEN DEI building blocks the identity management is associated with the "Trust" category, whereas GAIA-X deploys a decentralized approach based on self-sovereign identity.

- Log. This component is used to log information or store information about data usage (e.g., incidents) and is associated with the building block "Provenance & Traceability". This element is linked to the need to specify the information stored for each transaction, as well as how access and usage are regulated and controlled. Both traceability and provenance serve as vital functional requirements for every participant in a data value chain, particularly one involving multiple data transactions. In data spaces, the observability of each transaction activity, including the provision of evidence, is often essential. This need for observability may arise from legal mandates, the governance framework of the data space, contractual agreements, or other policies. The Provenance & Traceability component is closely associated with the concept of a "Clearing House," defined as an intermediary that offers clearing and settlement services for financial and data exchange transactions. It records all activities during a data exchange, which subsequently proves useful for billing and conflict resolution. Additionally, the Clearing House monitors and logs data transactions, enforces policies, and provides a platform for data accounting.
- Vocabulary Hub. It provides endpoints to enable seamless communication with data space connectors and infrastructure components. Vocabularies are defined as commonly known, standardized terms to describe data, services, and contracts; hence the vocabulary hubs give access to the defined terms and their descriptions present changes and outline the different versions. Moreover, it provides information about the ontology/language used for data and, on the other hand, checks that the data being indexed is compliant with the provided vocabulary. DCAT (Data Catalog Vocabulary)¹¹ is recommended as a publisher to describe datasets and data services. Again, being this an energy oriented approach, IEC (CIM, 61850, COSEM, etc.) and ETSI (SAREF, etc.) standards are what this vocabulary module is expected to be reliant on. The different functions of this component include:

¹¹ Data Catalog Vocabulary (DCAT) – available at https://w3.org/TR/vocab-dcat-3/#Class:Catalog

- Storing vocabularies: the Vocabulary Hub stores and lists valid vocabularies, making them available for the public and long-term use.
- Search on the semantic sources: the Vocabulary Hub allows data space participants to search for semantic resources based on specified criteria, providing a qualified results list with links to vocabularies and other semantic resources.
- Documenting non-standardized data: the Vocabulary Hub permits data space participants to include semantic information about non- standardized data during ingestion, making this information discoverable within the data space.
- Export semantic sources: the Vocabulary Hub enables data space participants to export semantic sources in various formats, including serialization options or human-readable formats.
- Automatic integration with the catalog: the Vocabulary Hub offers continuous integration, ensuring that the catalog of vocabularies has complete access to the semantic information of a vocabulary with appropriate user permissions.
- <u>Validation of data:</u> the Vocabulary Hub allows data space participants to validate their data against specific vocabularies.
- element of the contractual framework encompasses contract templates, model clauses, or modules that empower transaction participants to manage and execute specific data transactions. Integrating tools to automate various stages of the contracting process, such as concluding contracts, monitoring compliance, and terminating agreements, can further streamline data transactions while upholding the legal validity of the agreed-upon terms. This framework delineates the rights and responsibilities of participants within the data space, including providers of enabling energy services (e.g., the data analytics service provider) and the governing authority of the data space. Its primary objective is to translate agreements among these entities into unambiguous and legally binding contractual obligations. Additionally, this component may embed elements of contract automation, utilizing technologies like smart contracts to simplify and automate the creation and execution of contracts. Through the reduction of transaction costs and the enhancement of overall efficiency, contract automation contributes to the improved functioning of the energy data space.
- Publication & Discovery. The publication and discovery building block acts as a catalogue
 containing self-descriptions of the data products available in a data space. These descriptions are
 published in the catalogue by the providers of these products so that they become discoverable for
 potential users. In order to allow this, the publication and discovery building block provides the
 following key capabilities:
 - Management of self-descriptions, including publication, update and removal of selfdescriptions by the providers.
 - Facilitate discovery of self-descriptions by potential users, so the catalogue follows as much as possible the FAIR (Findable, Accessible, Interoperable, Reusable) principles.

- Enable dynamic transactions, bringing together providers and potential users and paving the way for them to establish a relationship that will end up in a provisioning and/or transaction.
- Manage the access to self-descriptions, since the catalogue may contain descriptions accessible just to a specific group of participants (access control to descriptions and policies to determine access rights).

This building block, necessary to ensure loose coupling between data providers and potential users, is critical for facilitating dynamic data transactions between these participants in the data space. It can be implemented through two different scenarios:

- Centralized or distributed catalogue, which includes all descriptions coming from the providers, and publishes them either in a centralized (a unique catalogue for the whole data space) or distributed (several catalogues that will have to implement some kind of synchronization) way. An example of such implementation could be the Metadata Broker specifications provided by IDSA, which contain an endpoint for the registration, publication, maintenance and query of Self-Descriptions.
- Decentralized or p2p catalogue, where the capabilities are included as part of the data connector used by each participant in the data space. In this case, participants directly contact each other on a p2p basis and establish the relationship by using the functionalities defined in the control plane of the connector.

5. Interoperability Aspects

To fully achieve the deployment of CEEDS, starting from the federation of projects' data space instances, detailed interoperability measures are necessary. The interoperability requirements described in this blueprint are grouped into technical interoperability, semantic interoperability and governance interoperability; they refer to the European Interoperability Framework (EIF) Toolbox [6], addressing the applicable layers.

5.1. Technical Interoperability

Technical interoperability refers to the minimum technical framework that is required for all participants of a data space in the energy domain to be able to process and understand the information (metadata) of the services/data offered in the data space and be able to perform data transfers between them (participants). Specifically, this technical interoperability framework covers the following aspects:

- 1. Building blocks
- 2. Actors
- 3. Data formats
- 4. Data transmission protocols

To implement the various capabilities in a data space, technology is needed. In most of the data spaces the component "data space connector", described above as part of the CEEDS architecture, is used to provide an endpoint, enabling actors to participate in a data space. In addition, (shared) registries and services are needed to provide common/shared functionalities in a data space. For example, to register the participants of a data space.

5.1.1. Building Blocks

From the technical viewpoint, nine building blocks are defined, which are grouped into:

- <u>Data interoperability:</u> capabilities needed for the exchange of data: (semantic) models, data formats and interfaces (APIs). This also includes functionalities for provenance & traceability.
- <u>Data sovereignty and trust:</u> capabilities needed for the identification of participants and assets in a data space, the establishment of trust and the possibility to define and enforce policies for access and usage control.
- <u>Data value creation:</u> capabilities used to enable value-creation in a data space, e.g. by registering and discovering data offerings or services, providing marketplace functionality and enabling monetization of data sharing.

The technical building blocks, initially defined by OPEN DEI and included in the DSSC analysis, are shown in the Figure 13.

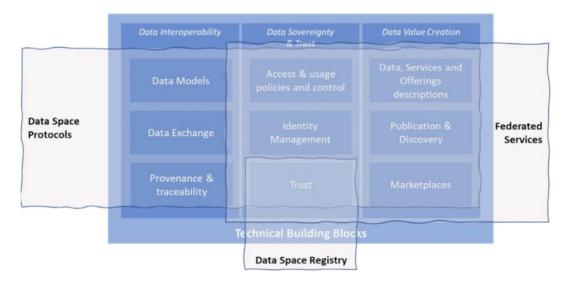


Figure 13 - Technical building blocks, proposed by OPEN DEI and DSSC [1].

From an implementation standpoint, there is not a direct one-to-one correspondence between building blocks and technical components. Often, a single technical component may be associated with multiple building blocks.

As already introduced in the previous section, it is crucial to differentiate between the control plane and the data plane. The control plane is responsible for determining how data is managed, routed, and processed, including user identification and the enforcement of access and usage policies. On the other hand, the data plane is tasked with the actual movement of data. To illustrate, the control plane addresses user identification, access management, and policy enforcement, while the data plane facilitates the physical exchange of data. Consequently, the control plane can be standardized at a high level, incorporating common standards for identification and authentication. Meanwhile, the data plane may vary across different data spaces, adapting to diverse data exchange requirements. Some data spaces prioritize large dataset sharing, others focus on message exchange, and some follow an event-based approach. There is no universal solution, although certain mechanisms can facilitate the collaboration of different data planes.

5.1.2. Actors

Apart from the building blocks, it is important to have a common definition of actors, in line with the latest implementation plans of DERA, and their possible interactions. In this sense, DSBA has recently published the technical convergence paper¹² which has defined the main actors:

- Data Space Governance Authority
- Data Space
- Participant
- Participant Agent

¹² https://data-spaces-business-alliance.eu/wp-content/uploads/dlm_uploads/Data-Spaces-Business-Alliance-Technical-Convergence-V2.pdf

- Data Space Registry
- Credential Issuer
- Identity/Authentication & Authorization, Identity provider

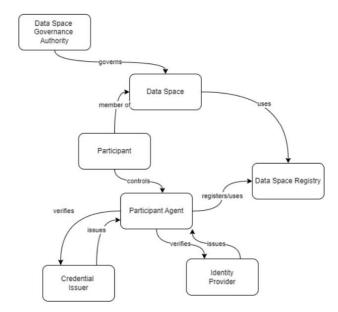


Figure 14 - Relations among data spaces actors (from [7]).

The Figure 14 shows the relationships among the actors.

5.1.3. Data Formats

As the main reference, JSON constitutes a lightweight, language-independent data interchange format, easy to parse and generate. It provides a way to create a network of standards-based machine-interpretable data across different documents. Particularly relevant, as specific proposed solution, is the use of JSON-LD, which serializes linked data in JSON.

5.1.4. Data transmission protocols

The dataspace protocol ¹³ comprises specifications intended to facilitate interoperable data sharing among entities governed by usage control and utilizing web technologies. These specifications detail the necessary schemas and protocols for entities to publish data, negotiate agreements, and access data within a data space. To share data between autonomous entities, metadata is required to facilitate the transfer of datasets, utilizing a data transfer (or application layer) protocol. The dataspace protocol outlines how this metadata is provisioned, including the deployment of datasets, the syntactic expression, and electronic negotiation of agreements governing data usage, as well as how datasets are accessed using "transfer process protocols". To summarize, the dataspace protocol supports interoperability within data spaces. It ensures fundamental technical interoperability for participants, a

 $^{^{13}\} https://docs.international dataspaces.org/ids-knowledgebase/v/dataspace-protocol/overview/readme$

prerequisite for joining any data space. The dataspace protocol aims to define the minimum standard of communication so that each actor manages to communicate with other connectors (even if other connectors deploy different features, semantic models, or business procedures).

5.2. Semantic Interoperability

Semantic interoperability refers to the ability of different systems and devices to exchange and interpret information consistently and accurately, based on a shared understanding of the underlying meaning and context.

Harmonization frameworks for data sharing under a shared semantic context are beneficial for interoperability as they enable consistent and standardized data exchange. These frameworks establish common vocabularies, data models, and ontologies, ensuring a unified understanding across different systems. By harmonizing data-sharing practices, stakeholders can seamlessly integrate and interpret data, facilitating effective communication and collaboration. Harmonization frameworks reduce complexity, improve data compatibility, and enhance interoperability, enabling seamless interactions and promoting efficient decision-making within the smart grid ecosystem. In this regard, the CEEDS relies on the harmonization and usage of prominent standards-based data models and ontologies such as SAREF for behind-the-meter-equipments, IEC 61970 for grid modelling, IEC 62325 ESMP for flexibility market interfaces, IEC 62746 for service provided to technical aggregator communication, IEC 61850-7 for advanced DER controls, OCPP for Public Charging Point interfaces, Open Data Protocol (OData) as well as the overarching CIM data model and associated ontologies. Moreover, it is worth to highlight the CGMES Conformity Assessment Scheme (CAS)¹⁴, developed by ENTSO-E, as an example of conformity assessment in the Energy domain.

In data spaces where there is data exchange, approaches based on data ontology (highlighting the relations among the data instances) are a requirement in order to avoid silos. External systems cannot know about the relationships unless they are provided with a machine-readable format. RDF is a framework for expressing linked data so it can be exchanged between applications without loss of meaning. RDF allows the expression of simple facts in the form of triples (subject, predicate and object). The subject and the object represent the two resources being related. The predicate represents the nature of their relationship in a directional way (from subject to object). RDF uses URIs to name the relationship between things as well as the two ends of the link. There are various concrete syntaxes for RDF, such as Turtle [TURTLE], TriG, [TRIG], and JSON-LD [JSON-LD].

Common ontologies provide a shared vocabulary and conceptual framework, enabling a consistent understanding of data. They facilitate interoperability, integration, and fusion of data from diverse sources. Vocabulary Hubs, where different data models are published are key to link the Marketplace for data /service offering discovery. Moreover, standards provide a common framework for defining data models, message profile formats, and protocols. By adhering to semantic and syntactic standards, open

_

¹⁴ ENTSO-E CIM Conformity and Interoperability – available at: https://www.entsoe.eu/data/cim/cim-conformity-and-interoperability/

data sources can align their data structures and semantics, facilitating seamless interoperability between diverse systems and applications.

5.3. Governance interoperability

This section introduces the concept of governance in data space, which is successively analysed regarding the energy domain together with the interoperability requirements proposed approaches.

Data space governance aims to address fundamental questions about regulatory dynamics, decision-making authority, stakeholder participation, and accountability within a given data space. It involves a collective effort by relevant actors who share a common goal, focusing on determining how decisions are reached, who has the authority to make them, and how they are communicated and enforced.

The new paradigms in the management of energy flows in the energy systems (e.g., associated with the active roles of DER, e-mobility, flexibility solutions) are favouring unprecedented interactions among stakeholders, detailed based on the HEMRM, and, consequently, new streams for data exchange according to SGAM. Foremost importance is then assigned to the identification of these necessary interactions (i.e., the stakeholders to be involved) while equipping the data spaces with systems that respect policies and regulations as well as fostering the development and adoption of new services for reliable energy systems.

The governance framework of data spaces is divided into four distinct layers¹⁵:

- Common European framework for data ecosystem: private-public data governance (e.g., Data Act or Data Innovation Board);
- Domain-specific building blocks governance: inter-data spaces governance;
- Data space governance: intra-data space governance;
- Governance of a soft infrastructure: operational level of data space to provide essential services.

Blueprint of the CEEDS

51

 $^{^{15}\} https://international dataspaces.org/wp-content/uploads/dlm_uploads/Report-OPENDEI-State-of-the-Art.pdf$

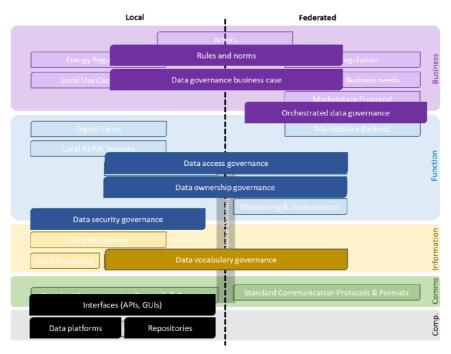


Figure 15 - Governance interoperability in the DERA 3.1 model (from [4]).

With respect to the DERA 3.1 model (developed in the Data Management working group of Bridge, at [4]) the governance components are depicted and have recently been mapped to (i) the local (left – i.e., the distributed data ecosystems with legacy data platforms) and federated (right - i.e., the federated data space) parts as well as to the five SGAM interoperability layers (vertically). They are shown in Figure 15; in total, there are ten building blocks that have been defined, across every SGAM layer, to address the governance interoperability. The governance framework must acknowledge the diversity of platforms and systems, tailored to various market designs and business processes. It should promote cross-stakeholder, cross-border, and cross-sector data exchanges, guaranteeing convenient data access that complies with GDPR requirements. Additionally, the governance model should facilitate coordination between TSO and DSO from a customer perspective, ensuring scalability through the open-interoperable principles leveraging common open-source components and agreed-upon rules. In this regard, it is worth to highlight the proposal highlighted in the int:net whitebook "Engagement Towards Interoperability in Governance" [8]. The analysis conducted on the governance interoperability in SGAM concluded that the 5th SGAM layer is much oriented to business cases and cannot cover political or regulatory and not at all societal interoperability in broad systems; for this reason, the inclusion of a 6th SGAM layer, named "framework" layer is proposed (Figure 16).

This layer addresses interoperability among a large set of energy stakeholders, including:

- Policymakers in politics and public authorities on multiple levels from national to municipal;
- Regulatory bodies;
- Market operators (from global to national to regional and local marketplaces);
- Standardization organizations (national and international);
- Supplier associations, for energy (e.g., ENTSO-E, DSO Entity) and technology (e.g., T&D Europe, AIOTI, SmartEn, SolarPower Europe);

- Consumption Associations (industry and other business associations, building associations, consumer associations);
- Research, innovation and other funding programs (national, transnational, international);
- Institutions for education and human capital development;
- Infrastructure operators (e.g., for transport, health);
- Finance and investment institutions (e.g., ECB, EIB, EU facilities, EFRAG).

The framework layer allows to the identification of specific barriers and requirements for interoperability, hitherto hidden, and to undertake necessary actions that enhance governance fulfilment in data space solutions.

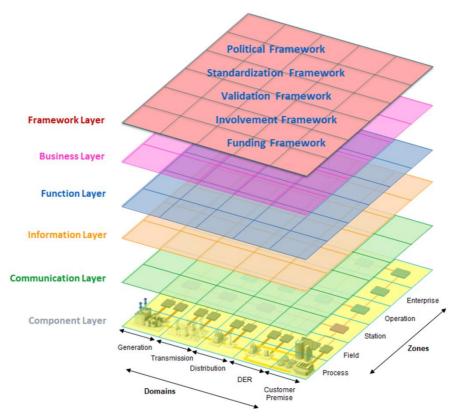


Figure 16 - SGAM plus: the 6th layer "Framework" (from [8]).

Moreover, the DSSC blueprint v1.0 deepens the organizational and business building blocks, reaching the definition of the following **governance building blocks**:

Organisational governance. Governance in a data space is multi-faceted and encompasses various key decisions. Examples of these key decision points include the scope of the data space, the position the data space initiative wishes to take in the ecosystem, openness concerning entering participants, the support it wishes to arrange for its participants, or the principles it wishes to implement (e.g. democratic). The specific choices made will differ between data spaces, but they should aim to promote collaborative, multi-stakeholder governance for effective data space operation.

Data sharing governance. It concerns how data transactions are facilitated within the data space. As a part of the data space governance framework, a governance authority can mandate rules and standards for the security, performance, interoperability and observability of data transactions. Clear data-sharing rules are essential for building trust between data space participants and directly reflect the functionality of the data space.

6. EDSCP Implementations

This section presents the solutions being implemented by the EDSCP in their pilots, deriving approaches for further replication in the CEEDS.

6.1. Governance aspects

Governance of an energy data space involves establishing a comprehensive framework that dictates how data is managed, accessed, and utilized within the energy sector. This framework encompasses a range of policies, procedures, and technologies designed to ensure the data space operates securely, efficiently, and in compliance with regulatory standards. It may entail the identification of stakeholders and the definition of their roles, data management policies (classification, lifecycle etc.), access control and security aspects (authentication / authorization), data sharing agreements and governance bodies. In the following sections, the implementation of peculiar elements (i.e., access control and security, governance rules and data sharing agreements) in the EDSCP will be presented, showcasing the best practices and lessons learned that should be considered.

6.1.1. Access control and security

Identity management is a critical component in the governance of an energy data space, which ensures that data access and usage are controlled, secure, and compliant with regulatory requirements.

Four projects — Data Cellar, SYNERGIES, OMEGA-X, and ENERSHARE — have implemented identity management systems using various approaches and technologies. Despite differences in their methods, all aim to ensure security, authentication, and interoperability of identities, whether for individual users or organizations. The primary focus is on managing digital identities to secure data and facilitate integration with other components and services.

In the area of security and authentication, all projects utilize certificates or similar mechanisms to ensure secure communication between entities. As well, Decentralized Identifiers (DID) and Verifiable Credentials (VC) are commonly used and the implementing solutions are based on established standards (e.g., W3C, OpenID, SAML, OAuth).

Specifically for managing dynamic, secure identities and ensuring the authenticity and integrity of interactions between connectors, Omega-X and ENERSHARE focus on creating an environment compatible with IDSA and GAIA-X trust frameworks. Both projects base the organizational identity management in the implementation of identity provider solution, as defined by IDSA, including a Certificate Authority (CA) and Dynamic Attribute Provisioning Service (DAPS). This combination contributes to the CEEDS System Use Case for onboarding and demonstrating decentralized identity solutions. Moreover, in the Data Cellar project, a dedicated server is used to manage organizational identities and request trust anchors for credential signing as per defined in GAIA-X framework.

For Data Cellar and OMEGA-X projects, the identity management solution is based on Self-Sovereign Identity (SSI) principles, primarily utilizing W3C Verifiable Credentials and Decentralized Identifiers

(DID). Instead, in ENERSHARE pilots "Keycloak" is used for managing individual users' identities, integrating with marketplace services via OpenID, SAML, and OAuth and, additionally, it has adopted the Dataspace Protocol for connector interoperability and aims to implement a participant wallet using DID, OID4VP, and OID4VCI. Nevertheless, in OMEGA-X, the Marketplace Federator is in charge of managing user registrations and approvals, inspired by Gaia-X specifications.

On the other side, SYNERGIES utilizes a "security, authentication & authorisation" service responsible for identity and access management across the energy data space and related marketplaces. This service handles user and organizational lifecycle management, including registration, verification, and authentication. The solution includes single sign-on functionality which facilitates secure communication and authorization permissions across various SYNERGIES components.

6.1.2. Design and implementation of data space governance rules

Governance rules are another important aspect to guarantee interoperability across energy data space. Delving deeper into the policies and rules designed to ensure the data space operates in compliance with regulatory standards on aspects such as access control, risk mitigation and data sovereignty, it is possible to distinguish different approaches within the different EDSCP.

The governance model of the pilots, tested in the different projects, is currently under development; however, all the projects are designing a model that is focused on fully preserving the rights of the data owner and on the facilitation of assurances for both the consumer and the producer of the data. To this end, most projects include legal and ethical considerations to the design of their governance models. From a legal perspective, the legislative frameworks include data protection, cyber security and energy specific regulations. The ethical aspects of governance are generally considered when utilizing an ethics-by-design methodology and, among others, two following principles are guiding the projects actions:

- Creation of a governance model that enables data use and data access ensuring compliance with
 ethical, legal and financial requirements applicable to all stakeholders. This enables the effective
 exercise of available data rights, protect data autonomy, sovereignty, and human dignity as well as
 fundamental rights of individuals such as the right to privacy and freedom from discrimination.
- Implementation of legal agreements, which safeguard and ensure the respect of the governance model; additionally, compensation mechanisms and other adequate remedies are considered and activated in case of fundamental data rights violations.

On a different aspect, when considering the rights of the service providers, these are preserved by the contracts and compensations in the incentive schemes (financial and non-financial) that can be agreed beforehand with the tools provided by the data space.

Regarding the implementation of the governance model, the EDSCP foresees the creation of a body that exerts the powers both within the data space and with the affairs related to cross-data space issues. The role and functions of the governance authority are still under development, anyway a proposed approach corresponds to a general assembly of members supported by a management board. A

federated model could also be adopted for the case of a cross-data space governance, where the positions and opinions of the different data spaces can be represented and considered.

6.1.3. Data sharing agreements

Another relevant aspect to consider within the governance model of the CEEDS is the governance rules for participant **onboarding and offboarding**. These are critical to the governance of data spaces to ensure the integrity, security, and compliance of the data ecosystem. Onboarding rules, ensure that new participants meet data governance standards such as security, privacy, and regulatory compliance. Offboarding rules prevent ex-participants from accessing data and services post-exit. In this context, the practice from the different projects can be summarized in the ways described hereafter.

• Onboarding agreements. In most projects, the application and evaluation of the prospective participant is conducted by the governance authority. The applicant will express the data space's intended use and the authority will check compliance with legal and ethical standards and its technical capabilities (capability to deploy software to provide/consume the data). In the evaluation, the authority will clearly outline the potential penalties and consequences for non-compliance and processes for addressing and rectifying compliance violations. Subsequently, a secret and unique API key will be generated for the participant. This key allows communication with the data space services.

Some projects are working on a first draft version of the terms and conditions for getting involved in the data space. These will define the types of stakeholders admissible for registration and the roles they can effectively undertake (e.g. data providers, data recipients), the processes and technical means employed for licensing applied over shared data or the means employed for establishing data sharing agreements, stepping on formalized and legally binding data contracts.

• Offboarding agreements. When looking into the offboarding process it is important to mention that it represents the termination of the agreement. This includes the notice of termination, data retrieval and deletion as well as the revocation of access. The notice of termination can be either issued by the participant or the data space governance authority. Data retrieval must ensure that all participant data is securely deleted from the data space's systems to protect privacy and comply with data protection regulations and the revocation of access includes a system audit to ensure the revocation of the participant's access.

6.2. Data value creation aspects

The EDSCP address data value creation as one fundamental pillar of their data space implementations. The data value creation is pursued in a trustworthy data space implementation according to three different aspects: (i) the **publication and discovery of data and services**, (ii) the **value-added mechanisms**, and (iii) the **business mechanisms** of the compensations.

The **publication and discovery of data and services** is pursued with data cataloguing, implementing dedicated marketplaces. The Gaia-X specifications constitute a valid reference for the implementation (as for OMEGA-X, ENERSHARE and DATA CELLAR), specifically the so-called "marketplace federator" (or "federator"), which is an entity dealing with managing a set of marketplace functionalities (e.g., inviting administrators, approving the registration of users, accepting offering descriptions uploaded by users, and accepting the deletion of offerings). Moreover, this eases interoperability as the federated catalogue can sync with multiple provider catalogues from any other data space.

The functionality of the marketplaces consist of data search, data request (with specifications regarding the desired duration of use for the dataset, and the expected use of the dataset), data contracting and the data contracting payment. The data contracting is based on a draft contract that includes (i) predefined terms, (ii) free-text terms (to allow the data providers to include their own terms) and (iii) reimbursement details - either the monetary cost or the profile of the dataset expected to be exchanged in a bartering transaction.

Multiple projects opt for the centralized configuration of both the catalogue and the data exploration services, with a strong focus on the human- and machine-readability of look-up mechanisms and result formats. Moreover, the marketplace in DATA CELLAR is built around a push approach, meaning that each data/service provider is solely responsible for publishing, updating, and revoking their listings in the catalogue; this approach excludes the need for a catalogue maintainer or a sophisticated synchronization mechanism. The implemented approach is facilitated using the catalogue's API in authorized mode (which exposes endpoints otherwise not available in the public/non-authorized mode). The syntactic and semantic verification of any submitted self-description against predefined schemas (aligned with the released GAIA-X schemas) can be performed using SHACL checks; security measures include the cryptographic verification of DIDs and VC/VPs.

The **value-added mechanisms** involve a variety of services; SYNERGIES categorizes them in (i) data services (including the monitoring and certification of data asset origins as well as data observability service to monitor the status of each active data check-in pipeline), (ii) generic services (e.g., privacy preservation services, encryption service, access policy service – which define the resolution and which part of the data asset is accessed - security, authentication & authorisation services) and (iii) Al services as well as (iv) application services dedicated to the data analysis, insight extraction (even pre-trained for energy applications) also related to the project use cases.

ENERSHARE identifies two added-value services to support the roll-out of services in the CEEDS: (i) barter monetization and incentives module, which evaluates the intrinsic data value and enabling data monetization schemes, and (ii) data transformation service, based on a syntactic model to translate primary data into a semantic data representation. For example, ENERSHARE's federated learning platform enables training decentralized data across multiple devices, allowing seamless aggregation of models trained on local data while promoting knowledge sharing. Additionally, the added value of the enhanced service for Multi-energy flexibility potential assessment is the support of data-driven models for user profiling, rather than just statistically-based models of the household. In general, the projects

highlight the need to establish clear incentives for data sharing, while still ensuring data privacy as a complement for plain data exchange.

Additionally, DATA CELLAR project delivers a comprehensive suite of value-added services, strategically designed to maximize the benefits of rich data transactions within the data space. Reflecting on the crucial aspects of participation management and user interaction, the project focuses on enhancing user training and engagement to maximize the adoption and usability of the deployed technologies.

The **business mechanisms of the compensations** rely on transaction schemes that will be regulated by formalized data contract templates and enable secure and trusted data asset sharing, trading and bartering, while allowing energy data value chain stakeholders to efficiently search for data assets of interest and providing them with intelligent recommendations for relevant data assets or data assets' providers.

The compensation is implemented with three different approaches:

- <u>Data by tokens</u>, in which the access to assets (data, apps, services) is granted based on payment using a cryptographic token (specific for each data space)
- <u>Data by data</u>, in which the access to assets (data, apps, services) is granted according to
 intrinsic value of data (through the barter exchange and incentives module) allowing a data set
 to be exchange for another data set with equivalent value.
- <u>Data by currency</u> (limited to ENERSHARE), in which the access to assets (data, apps, services)
 is granted based on payment on FIAT currency (which can be handled through the
 marketplace).

Moreover, the marketplace can generate revenues charging a small percentage as a transaction fee for each transaction; as the platform also accommodates auctions, which do not involve token transactions, a fee is applied for the participation in it. To incentivize platform usage, a strategy could be to offer free access to auctions for a user's initial participation and then, a fixed subscription cost.

SYNERGIES implements a "Contract Settlement Engine" which is responsible for handling the payment of the monetary cost or the fulfilment of the counter price (e.g. other dataset) in order to activate a smart contract that has been already duly signed by the legal representatives of the involved parties. The Contract Settlement Engine enables (i) settlement of data bartering agreements (e.g., granularity levels and time frames), (ii) Settlement of monetary transactions of data sharing agreements (verifying the money exchange between the related data asset provider(s) and data consumer), (iii) monitoring of any active contract to ensure compliance with the agreed terms (e.g., consistent data quality, freshness, and update rate as agreed) issuing alerts in case the terms of a data sharing contract are not respected, and for terminating a contract in case of breached terms. The Smart Contract Settlement Engine consists of: (a) a back-end component that is developed on NodeJS and in particular on the NestJS framework,

(b) a blockchain layer, leveraging the Ethereum distributed platform and (c) a front-end component that builds on VueJS and TailwindCSS.

DATA CELLAR solutions work with licenses associated with the digitized objects that represent energy assets (both datasets and AI models). It works with blockchain, using specific smart contracts written in Solidity that administer the exchanges in terms of economics and assets. In particular, two main standards have been used to define the digitization of assets, licenses and the currency used to buy and sell on the platform: ERC721 and ERC20, associated with the creation of non-fungible and fungible tokens, respectively. Licenses can be of two types: "period" or "usage"; the former allows the associated energy data to be used an unlimited number of times, while usage licenses are consumed each time they are used. Every license will be associated with a specific amount of DATA CELLAR Token, which represents the license price. The setup includes also a "balancer", which handles the monetary exchange between tokens and licenses. This component is responsible for making the practical exchange between these two assets, verifying all the constraints associated with the payment (buyer's funds and availability of the license).

7. Conclusions

The presented blueprint underscores the critical need to adopt data space solutions within the energy domain, marking a pivotal moment for the transformation of the industry. The fundamental pillars of data spaces, as highlighted in this paper, not only foster the active engagement of key stakeholders across the energy value chain but also promise mutual benefits, ranging from monetary compensations or financial benefits (shared across actors of the value chain) to an elevated quality of services. At this scope, the establishment of clear rules, policies and regulatory adaptations is a linchpin in facilitating fair data exchange, paving the way for an open market that fosters the participation of new actors, including data and service providers, as well as data consumers.

The document delves into an in-depth analysis of existing challenges within the energy sector and crafts business use cases that form the backbone of the CEEDS implementation. The contribution of this blueprint is twofold.

First, complementary reference use cases for energy are defined and chosen with respect to the existing challenges and opportunities in the domain as well as the directions defined in the EU action plan "Digitalising the energy system". The diversity of these use cases (spanning through areas such as mobility, energy communities, TSO-DSO interactions, residential energy optimization, and renewables O&M) underscores the blueprint's comprehensive approach. The success of these use cases is intricately tied to the widespread adoption of energy data spaces, necessitating a detailed examination of data exchange mechanisms, requirements, and the involved actors.

Consequently, to implement the presented use cases, an architecture for the CEEDS is proposed. This architecture - consistent with reference architectures used in the energy domain such as SGAM and Bridge DERA - envisions the integration of existing data platforms, including specific business-related platforms, through the implementation of a federated data space. Moreover, as the blueprint unfolds, it turns its focus toward identifying and addressing existing challenges in interoperability at technical, semantic, and governance levels. Practical actions and recommendations are outlined, guiding stakeholders on the standards and communication protocols crucial for achieving seamless interoperability.

Looking ahead, the cluster of energy data spaces projects is committed to further investigations aimed at enhancing interoperability, offering invaluable insights for large-scale replications. The emphasis on the exploitability and interoperability of solutions, coupled with the demonstration of the CEEDS use cases, highlights the commitment to practical applicability and scalability. Therefore, this blueprint is an invitation to a broader audience, extending to stakeholders, decision-makers, and professionals in the energy sector. Their active engagement is crucial for translating the blueprint's vision into reality, as energy data spaces transition from conceptualization to tangible implementation in real-world scenarios. The collaborative efforts of the wider community are essential for shaping the future landscape of the energy sector, ushering in an era defined by innovation, efficiency, and sustainability.

8. References

- [1] DSSC Blueprint version 1.0 available at:

 https://dssc.eu/space/BPE/179175433/Data+Spaces+Blueprint+%7C+Version+0.5+%7C+Sep

 tember+2023
- [2] "Designing Data Spaces, The Ecosystem Approach to Competitive Advantage" Boris Otto, Michael ten Hompel, Stefan Wrobel, Springer, July 2022.
- [3] "IDS-RAM 4 Roles in the International data spaces",

 <a href="https://docs.internationaldataspaces.org/ids-knowledgebase/v/ids-ram-4/layers-of-the-reference-architecture-model/3-layers-of-the-reference-architecture-model/3-1-business-layer/3_1_1_roles_in_the_ids_accessed on February 2023.
- [4] "European (energy) data exchange reference architecture 3.0 (DERA 3.0)", BRIDGE, July 2023.
- [5] Jimenez S., Interoperability Framework in Energy Data Spaces, International Data Spaces Association, October 2023 https://doi.org/10.5281/zenodo.10117882
- [6] European Interoperability Framework (EIF) Toolbox Available at: https://joinup.ec.europa.eu/collection/nifo-national-interoperability-framework-observatory/solution/eif-toolbox/
- [7] "Technical Convergence Discussion Document", Data Spaces Business Alliance, Version 2.0, April 2023.
- [8] "int:net D4.3 Engagement Towards Interoperability in Governance (V 1.0)" L. Karg, M. Santos Mugica, J. Jimeno Huarte, November 2023 https://intnet.eu/resources/technical-resources
- [9] "TSO-DSO Data Management Report", ENTSO-E, July 2016.

9. List of Figures

Figure 1 - Ensuring alignment between the DSSC and the CEEDS Blueprints	7
Figure 2 - Possible ecosystems strategies for data spaces (adapted from [2])	9
Figure 3 - Identified reference use cases for CEEDS.	13
Figure 4 - Sequence diagram for the use case #1	19
Figure 5 - Sequence diagram for the use case #2	22
Figure 6 - Sequence diagram for the use case #3	27
Figure 7 - Sequence diagram for the use case #4 - EV Booking Roaming Service	31
Figure 8: Sequence diagram for the use case #4 - EV Flexibility Service	32
Figure 9 - Sequence diagram for the use case #5.	35
Figure 10 - Definitions as basis for rules on demand response	36
Figure 11 - Exchange of energy-related data among different data platforms (as data space	
participants)	40
Figure 12 – Complete CEEDS architecture	42
Figure 13 - Technical building blocks, proposed by OPEN DEI and DSSC [1]	48
Figure 14 - Relations among data spaces actors (from [7])	49
Figure 15 - Governance interoperability in the DERA 3.1 model (from [4]).	52
Figure 16 - SGAM plus: the 6th layer "Framework" (from [8])	53

10. List of Tables

Table 1 - Categories of data spaces.	10
Table 2 - Summary of the BUCs.	13
Table 3 - Data spaces objectives with respect to the BUCs.	14
Table 4 - Scenarios for the use case #1	18
Table 5 - Scenarios for the use case #2	21
Table 6 - Scenarios for the use case #3	25
Table 7 - Scenarios for the use case #4	30
Table 8 - Scenarios for the use case #5.	34

11. List of Abbreviations

ADMS - Automation Distribution Management System

BRP - Balance Responsible Party

BSP - Balance Service Provider

CIM - Common Information Model

COSEM - Companion Specification for Energy Metering

CPO - Charge Point Operator

DER - Distributed Energy Resources

DERA - Data Exchange Reference Architecture

DSO - Distribution System Operator

EDSCP - Energy Data Space Cluster Projects

EMRSP - Electro Mobility Roaming Service Provider

EMS – Energy Management System

EMSP - e-Mobility Service Provider

ENTSO-E - European Network of Transmission System Operators for Electricity

EV - Electric Vehicle

EVCI - Electric Vehicle Charging Infrastructure

EVU - Electric Vehicle User

FSP - Flexibility Service Provider

GDPR - General Data Protection Regulation

JASC - Jointly Acting Self-Consumers

IEC - International Electrotechnical Commission

OEM - Original Equipment Manufacturer

O&M - Operation and Maintenance

OCPP - Open Charge Point Protocol

PV - Photovoltaic

RES - Renewable Energy Sources

SAREF - Smart Appliances REFerence ontology

SCADA - Supervisory Control and Data Acquisition

SGAM - Smart Grid Architecture Model

SGU - Significant Grid User

SPG - Service Providing Group

SPU - Service Providing Unit

TSO - Transmission System Operator

12. Glossary

Access & Usage Policies and Control: Policies that define the rights and obligations for accessing services and using data within CEEDS, ensuring control over data usage.

CEEDS (Common European Energy Data Space): A collaborative initiative aimed at enhancing data sharing and interoperability within the European energy sector to foster innovation, efficiency, and sustainability.

CIM (Common Information Model): A standardized data model used to facilitate the exchange of information among various systems and organizations in the power industry. It ensures interoperability and seamless integration by providing a common framework for representing power system components, their attributes, and relationships.

COSEM (Companion Specification for Energy Metering): A set of standards for energy metering data exchange, facilitating interoperable and accurate energy consumption measurements.

CPO (Charge Point Operator): Entities responsible for installing, operating, and maintaining electric vehicle charging stations.

Contracting: Focuses on managing and executing specific data transactions through contract templates, model clauses, and possibly smart contracts to streamline and automate the contracting process within CEEDS.

Control Plane and Data Plane: Differentiates between management, routing, and processing of data (control plane) and the actual movement of data (data plane), pivotal for standardizing data exchange in CEEDS.

Cybersecurity in Energy Systems: The protection of energy infrastructure and data from cyber threats and attacks, ensuring the reliability, integrity, and availability of energy systems and data.

Data Space Connector: A software component that enables interconnection and data exchange between different IT systems/platforms and data-using applications, facilitating interoperable and trustworthy data exchanges in CEEDS.

Data Spaces: Conceptual frameworks that enable secure and sovereign data exchange across different domains and industries, promoting interoperability and collaboration.

DER (Distributed Energy Resources): Small-scale units of local generation connected to the grid at distribution level, including solar panels, wind turbines, and energy storage systems.

DERA (Data Exchange Reference Architecture): A framework for facilitating efficient and secure data exchange in distributed energy resource environments.

Demand Response (DR): A change in the power consumption of an electric utility customer to better match the demand for power with the supply.

Digital Twin Technology in Energy: The creation of a digital replica of physical assets, processes, people, places, systems, and devices for various purposes in energy management and optimization.

Distributed Data Ecosystems: Collections of data platforms that capture and manage their own data, usually inputted to local services for tailored applications, fundamental to the CEEDS architecture.

DSO (Distribution System Operator): Entities responsible for operating, maintaining, and developing the distribution network for electricity, ensuring secure and reliable energy supply.

EMRSP (Electro Mobility Roaming Service Provider): Organizations that provide interoperability among different e-mobility service providers, facilitating seamless electric vehicle charging across networks.

EMSP (e-Mobility Service Provider): Companies that offer services to electric vehicle users, including charging and billing.

Energy Data Analytics: The process of analyzing large datasets to uncover patterns, correlations, market trends, customer preferences, and other useful information to make informed decisions in the energy sector.

Energy Efficiency: The goal to reduce the amount of energy required to provide products and services, enhancing energy conservation in processes, buildings, machines, and devices.

Energy Storage Systems (ESS): Technologies used for storing energy for later use, including batteries, flywheels, pumped hydro storage, and thermal storage, playing a critical role in balancing supply and demand in the energy grid.

ENTSO-E (European Network of Transmission System Operators for Electricity): An organization that represents European TSOs, promoting the development of an integrated national and cross-border transmission system to support the EU's energy goals.

EV (**Electric Vehicle**): Vehicles that use one or more electric motors for propulsion, relying on battery storage for energy.

EVCI (Electric Vehicle Charging Infrastructure): The set of hardware, software, and services that provide electric energy for the recharging of electric vehicles.

EVU (Electric Vehicle User): Individuals or entities that own or operate electric vehicles.

Federated Data Space: An overarching layer that indexes data from multiple distributed data ecosystems, making it discoverable and facilitating a marketplace for trading both data and data services in CEEDS.

Flexibility Service Provider (FSP): Entities that aggregate and manage flexibility services from DERs or demand response to provide valuable services to the grid, such as balancing and congestion management.

GDPR (General Data Protection Regulation): European Union regulation that sets guidelines for the collection and processing of personal information from individuals who live in the European Union.

IEC (International Electrotechnical Commission): An international standards organization that prepares and publishes international standards for all electrical, electronic, and related technologies.

Identity Management: Enables the identification of data space participants, connectors, and trusted data providers, crucial for authorization mechanisms in CEEDS.

Interoperability: The ability of different systems, devices, applications, and services to work together within and across organizational boundaries to meet the diverse needs of users.

IoT (Internet of Things) in Energy: The network of physical devices, vehicles, home appliances, and other items embedded with electronics, software, sensors, actuators, and connectivity which enables these objects to connect and exchange data, enhancing operational efficiency, and energy management.

Log: Used to log information or store data about data usage, incidents, and activities within the data space, associated with the "Provenance & Traceability" building block in CEEDS.

Microgrid: A localized group of electricity sources and loads that normally operates connected to and synchronous with the traditional centralized grid (macrogrid), but can also disconnect to "island mode" and function autonomously as physical or economic conditions dictate.

Metering: The process of measuring energy consumption or production, critical for enabling high-level, real-time monitoring requirements managed by service providers within CEEDS. It supports the digitalization and efficient operation of energy markets.

OEM (Original Equipment Manufacturer): a company that produces parts and equipment that may be marketed by another manufacturer.

O&M (Operation and Maintenance): Activities associated with operating and maintaining energy systems and infrastructure to ensure they function efficiently and effectively.

OCPP (Open Charge Point Protocol): An application protocol for communication between electric vehicle charging stations and a central management system, also known as a charge point operator.

PV (**Photovoltaic**): Technology that converts light into electricity using semiconducting materials that exhibit the photovoltaic effect, widely used in solar panels.

Publication & Discovery: Acts as a catalogue for the data products available within CEEDS, managing self-descriptions and facilitating the discovery of data products by potential users.

RES (Renewable Energy Sources): Energy sources that are replenished at a faster rate than they are consumed, such as solar, wind, hydro, and biomass.

SAREF (Smart Appliances REFerence ontology): A shared model of consensus that facilitates the interoperability of smart appliances, promoting the integration and communication between different devices and systems.

SCADA (Supervisory Control and Data Acquisition): A control system architecture comprising computers, networked data communications, and graphical user interfaces for high-level process supervisory management, while also allowing other software applications to perform essential process control.

SGU (Significant Grid User): the existing and new power generating facility and demand facility deemed by the TSO as significant because of their impact on the transmission system in terms of the security of supply, including provision of ancillary services.

Smart Grids: Electricity networks that use digital technology to monitor and manage the transport of electricity from all generation sources to meet the varying electricity demands of end users.

Smart Grid Architecture Model (SGAM): Conceptual framework designed to support the visualization, design, and analysis of smart grid systems, ensuring interoperability and standardization. It organizes the smart grid into three dimensions: domains, zones and layers.

Smart Meters: Electronic devices that record consumption of electric energy in intervals of an hour or less and communicate that information back to the utility for monitoring and billing.

SPG (Service Providing Group): Entities or consortia that offer a range of services, potentially across different sectors, leveraging collective capabilities to meet diverse customer needs.

SPU (Service Providing Unit): The individual operational units within a service providing group, each responsible for delivering specific services or functions.

Submetering: The measurement of energy use beyond the primary utility meter, allowing for detailed tracking of energy consumption or production at a granular level within premises. Integrated into the European regulatory framework, it enables multiple Flexibility Service Providers (FSPs) and suppliers to operate behind a final customer's connection point.

Sustainable Energy Transition: The process of shifting from fossil fuel-based systems of energy production and consumption to renewable energy sources, improving energy efficiency and reducing greenhouse gas emissions.

Trust Framework: A set of building blocks, including "Access & Usage Policies and Control" and "Identity Management," ensuring a trusted data ecosystem within CEEDS.

TSO (Transmission System Operator): Entities responsible for transporting electricity over long distances via high-voltage power lines, ensuring the stability and reliability of the electrical grid.

Virtual Power Plants (VPPs): A cloud-based distributed power plant that aggregates the capacities of heterogeneous Distributed Energy Resources (DER) for the purposes of enhancing power generation, as well as trading or selling power on the electricity market.

Vocabulary Hub: Provides endpoints for seamless communication with data space connectors and infrastructure components, storing and documenting vocabularies, ensuring compliance within CEEDS.

CONTACT

Interoperability Network for the Energy Transition (int:net)

c/o Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Hansastrasse 27c, 80686 Munich Germany

mail: info@intnet-project.eu