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AbstractSpacecraft telemetry rates and product complexity 
have steadily increased over the last decade presenting a 
problem for real-time processing by ground facilities. This 
paper proposes a solution to a related problem for the 
Geostationary Operational Environmental Spacecraft 
(GOES-8) image data processing and color picture 
generation (GOES-8 application). Although large super- 
computer facilities are the obvious heritage solution, they 
are very costly, making it imperative to seek a feasible 
alternative engineering solution at a fraction of the cost. The 
proposed solution is based on a Personal Computer (PC) 
platform and synergy of optimized software algorithms and 
reconfigurable computing hardware (RC) technologies, 
such as Field Programmable Gate Arrays (FPGA) and 
Digital Signal Processors (DSP). The solution involved 
porting the GOES-8 application fiom its Silicon Graphics 
Inc (SGI) WorkstatiodUNIX platform, making minor 
platform specific changes to the GOES-8 application (so 
that it runs on the PC), benchmarking the various code 
segments, and implementing the most compute intensive 
functions in hardware. After pre-hardware optimization 
steps in the PC environment, the necessity for using RC 
hardware implementation for bottleneck code became more 
evident. The problem was solved beginning with the 
methodology described in [l], [2], [3], and implementing a 
novel methodology for this application. The PC-RC 
interface bandwidth problem for the class of applications 
with moderate input-output data rates but large intermediate 
multi source data streams has been addressed and mitigated. 
This opens a new class of satellite image processing 
applications for bottleneck problem solution using RC 
technologies. The issue of a science algorithm level of 
abstraction necessary for RC hardware implementation is 
also described. Selected software fimctions already 
implemented in hardware were investigated for their direct 
applicability with the intent to create a library of RC 
functions for ongoing work. A complete class of spacecraft 
image processing applications development using re- 
codigurable computing technology to meet real-time 

requirements, including methodology, performance results 
and comparison with the existing system, is described in 
this paper. 
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INTRODUCTION 

The nominal telemetry rate of the GOES-8 imager 
instrument is 2.22 Mega bits (Mb) per second (Mbs) and the 
ground processing system receives information sufficient to 
produce one color picture in 75 seconds. The GOES-8 
application must be capable of processing the data and of 
producing the largest sue output color picture in fewer than 
75 seconds, or before the information arrival of the next 
image telemetry data is complete. This 75-second threshold 
is the Real-Time (RT) processing criteria. The GOES-8 
operational application currently takes 291 seconds to 
generate a large color picture fiom telemetry. This is 
approximately 4 times greater than the real-time 
requirement of 75 seconds. 
Simple real-time processing of GOES raw telemetry data 
has been accomplished using data captured by an antenna 
on a school rooftop and processing a telemetry band, at a 
time, out of the 5 bands. There are reasons why the 
generation of a large color picture takes so long. This is 
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because the GOES-8 application is scalable and can 
generate small, medium and large color pictures. The 
moderate volume of GOES-8 data required to generate a 
single output color picture product is comprised of 12.5 
Mega Bytes (MB) source telemetry (four infrared bands and 
a visibility band), a 10.55MB prebuilt color map and a 
prebuilt 0.425MB navigation file. Some intermediate data, 
like sun angles, is derived during processing, bringing the 
basic unit operations data volume to 25MB. Furthermore, 
this moderate volume of data is expanded to 400MB within 
the GOES-8 application during intermediate and complex 
science data processing required for the large color picture 
generation. The moderate telemetry volume expansion by a 
factor of 30 and the associated computation complexity 
phenomena are at the core of this application performance 
problem. 

NASA’s Dr. Dennis Chesters, the GOES-8 Principal 
Investigator, and Marit Jentoft-Nilsen from the GOES-8 
application development and operations team formulated 
the problem: in order to meet the real-time processing 
criteria the existing GOES-8 application’s run time that 
comprises all processing required to produce an output 
color picture, needs to be improved by at least a factor of 
four. They also provided the GOES-8 application’s 
Interactive Data Language (IDL) (Trademark of Research 
Systems, Inc.) source code, input test data set and the native 
SGI WorkstatiodUNIX platform timing performance 
benchmarks (Section 5.0 Table 2). It was assumed in this 
project that all production input data will be similarly 
provided by the GOES-8 operations center on the native 
WorkstationAJNlX platform, accessed over the Internet by 
the proposed solution PC/RC platform, and that the output 
will be directed to the same native Workstation/uNM 
platform over the Intemet. Whilst, when the problem is 
solved the solution can be demonstrated in the development 
laboratory using real time telemetry. 

The methodology that was used to solve this problem and 
the solution comprise the subject of this paper. 

1.0 APPLICATION RUN-TIME COMPLEXITY AND 
THE SOLUTION METHODOLOGY 

The phenomenon of moderate telemetry volume expansion 
during science data processing is not specific to the GOES- 
8 image data processing. This expansion often originates in 
science data processing required to generate a complex 
product. In the case of the GOES-8 application such a 
product is a large color weather picture obtained by 
processing telemetry 900x750 pixel multi band images. The 
additional processing of GOES-8 spacecraft raw telemetry 
involves computing sun angles for each data pixel, as well 
as this small telemetry grid up-scaling to 1800x1500 pixels 
(medium picture size) or to 3600x3000 pixels (large picture 
size) and the associated with it interpolation, filtering and 
smoothing algorithms that comprise the science data 
processing complexity. 

Spacecraft telemetry rates and telemetry product complexity 
have steadily increased over the last decade. Generating 
complex products from even moderate input data volumes 
results in large intermediate data volumes. When a large 
intermediate input-output data volume is coupled with multi 
band and color nature of data and intensive computations it 
becomes the core of a data processing application 
performance problem. 

1.1 Problem Complexity and Solution Goal 
In the GOES-8 application, there is a need for a dual 
exchange between the PC and RC board of 400MB of 
intermediate data, and concurrent processing on the RC 
component of an equivalent of 1080 Millions of floating 
point operations (MFLOPS) within 30 seconds. This 
presents a significant challenge to a low cost platform and 
requires methodology considerations at the project outset. 

The goal is to solve the problem with minimum resources. 
This, for example, can be accomplished by using a DELL 
Dimension XPS T550 PC on a Windows98 Operating 
System with 768Ml3 SDRAM (three 256 h4E3 PC1 l O O M H z  
SDRAM ECC memory modules), a Texas Instrument Inc. 
(TI) DSP board TMS32OC6701 and an FPGA StarFire 
board from Annapolis Micro Systems Inc. 

A single inexpensive PC platform selection is motivated by 
the interest in concentrating the processing intelligence, in 
view of plans for extending the task from a ground platform 
to spacecraft. ‘There are also available inexpensive FPGA 
and DSP boards for the PC utilizing the Peripheral 
Component Interface Bus (PCI) [5 ] .  Furthermore, in 
addition to the solution goal the main objective is to develop 
in-house capabilities to apply this solution to a wide number 
of other applications. The solution’s methodology depends 
on a few basic: considerations that stem fiom this goal and 
main objectives. 

1.2 Methodology Basic Considerations 
The origins of the large data volumes and intensive 
computations were introduced above. It becomes apparent 
that there is need for large memory resources, both on the 
computer platform and its RC components, to handle large 
volumes of data. There is consequently a need for fast data 
transfer interfaces between the PC and RC board, as well as 
between RAM memory and CPU on the PC, and external 
memory and data paths on a DSP board. It was known that 
the PC/PCI/FPGA board interface is utilizing 70% of the 
PCI bus bandwidth and that the corresponding and 
advertised DSP board ideal throughput is 160 Mbs (the 
practical IO bandwidth for the PC-DSP PCI interface 
appears twice less. than this number). Because the RC 
boards carry small external memories there is a need to 
partition the problem and associated data PC-RC streams 
into IO blocks to satis@ memory limits. This, however, 
requires careful sizing of the IO block (n) and the number of 
IO transfers (k) to optimize the practical throughput and, 
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in turn, requires a top Application Programming Interface 
(API) level synchronization mechanism between the PC and 
RC components. The RC technology state-of-the art 
presently has limitations in these areas, namely the FPGA 
board allows fast PCI bus and on-board 10 operations but 
lacks serial floating point arithmetic (FPA) while the DSP 
board provides the FPA but has smaller IO bandwidth. This 
contributes to the problem complexity and requires pre- 
hardware optimization efforts in order to use the RC board 
advantages. New technologies allowing RC access by using 
a PC RAM slot and floating point arithmetic libraries for 
FPGA could soon provide a better RC option. 

1.3 Methodology Roadmap 
The proposed engineering solution methodology roadmap 
was first to configure an IDL development environment on 
a PC platform, convert the application from its native 
SGT/UNIX platform to a lower cost PCNindows platform 
(Windows Operating System is a Trademark of Microsoft 
Corporation) and make it work on the new platform in 
software and generate color pictures which are comparable 
to those produced on the SGI/UNM platform for the same 
test set of input files. The workable PC IDL code 
application software is then optimized to achieve 
comparable to the SGI/UND( platform or better run-time 
performance and determine the PC bottlenecks. And finally, 
the PC IDL software code bottlenecks are implemented in 
high-speed, reconfigurable, computing hardware to achieve 
real-time performance. The selected RC hardware must 
make use of floating point arithmetic required by the 
bottleneck science algorithms. Because IDL is not an open 
source code environment the conversion of the entire 
GOES-8 application into RC hardware is not feasible since 
it would require reconstruction of many complex IDL 
algorithms. Following are the few important steps along this 
methodology roadmap implementation. 

1.4 Methodology Critical Steps 
Configuration control of the preempted GOES-8 application 
IDL software version V2 and the newly procured IDL 
development system (for Windows98) Version 5.3.1 for the 
duration of this project was essential to this project success. 
It is a mature application that has been used in operations 
for a long time. This allowed freezing the code and its IDL 
development system version for the duration of this project 
(a few changes were made to the application code required 
due to platform conversion). 
This paper describes the methodology of pre-optimizing the 
application sof iare  on the new PC platform and seeking 
out bottlenecks before bottleneck code implementation in 
RC hardware such that the native platform performance 
benchmarks are improved first. This approach allows to 
develop insights into application internals and specifics 
before attempting a front large-scale implementation of 
code in hardware. 
The PC-RC large intermediate multi source data streams IO 
problem has been addressed and mitigated. This problem is 
one of the reasons why some similar applications were 

previously implemented in full in RC hardware. and at 
greater costs. In such an application a moderate data rate 
single stream input and output is handled by the RC 
hardware, as well as all the computations. Exchange of 
large multi source intermediate data streams between host 
PC and RC hardware is avoided at the expense of a very 
complex implementation of an entire application in RC 
hardware. 
Searching for the bottleneck code segments and only their- 
RC harpdivare implementation, rather than the entire 
application, is the main theme of this paper. This 
methodology is based on the solution to the PC-RC large 
intermediate multi source data streams exchange problem. 
Making the converted application run on the new PC 
platform and validating the sofiware product correctness 
before hardware implementation tools was important in 
avoiding later problems. This validation was done by 
running the application on both platforms for the same set 
of operational input files, and comparing the resulting 
pictures. The native platform application may evolve and, 
because of resulting picture file lossey compression, a slight 
difference in the product pictures is expected and 
acceptable. 

1.5 Initial Observations and Lessons 
Just porting the application @om its native operational 
platform to the PC platform and limited pre-hardware 
optimization improved the basic performance of the 
application and provided new insights into the problem, 
namely: 

a) The PC platform production of the small and medium 
size images (the scalability of the problem is described 
below in Section 2.0) is faster by a factor of two in 
comparison with the native platform and is already meeting 
the real-time criteria. 
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b) There was a performance loss in comparison with the 
native platform benchmark for the generation of the large 
color picture using the initial PC memory configuration of 
128MJ3. It was determined that the PC memory size is a 
significant factor in this application performance. The PC 
platform memory was then upgraded to its maximum 
allowable 768MB memory configuration including the PC 
BIOS upgrade. This greatly improved the performance. 

c) It is interesting that the native platform general 
performance bottlenecks shifted on the PC to other, less 
expected places in the application. Upgrading the PC 
platform memory to meet most of the application’s 
requirements and splitting the large picture generation 
bottleneck code into 16 segments led to improving this case 
difficult benchmark by a factor of two, and reaching the 
real-time criteria performance goal within 50 seconds. 
However, the 768MB memory and BIOS upgrades alone 
were not enough to achieve this result. The original process 
was still slow with this maximum memory confguration. 
Only when splitting was introduced did we reach the 120 



seconds result. This splitting also contains elements of 
classical loop unrolling to economize on index processing 
and the resulting data type was of single precision floating 
point as opposed to double. This type change and its 
implications are further described in Section 6. 
d) Local optimization of functions may degrade the 
application overall system performance. 

The first observation (a) is quite natural: the newer PC 
platform has a faster Pentium Ill processor and there is a 
possible gain in computational performance in comparison 
with the older workstation. The second observation (b) can 
be attributed to the PCEC platform memory size and 
configuration limitations. Since the processor is accessing 
memory far more than any other device, and a shortage of 
Random Access Memory (RAM) is definitely causing more 
access of virtual memory on hard disk, the memory size and 
access speed are important performance parameters. There 
are subtle issues of platform computer cache memory 
level(s) size, the number and size of computer/RC board 
registers and operating system memory management, as 
well as Input-Output (IO) drivers’ quality and data bus 
bandwidth for PC-RC components data flow. For example, 
each of the PC platform’s internal data storage levels Disk- 
RAM-Caches-Registers may differ roughly in data access 
speed by a factor of 4. The third observation (c) was 
remarkable in the respect that the shift appeared in a 
segment of code that allowed straightforward hardware 
implementation and performance gain by a factor of ten and 
consequently allowing to meet the real-time requirements. 
The analysis of this segment of code also revealed the 
significance of platform’s memory hierarchy and its 
utilization by the bottleneck code processes. The fourth 
observation (d) is subtle. It is important that optimization of 
a selected code function in local execution mode (local 
optimization) does not degrade the entire application 
performance (application global optimization). A code 
function may be forced into local minimum, for example, by 
allocating to the h c t i o n  more system resources (such as 
memory) and this may degrade the global system 
performance. Sharing the task analysis and up to-date 
results with the application operations team ensured that 
improvements on the native platform were made as a result 
of this effort on the new development platform. As a result 
of this approach the application was also moved from the 
native UNlX platform to a newer interim uND( platform 
and a new set of benchmark timing performance (UI32) was 
provided by the GOES team (Section 5.0 Table 2) as this 
work was in the hardware implementation phase. 

2.0 THE HERITAGE APPLICATION OVERVIEW 

A nominal run of the GOES-8 heritage application consists 
of processing a set of telemetry-based input files (supplied 
by preceding levels of operations) and producing color 
pictures (end-product) used for weather prediction. The 
typical run produces a single color picture using a sub-set of 
input files of origin {title, nav, map, vis, ir2, ir3, ir4, ir5). 

Each telemetry file name begins with a timestamp prefix in 
the format of YYMMDDHH” that uniquely identifies 
each subset. The rest of a file name is a fixed root G8I 
(GOES-8 Visibility and Infrared bands) and followed by a 
suffix 01 for ‘vis’ files, 02 for ir2, 03 for ir3, 04 for ir4 and 
05 for ir5 bands. For example, an ir2 file that originated on 
February 12, 2000 at 10 hours and 02 minutes GMT time 
has a name 0002121002G8102.tif. The file name timestamp 
must be within the specified for the run range of telemetry 
times. The files that comprise this processing unit are 

{0002~121002G8I01,0002121002G8I02 
0002 121002G8I03,000212 1002G8104 
0002121002G8105). 

These ‘tif type files and the accompanied background color 
map and navigation data files are described in more detail in 
the following swtions. 

2.1 Applicatiorr Scalability 
The problem-scaling factor is specified in the application 
top-level procedure as a sofhvare switch and determines the 
size of the output color picture. This factor is the main 
contributor to the application run time computational 
complexity. The basic size of the output color picture is 
900x750 pixels (switch value “small” equal to telemetry 
image size) and 59 seconds are required to run it on the 
native platform (uB1, UB2 Section 5.0 Table 2). The 
picture “medium” size is 1800x1500 and the large picture 
size is 3600x3000 (switch value “large”) and requires 
expansion of the basic telemetry image by a factor of 16. 
Although the first benchmark value for the small picture 
generation on the native uND< platform (UB1) is already 
under the real-time requirements criteria of 75 seconds, the 
present benchmark performance for the medium size picture 
is 100 seconds and for the large picture 291 seconds, or 4 
times larger than desired, and needs at least that much an 
order of improvement for the application to meet the real- 
time processing criteria. A typical production heritage run 
can be interpreted as a sequence of independent units each 
processing a file set as described above. Each file is read 
into RAM and appropriately scaled into intermediate arrays 
whose size is depending on the hard-coded scale factor. 

2.2 Application Resources Requirements 
For large color picture generation, the application’s largest 
bottleneck code segment is operating with intermediate data 
in the form of 6 large arrays. One of these arrays is of 
double precision floating point type (8 bytes) and 5 arrays 
are of single precision floating point type (4 bytes). 
Therefore the input arrays memory requirements can be 
estimated to be 302.4MB. The three resulting arrays are a 
subset of the input, but change type from input single to 
output double precision floating point type during a 
bottleneck recomputation. This requires an additional 
259.2” of RAM increasing the minimum RAM 
requirement to 561.6MB. There is always a need for some 
memory depending on system internal operations and this 
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can only be found experimentally by monitoring the 
computational process memory allocation. It was 
established experimentally that the GOES-8 application 
required some 720h4B of heap (dynamic) memory for the 
problem ‘large’ case factor. However, even upgrading the 
PCRC platform to 768 MB RAM did not solve the problem 
completely, but rather clarified the need to hrther analyze 
the application and find areas of its possible implementation 
in RC components on the new platform using parallelism 
paradigms. There is no doubt that 1GB of memory and a 
lGHz PC could solve this application performance problem. 
However, the obvious solution of another super computer is 
not acceptable because it would take years before it can be 
made ready for space flight. Furthermore, there is still a 
need to free a powerfd PC resource to perform intelligent 
processing most of the time and move the routine intensive 
computations to an RC component. 

2.3 Application and Problem Partitioning for RC 
Implementation 
There are a few avenues of achieving parallel processing 
benefits using FPGA or DSP RC technologies. They may 
utilize different aspects of an application depending on its 
Computational, IO and Interface requirements. To depict 
the application natural avenues of possible parallel re- 
configuration and problem partitioning we analyze the 
application critical aspects and provide the model of this 
application structure and data processing. 

2.3.1 Computational Aspects 
The computational aspects of the PC/RC platform include 
the PC platform and RC software or firmware processors 
and comprise: 

- PC processor computational speed 
- PC internal memory (RAM, caches, registers) sizes, 
memory management by the Operating System , and 
overhead of IO drivers 

- Algorithms pre-hardware optimization 
- RC board computational speed 
- RC components memory types and sizes 
- Existence in the application of independent bottleneck 

code segments allowing segments parallel processing 
implementation in hardware 

- Image array interpretation as a vector for pixel-by-pixel 
processing. 

2.3.2 Auxiliary Storage and IO Interface Aspects 
Auxiliary storage and IO data volumes and throughput 
aspects may be the most important limitations in this 
project. They are as follows: 

- Moderate size operational telemetry file sets at remote 
site and product destination site allow the use of 
Intemet for file level transfers 

- A PC/RC platform has adequate disk space size for 
autonomous local IO operations 

- A data processing unit is an independent file set on disk 

that is fwlly loadable into a PC RAM to reduce disk IO 
during processing 
- A large volume of intermediate multi source data is 
created in this application. 
The data originates in different source files and arrays, 
presenting a multi source aspect that requires multiple fast 
IO transfers over the PCI bus between the PC and RC 
components mainly because RC boards have small external 
memories. For this reason the initial RC implementation 
was reduced to a subset of the bottleneck code and 
259.2Ml3 of data. The sustained data throughput supported 
by the available DSP board was found experimentally and is 
close to 8OMbs. This provides an estimate for the time 
required to transfer the data from the PC to the DSP and 
back as 26 seconds. If the bottleneck computation on the 
DSP can proceed concurrently with the data transfer we can 
achieve the reduced bottleneck processing under 30 seconds 
using a DSP board. The FPGA board has advanced IO 
capabilities and utilizes 70% of the PCI bus bandwidth. 

2.3.3 Data Multi Source Aspects 
The solution to the data multi source and large IO volume 
aspects of the listed above domains may, in turn, be another 
strong reason for a bottleneck code, as opposed to full code, 
implementation in hardware. Full code implementation 
relies on a single moderate rate stream IO, and thus narrows 
the satellite image processing application domain. For 
example, the PC-RC IO, over the currently fastest available 
interface, the Peripheral Component Interface Bus using 
CPU controlled or Direct Memory Access (DMA) IO, 
significantly depends on the application IO data nature. A 
single large data stream is the ideal case of DMA/PCI IO 
mechanism. A multi source case when the RC target data 
originates in different arrays on the PC presents an IO 
performance problem and RC memory operand access 
problem because the operands &om different data sources 
are widely separated in RC extemal memory locations. This 
is not the D W C I  channel problem, but it is based in the 
overhead of multi source DMA initiation or in pre-building 
a single thread fiom the multi source data both on the PC 
and the RC components. This multi source IO problem has 
also been solved in this project. The chosen approach to 
address this application multi source IO problem can also be 
used for a wider class of satellite image processing 
applications. The solution is illustrated in Section 7.2. 

2.3.4 Application Model 
The domains described above and their multiple interfaces 
are depicted in the following processing model of the 
GOES-8 application. The heritage processing deals with a 
fiaction of the nominal telemetry stream at a selected rate of 
0.2 Mbps resulting in a unit of data each 15 minutes or 10 
times less the science maximum capacity rate of the GOES- 
8 spacecraft. By re-organizing the heritage sequential 
processing of independent processing data units 

(Dl, D2, . . ., Dj, . . .} 
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and the associated sub-processes of, say, three bottleneck 
code segments {PI, P2, P3} (performance of which is also a 
function of the data Dj size and content) 

{ {D17P1,P2,P3}, {D2,Pl,P2,P3} ,... {Dj,Pl,P2,P3}, ... } 

into problem partitions 

(Dj,Pl) (Dj,P2) (Dj,P3), (wherej=1,2, ..., k) 

the bottleneck processing can be implemented in parallel on 
an FPGA or DSP (or more than one RC board - an FPGA 
and a DSP pair), and can solve the run-time performance 
problem. This, in turn, would allow support of real-time 
image processing at the present rates and also at increased 
rates of science data by a factor of ten. The combined power 
of PC and RC system will keep the auxiliary storage 
cumulative input data set small most of the time. 

Computations Auxiliary (Disk) Storage 

Internal Interfaces 
13MB In and 0.6MB Out 

7 

PCI bus Intermediate Multi Source 
Data Transfer Internet IO 
6/3 FPGA Vector Process (400MB) or 
5/2 DSP Vector Process (260- i/o) 

GOES-S Intemet Site, 2.2Mbs 
Data Source and Solution Product 
0.6MB Destination 

Figure 1. GOES-8 Application Model 

2.4 Data Structures and Volumes 
The ‘nav’ file, whose size is 0.428 MB, contains relevant 
geographical information - a sequence of pairs of latitude 
and longitude for the 361x301 grid of the spacecraft image 
pixels preceded by a two-word header specifying the array 
dimensions. The map file (a fvred prebuilt file) stores a pre- 
selected terrestrial map on which the spacecraft images are 
superimposed to get a color picture. The map file requires 
10.34 MB of disk space. The input files ir2, ir3, ir4, and ir5 
store spacecraft images in four infrared bands and require 
0.659 million bytes (MB) of disk space each. The ‘vis’ or 
irl file stores the visible band image and requires 10.548 
MB of disk space. All input files except the nav file are Tag 
Image File (TIF) format files. A unit processing single 

output color picture is a 0.074MB (small color picture) to 
0.201MB (medium color picture) to 0.600MB (large color 
picture) file. This file is in a lossey-compressed file in Joint 
Photographic Experts Group (JPEG) format. The pre- 
hardware implementation timing tests performed on the PC 
platform are summarized in Section 5.0 Table 2. The 
application porting and a few initial enhancements to the 
application software were based on experimental insights 
into IDL and the application IDL code, and are described 
next. 

3.0 I’ORTING THE APPLICATION 

The reconfigurable computing technology is just maturing 
and is in need of a proficient application, which spacecraft 
image processing can provide. At this time, implementation 
of a telemetry processing application in hardware 
necessitates careful pre-hardware implementation steps, 
such as selecting a platform for which inexpensive RC 
hardware exists, porting of an existing application (such as 
the GOES-8 color picture generation application) from its 
native platform to the new platform, defining and 
optimizing algorithms, and selecting software programming 
languages conducive to full or partial translation of a 
software application into hardware. These steps are 
described below on the precedent of the GOES-8 
application, especially the porting of the application from its 
native SGI Workstatioflnix platform to the 
PC/Windows/RC platform. 

3.1 lDL Platform Dependent Issues and Their 
Resolution 
A PC platform running the Windows operating system and 
the same version of IDL as the native platform was selected 
as the new platform. There exists a series of inexpensive RC 
hardware boards and associated tools for the PC platform. 
Firstly, the GOES application IDL source code and test data 
files were ported (using the Internet file transfer protocol) 
fiom its native platform to the PC/Windows development 
platform. A fkee IDL demonstration package for the 
PC/Windows development platform was obtained from the 
vendor and rapidly evaluated to ensure the application 
feasibility on the new platform. The application software 
and data system initial study and evaluation on the 
PCWindows platform were conducted. This resulted in 
proving the feasibility of reimplementing the application on 
the PC/Windows platform running IDL. 

Secondly, two full IDL development systems Version 5.3.1 
for the PCIWindows platform were procured, including 
system maintenance and technical support. Both the IDL 
system and the application were rapidly modified to allow 
full compilation of the project and its successful run on the 
new platform. 

The porting of the GOES-8 IDL application from its native 
WorkstationKTNM platform to a PC/Windows/FPGA/DSP 
platform carries an associated and expected slew of 
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platform depended issues. The few IDL system platform 
dependent differences are mostly due to differences 
between the two platforms’ operating systems. The NASA 
and IDL vendor teams quickly resolved these differences. 
For example, the IDL function SPAWN is using platform 
operating system commands to spawn a concurrent process. 
Since the operating system commands are different they 
must be re-coded. File name and directories’ paths 
specification and convention differences require change in 
parsing algorithms and code. The PC is also a so-called 
“little-endian” machine that swaps the two bytes in a 2-byte 
word when reading input binary files fiom disk unlike the 
uND( Workstation. This must be addressed when 
accessing files in other than ‘tif or ‘jpeg’ format, like the 
‘nav’ binary format file. The native SGI Workstation/UNIX 
platform is using the IEEE-754 format for handling integer 
and real numbers, as does the new PC platform. The 
application does not have the new platform computer 
identification ’x86’ in its internal table and defaults to an 
SGI system representation of integers and floating-point 
numbers after issuing a warning message. However, both 
platforms use the same EEE-754 standard for integers and 
real numbers representation, and this warning can be 
ignored. The changes induced by the platform differences 
are hlly described in the following section. 

3.2 Source Code Modifications and Compilation 
Platform-dependent modifications to the application source 
code were required in order for the PC IDL project to 
successfully compile and complete a full run. IDL project 
“GOES” was created on the PClWindows98 platform using 
the modified UNIX IDL source code modules. The 
differences between the UNIX and the Windows98 
operating systems and the IDL Version 5.3.1 specifics and 
its implementation features for Windows were determined. 
The corresponding changes to the GOES project source 
code were then made in order to eliminate compilation 
errors. For example, the two platforms have a typical CR- 
CRLF text line delineation incompatibility. The UNIX 
forward slashes ‘\’ in directory specifications were changed 
to Windows notation ‘P  to allow correct parsing of 
directory and file names. The syntax of the SPAWN was 
changed to execute a DOS batch file. The IDL option 
/SWAP-E-LITTLE-ENDIAN was applied to the IDL 
OPENR, which solved the problem in handling the 
navigation data file. 

Compilation of the complete GOES project on the 
PC/Windows98 platform was a milestone, as was the first 
run of the project on the new platform. 

The top operational procedure was updated with IDL timing 
analysis debugging statements and the help, /memory 
statement. This allowed precise determination of the 
maximum heap memory required by this application. In 
summary, six source code modules were changed on the 
PC/Windows98 platform and the depth of required changes 
was minimal. 

The GOES-8 application comprises 98 procedures, 
functions and definition software files written in IDL. These 
are using most of the features provided by the IDL 
development environment. The model of the entire 
application was provided above in Figure 1. It depicts the 
application structures, which are susceptible to parallel 
implementation in hardware. 

3.3 First Successful Run 
The first successful program run on the PC platform was 
performed in two weeks after the PC platform IDL 
development system arrival and installation. All of the 
changes that were previously made effectively worked. This 
run was made using the ported application for its default 
output picture size of 1800 x 1500 (medium) and ten 
available sets of input files. All 10 resulting color pictures 
were written to the correct output directory in ‘jpeg’ format. 
The pictures were immediately verified by just viewing 
them while formal verification tools were under 
development. Performance timing information was recorded 
for each of the 10 files (Section 5 Table 2). The average run 
time for a single loop to produce an output medium size 
image was 80.21 seconds. The operation that consumed the 
most time was ‘calc v,s,b with vis’. This operation averaged 
36.27 seconds. The IDL function color-convert took an 
average of 12.48 seconds varying from 6 to 20 seconds for a 
large image generation (this processing is evidently data 
dependent). Due to their hardware-compliant algorithms, 
these two operations will be the first candidates for RC 
implementation. After the PC memory was upgraded fiom 
128 to 256 MB the problem medium size case run time was 
reduced to 36 seconds and meets the real-time requirements. 
However, achieving real-time performance for the largest 
size output picture remained a challenge. The solution for 
all sizes of output color pictures is described as follows. 

3.4 Development of Tools 
A complement of tools was explored and developed for this 
conversion project. The tools fall in two main categories - 
traditional tools used in software development (TSW) and 
tools for RC hardware implementation (TRC). These tools 
for input files and output color picture analysis and 
computational performance studies are described in the 
following subsections. 
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3.4.1 Data Analysis and Software Debugging Tools 
The publicly available software tool Hexview.exe was used 
to analyze the navigation file (nav) structure. This resolved 
the PC platform “endian” problem. 

The structures of image files of type ‘tif, ‘tiff and ‘jpeg’ 
were analyzed using query tools provided by IDL and 
printing the returned file structure variable. These formats’ 
latest standards were retrieved fi-om its holders’ Internet site 
and used in tool development. 



An IDL procedure was developed to compare the content of 
two ‘jpeg’ format image files. This procedure takes the 
names of two files to be compared as input parameters, 
parses the file names to determine the file type ‘tif or 
‘jpeg’, reads them into corresponding arrays using IDL read 
procedures, and compares the contents pixel by pixel, and 
retuming the count of mismatches for differences exceeding 
a threshold. The comparison was done before and after 
compression. The IDL utility functions were used to 
determine the input files’ data types (integer, floating and 
pixel value size byte, 2 bytes, 4 bytes, 8 bytes) and 
indicators of lossey file encoding. 

3.4.2 Tools for Memory and Timing Requirements 
Studies 
It was quickly realized that the PC platform memory size is 
a critical factor in the application timing performance. 
However, it was difficult to determine the exact memory 
requirements for the GOES-8 application. IDL provides a 
powerful function for inquiring the memory heap state at 
any given point in the IDL code, namely: 
help, /memory 
This returns and prints information that was decisive in the 
selection of optimal memory size for the new platform and a 
platform that allows to be configured with this memory size. 
IDL also provides the standard tools to inquire about current 
system time and elapsed time between any two points in the 
application code. It was also noticed that when initially 
internal memory was not sufficiently large, computational 
references to the part of virtual memory on the hard drive 
overloaded the system. Memory upgrade would also 
prolong the hard drive lifespan. Although platform memory 
size is significant in timing performance of an application, 
the timiig performance is a more complex function of 
platform memory size, PC cache size, operating system 
management of memory and especially its stack and heap 
and other factors. The PC host and RC target C-code 
modules’ timing was performed using ANSI C standard 
timing functions. However, they were found to be 
inadequate, and a timing function to accesses the Pentium 
time stamp counter was developed in assembly language. 

3.4.3 Tools for PC Host and DSP Target Modules 
Debugging 
There is no standard output feature in IDL V5.3 for the 
external host module. This issue was resolved by 
introducing in the host module a text file to store debugging 
messages and analyzing them off-line at test end. Similarly, 
there is no ready debugging mechanism outside the TI Code 
Composer Studio. The issue of debugging the DSP target 
module that implements the IDL bottleneck code was 
resolved as follows. The few lines of IDL bottleneck 
expressions were copied fiom the large GOES-8 IDL source 
code and used in a small test IDL project. These lines were 
then preceded by a few more lines of array initialization to 
known values using IDL functions. This small project was 
augmented by a few IDL code lines to display initial values 
fi-om arrays’ first five and last five pixels before and after 

computation. These then comprise the truth test data. Next, 
the IDL-host module-DSP target module calling sequence 
line is introduced into this test project replacing the IDL 
bottleneck expressions and is run again. This yields results 
from DSP target module computations, which are compared 
manually with the truth data. 

3.4.4 Tools for Array Pointer Validation Across 
Different Programming Environments 
A stand-alone program in C++ was developed to determine 
the actual pointer handling issues across the IDL-Host C++- 
DSP target code handling. The issues of pointer 
assignments for initialization, pointer assignment 
expressions needed for step-down into vectors and mixed 
type pointers handling were analyzed and solved using this 
program. 

3.4.5 Tools for (Color Picture Validation 
The 10 input file sets were used throughout this project. 
These files were then given back to the native platform 
operations team and processed there. The pairs of 
corresponding pictures obtained on both platforms were 
compared using the tools described above in Section 3.4.1. 

4.0 P E R F C ” C E  TIMING METHODOLOGY 

The task of an application run time optimization is difficult 
when software has already been implemented but not fully 
documented. However, there are some benefits in working 
with an existing, fully functional application such as the 
GOES4 application. Existing application science 
algorithms and s o h a r e  code can be studied directly and 
timing tests can be readily performed in order to localize 
application performance bottlenecks. The following is the 
description of the methodology employed in the run time 
performance study of the GOES-8 application (also called 
here IDL GOES-8 project) on the PCRC platform. The 
IDL GOES-8 project operands (any IDL code except user 
developed function calls) and the algorithms and options of 
major IDL code functions were studied. The affects on run 
time performance of minimum and minor changes to both 
IDL operands code and algorithms were also studied. 

Timing studies have uncommon complexity since run time 
depends on many variables of different origin. Our interest 
is in the optimization of the GOES-8 application run time 
function T(p) - the run time required by the GOES-8 
application to generate a single color picture product, 
specifically 

T(p) = T(d, g, a, c, C, i, r, 0) <= TO, 

where TO is the real time criteria threshold defined in the 
Introduction as 75 seconds. The variables are described as 
follows: 

- telemetry volume (d) 
- 
- 

intermediate data expansion factor (g), 
host algorithms time complexity (a), 



- PC computational complexity (c), 
- RC computational complexity (C), 
- PC-RC interface bandwidth (i), 
- Internet Interface bandwidth (r) 
- other contributing variables (0) like O=O(M), where 

M is the RC on-board external memory size. 

T(p) not only depends on the numerical values of the 
parameters d, g, a, c, i, r, 0 but also on the nature of the 
source data. The data used in timing studies, with all these 
parameters fixed, may yield a ratio of 2 between T(p) upper 
and lower boundaries. For example, if an application 
comprises a single data comparison to a constant and a 
single result assignment depending on the comparison 
outcome, using a data test pattern of constant values to 
trigger the assignment will cause the application to run 
twice longer for this specific input data set. The standard 
approach on this time studying problem is to use carefully 
prebuilt benchmark data sets. However, this is impractical 
for this application and the timing tests data set was the test 
data set of 10 telemetry files obtained from the GOES-8 
operations team and was considered as representative of the 
application standard input. These files were used to study 
the timing affects of arguments (d) and (g). To study the 
affects on the timing function of arguments (a) and (c) two 
mechanisms were used: 

- computing elapsed system time for IDL 
functional calls and 
investigating timing costs of basic IDL operands in 
large loops. 

- 

These were used as the starting points in the attempt to 
improve the application timing performance, and resulted in 
determining the IDL algorithm and code bottlenecks. 
Further studies of the effects of variables (c) and (i) 
involved hardware implementation of the application IDL 
bottleneck code using RC boards. It becomes rapidly 
obvious that if selected for RC hardware implementation, 
bottleneck code’s volume V=d*g requires time I(V, i) for 
the data to be transmitted and the results retrieved from an 
RC hardware board, then a simpler than T(p) relationship 
between I, c, C, 4t  and To determines the PCRC bottleneck 
engineering implementation architecture, requiring that 

c + I + 4t  + C <To. 

The PC-RC synchronization wait parameter 4t  is described 
below. 

Towards the goal of generating the GOES4 color picture in 
real time on the new PC/RC platform, the obvious frrst 
objective is to make the application run correctly on the new 
PC platform. Towards this objective, the conversion effort 
was conducted from the UNIX to Windows operating 
system as was already described above. The second 
objective was to achieve on the new PC platform a 
pe~ormance at least equal to the native platform 

benchmarks before RC hardware implementation. Toward 
this objective, the PC platform memory was upgraded fiom 
an original 128MB to the PC maximum allowable 
configuration of 768MB and pre-hardware optimization 
steps were performed with steady improvement in the 
application’s time performance. The third objective was to 
implement the PC remaining largest bottleneck code 
segment in RC hardware to achieve real time performance. 
For this, similar to the first and second objectives, the initial 
hardware implementation was debugged to produce a 
correct color picture without regards to timing performance. 
However, this came at a price of C >> To. Knowing that I < 
To, this then led to an effort to implement different than 
nominal pre-processing of source data in the host module 
before writing it to the DSP for intensive computation in 
order to attain DSP performance that yielded C<<To or a 
ten-fold improvement. The pre-processing consisted of 
replacing separate 10s for all data sources with a single 
vector of quadruplets of source data pixels and a single IO 
block. Aggregating the multi source input pixels into 
quadruplets solved the multi source operand performance 
problem on the DSP. With this done, the T(p) becomes 
better than the software version and the remaining PC/RC 
implementation optimization involves attaining a better I by 
developing a better PC-RC PCI driver and to reduce 
redundancy in the data passed to-from the PC-RC board. 

The IDL development system data types’ specifics, as 
compared to other development systems, like Matlab 
(Trademark of Mathworks Inc.), were also determined. 
This is necessary for IDL code implementation in hardware 
because there are no cross-translators fiom IDL into 
Hardware Description Language (VHDL). However, it is 
known that some Matlab and C functions were implemented 
in a hardware library. Knowing the similarities and specific 
differences between IDL and Matlab can facilitate the IDL 
application partial implementation in hardware. 

Automatic generation of the application software modules 
calling tree is required to analyze program time 
performance. The existing utilities to do this were analyzed 
and needed modification. Though this effort was started, 
pressed by schedule, we built the application’s software 
calling tree manually. There are 76 procedure and function 
nodes in the tree and 25 end-nodes or leaves. There are also 
dormant nodes like that are not called at all and some that 
are not reachable on the PC platform, like the integer and 
floating point conversion function for VMS-PC number 
format conversions. The calling tree helps to evaluate the 
problem size and complexity. 

The hnction call frequency table is required in order to fmd 
the modules, which are called most often. The tool to 
generate this table is provided within the IDL development 
system and the table can be used in selecting prominent 
functions for embedding them directly into code in order to 
reduce operating system overhead, while preserving code 
maintainability. 
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We have established a set of performance tracking tools 
such as timing different segments of code and monitoring 
heap activities for dynamic memory allocation and de- 
allocation. These include IDL and Windows directives as 
well as the timing points inserted by the GOES4 
application’s development and platform conversion teams. 

We have conducted an experimental study of the time cost 
of basic IDL operations in a loop of an average (medium) 
size pertinent to the GOES-8 application. 

We have investigated the dependency of the application 
time complexity on the number of input data transactions 
(data driven component of time complexity). For example 
the filter construction operations “<” or “>” on an array (x) 
and scalar (l), say y=x<l, execution time greatly depends 
on the number of elements in array (x) that are larger than 
(l), because these elements are then replaced by 1 at the 
increased time cost. This is why processing different files 
requires slightly different amounts of time. 

We have also investigated the filtering of data using a few 
sequential additive filters, in order to derive simplified 
filters with fewer computations. Presorting operand arrays 
can significantly speed up the filtering. 

We have evaluated the volume of input data for a run unit in 
order to integrate a fast data interface between the 
operational input data source and the new PC platform via 
Internet. The total volume of inputs for a unit run is 23.60 
MB. Only the ir and vis files are dynamic files of combined 
volume 12.838 hlB or approximately 130 Mbps and can be 
ingested into the PC platform using a 100 Mbps Ethernet 
interface in acceptable time of a few seconds. This was used 
to design the new operational ground system configuration 
to include the heritage and conversion platforms in a local 
point-to-point area network, as described in Section 8. 

With the completion of these basic investigations of IDL 
specifics and the IDL application performance, we were in a 
better position to conduct timing tests, find the bottlenecks, 
recover the new platform bottleneck algorithm’s definition 
fiom the IDL code or published sources pointed to by the 
IDL reference manual. From this point we proceeded to 
make a few obvious code improvements and optimizing the 
algorithms in the IDL code, mainly by using different 
command options and processing array data as vectors were 
applicable. The timing results and the efforts of algorithm’s 
definition recovery and optimization are described in the 
following section and the rest of the paper. 

4.1 IDL Data Structure Specifics 
Similar to the basic argument type of Matlab being a matrix, 
the basic argument type in IDL is an array. It is important to 
clarify the IDL definition of an array dimension and size. 
The dimension definition is the classical one - the number 
of subscripts needed to reference an array element. For 

example, array A(3,3) has two dimensions. This is exactly 
the same as a matrix dimension definition in Matlab. Each 
dimension is numbered from left to right as dimension 1, 
dimension 2, etc. In Matlab and C, dimension 1 corresponds 
to a row and dimension 2 to a column. It is the opposite in 
IDL. To correctly process an array that is passed as a 
parameter from IDL to a C-function, indices in C must be in 
reverse order compared to that in IDL. Size is pertinent to a 
dimension and size is the number of subscript values that is 
needed to reference all elements in the array along this 
dimension, beginning with subscript 0. IDL has internal 
limitations on array sizes, which are different fiom the 
limits imposed by the platform operating system. For 
example it does not allow allocation of a byte array of size 1 
Giga Byte (GB) while Windows operating system allows 
addressing of 2 GB of memory. 

When a new or an existing array is equated to an 
expression, it preempts the type of the longest type 
argument in the expression. However, partial array 
assignments leave the type of the resulting array unchanged. 
This is natural since in a partial assignment it is unknown 
how the rest of the array is going to be assigned, and IDL 
prudently leaves the original array type unchanged and 
instead implicitly casts the type of the argument arrays into 
the type of the initial array. This is an important point 
because when the assignment expressions contain just array 
names and at least one DOUBLE array operand, the 
resulting array type becomes DOUBLE, and thus requires 
twice more memory. For example, one of the three resulting 
arrays recomputed in the bottleneck code segment are 
originally of single precision floating point type and each 
occupying 43MB of RAM. After a recomputation that 
involves an argument of double precision floating-point 
type the array type is changed to DOUBLE and requires 
twice more RAM. This may not be necessary for the result 
precision and can be avoided when code is implemented in 
hardware. Whenever such a saving is planned at the 
apparent expense of accuracy, the science algorithms 
originator must approve it. We introduced partial array 
processing and array interpretation as vectors for 
pre=hardware optimization tests and for RC 
implementation. 

4.2 User Implemented Loops 
There are advantages and disadvantages in implementing 
user-constructed loops. IDL hc t ions  for operations on 
arrays provide better time performance than for-loops 
implementation by users for small arrays when all 
computation arguments fit into the RAM heap. However, 
for large arrays, as in the GOES-8 application this is not the 
case. When the PC platform does not have sufficient 
internal memory, it reverts to virtual memory on the disk for 
IDL code segments and large dynamic memory allocation. 
For example, the GOES-8 application required 20 minutes 
for the basic operation of producing one large output color 
picture with 128 MB RAM memory and 12 minutes with 
256 MB memory. Replacing some IDL computations over 
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arrays by partitioning reduces the need for one-time- 
memory and the number of disk accesses, and reduces 
computation time to less than 7 minutes. Of course, the 
array operations under consideration are element-by- 
element operations, allowing such direct array partitioning. 
We have performed time cost analysis (Table 1 Section 4.3) 
of one large loop and a few nested loops without any 
operations in the loop implemented in DL.  This time costs 
are higher than expected for large loops (10 seconds for a 
3600x3000 size) leading to the lesson learned that these 
loops in IDL procedures that use large loops and have 
performance under 10 seconds were implemented in IDL 
system in some other compilation language with its 
executable being embedded in the IDL system. 

PC 

UB1, 

4.3 Elementary IDL Operations Cost 
Different experiments were conducted to determine the time 
cost of a few basic IDL operations, like +, *, <, >, 
assignment and indexing. This was done in order to 
determine segments of code where improvements would be 
guaranteed. There are three modes of processing: nominal 
(small), medium and large. The cost of an operation was 
determined by timing an IDL FOR loop of length 
1800x1500 (problem case ‘medium’) and having in the loop 
a different expression with basic operations. A medium size 
loop with external call clocked the same time as a loop with 
an IDL call. Following is Table 1 summarizing operation 
costs. Table 1 was obtained by timing a medium size loop 
(2.7e6 loop counts) and a 128MB PC RAM configuration. 

Columns Rows (sec) 
900 750 128 16.00 
900 750 256 16.00 
900 750 768 14.00 

900 750 58.45 
(RT/4) 

Table 1. Time cost of IDL operations 

PC 

IDL Time Expression FOR 
Operation 1 I Timed I I 

1800 1500 128 80.21 
1800 1500 256 36.00 
1800 1500 768 32.00 

I Size 
+ 1 2.5 1 a=1.0+2.0 I 2.7e6 

uB1, 

* 1 2.5 I a=1.0 * 2.0 1 2.7e6 
+ and I 4.29 1 v=f[i] + f[i] [ 2.7e6 

(RT/2) 
1800 1500 90.00 

uB2 

I 1 a=3.0+4.0 1 I 

1 39.54 

< 1 3.13 I v=v< 0.0 I 2.7e6 1 

UBI, 
uB2 

I 2.57 I F 1 . 0  1 2.7e6 
++ 1 10.0 I a=1.0+2.0; I 1.8e7 
- - 

3600 3000 291.00 
106.00 

I I a=3.0+4.0 I I 

subscripts 
subscript 
++ 

1.7 2.7e6 
4.51 a=1.0+2.0; 2.7e6 

5.0 TIMING TESTS ON THE NEW PLATFORM 

U0 

opera tion 

Timing test runs were conducted on the PChVindows98 
platform in order to collect timing results before algorithms 
and code optimization and hardware implementation. The 
IDL source algorithms and code performance timing results 
on the PC platform were then analyzed in order to 

1.3 1.8e7 

determine the bottleneck code segments for hardware 
implementation. The application time complexity was 
evaluated on the PC/Windows98 platform for the three 
required configurations of problem size - small medium and 
large, and variable PC RAM memory size. The results of 
these tests are described below in Table 2. 

5.1 Timing Results 
The real-time processing performance criteria “RT=75 
seconds” was defined above in the Introduction. The 
GOES-8 development and operations team provided the two 
UNIX native platforms’ Benchmarks uB 1, uB2. 

Table 2. GOES-8 Application Pre-Hardware Timing 

I Platform 1 Image I Image 1 RAM I Time 

1 3600 I 3000 1 256 1 760.00 
I3600 I 3000 I512 I 150.00 
I 3600 ] 3000 ] 768 ] 125.00 

I I I I 1 (RT+50) 

5.2 Development System Cost 
The cost of the PC system was $2533. The cost of the IDL 
development system for the PC was under $2K and the cost 
of the memory upgrade was $1K. The cost of MS Visual 
C++ 6.0 is $800. The cost of the FPGADSP board system 
is under $2K. 

6.0 OPTIMIZATION AND RC IMPLEMENTATION 

The software application’s bottleneck algorithms were 
determined, optimized and implemented in RC hardware 
and software. 

The issue of an acceptable definition for a computational 
algorithm is still open. The work in this area is continuing in 
the USA and intemational bodies that are developing related 
standards. When this issue is encountered in software 
engineering, the algorithm definition in many cases requires 
reconstruction, refinement, and optimization. 
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For the benefit of the GOES-8 application conversion 
project, we give an operational definition of an algorithm. 
We hope that this definition will be useful and practical for 
other projects’ software and hardware implementation by 
personnel versed in software and hardware programming. 
An algorithm definition must be susceptible to direct and 
rapid software or hardware implementation. All 
implementations should produce the same required or better 
output accuracy for identical inputs. The algorithm 
definition, provided by documentation and the code 
execution examples must be repeatable with manually 
computed results. In case of discrepancies, there is a need to 
go back to the code requirements or even one more step 
back to the Algorithm Theoretical Basis Definition (ATBD) 
provided by an instrument science team. The ATBD, in our 
view, is more “a to be further defined” phase for an 
algorithm operational definition that is useful for 
engineering implementation. 

6.1 Pre-Hardware Optimization 
Porting the application from its native platform to the PC 
platform, a few elementary enhancements to its IDL code, 
upgrading the development PC platform to its maximum 
memory capacity of 768 MB, and introducing the largest 
bottleneck process split into 16 segments, allowed achieving 
the 14 seconds performance improvement (a factor of 4) for 
generation of the small size picture, and 32 seconds were 
required for the medium size picture generation, 
improvement by a factor of 2.5. This performance was 
reached even before the code implementation in hardware. 
All extraneous processes on the platform were terminated 
before the IDL application run. Not initializing a large array 
to zeros when all the elements are computed later or 
allocating resource just before they are needed resulted in 
improved performance. Also, in one case, a large array 
computation expression was simplified by replacing a 
computational component with a constant. A single term 
was introduced to replace its multiple computations in the 
largest bottleneck code segment. A unique splitting of a 
large array handling process into sixteen segments reduced 
concurrent requirement for heap memory by a factor of 16 
and improved performance for the large color picture 
generation. However, the 120 seconds required for the large 
size picture generation was difficult to improve on the PC 
platform, even as it is already at (RT-50) seconds. It is also 
difficult to further improve the application performance for 
the small and medium size images to allow higher telemetry 
rates because the IDL procedures used in this application 
are already optimized. Whilst the need for the GOES-8 
application bottleneck code hardware implementation 
becomes extremely evident and necessary, the approach 
taken for this application is to implement in hardware only 
the bottleneck code segments. We are also taking advantage 
of the application data processing parallelism nature that 
was established above in its application model and propose 
to use two or more RC components for implementation of 
independent bottlenecks once a solution for one bottleneck 
is achieved. 

6.2 Application Bottleneck Algorithms 
The algorithms of the few critical IDL functions and 
procedures we selected for possible optimization were 
reconstructed by experimentation and reaching a consensus 
with IDL vendor on their IDL implementation. The 
following algorithms were analyzed in detail, optimized in 
IDL or C++, arid the shifted bottleneck code segment was 
the first to be implemented in RC hardware. It is important 
that a selected function local optimization does not degrade 
the entire application system performance. 

6.2.1 Interpolation 
The application is using the IDL bilinear interpolation 
procedure INTERPOLATE for which the algorithm or 
source code are not available. The INTERPOLATE is used 
once in the application to derive angles of the sun altitude 
on a 3600x3000 grid using pre-computed angles on a 100 
times smaller 361x301 grid. It was requested by the GOES- 
8 project that this procedure time performance be improved. 
We reconstructed the IDL interpolation algorithm based on 
run time analysis of the procedure and then optimized the 
algorithm using the application specific a priory knowledge 
about indices in rectangular arrays and similar to [3]. 

6.2.2 Fast Fourier Transform 
The application is employing in one user procedure the Fast 
Fourier Transform (fft2) on a two-dimensional (2-D) ir4 
band image. The fft2 is used to correct and sharpen images 
obtained by spacecraft in r4 band. The direct fft2 is 
performed on ir4 file image and the lower frequencies are 
then filtered and smoothed after which the backward fft2 is 
performed. The result is superimposed on the source image, 
sharpening the ir4 image. It was requested by the GOES-8 
project that this procedure time performance also be 
improved. The work towards satisfying this request was 
based on the observation that the sum of prime factors of 
source image sizes is equal to that of array sizes closest 
approximations by numbers of power two. The ffi 
computational complexity is known to be proportional to 
this sum. Performing fft on the original arrays saves RAM 
by a factor of 1.5 and contributes to better overall 
performance. There are also very fast fft cores for FPGA 
and DSP boards. 

6.2.3 Color Systems Conversion 
The application is using two color systems to describe 
images namely, the (r,b,g) and the (h,s,v} systems. The 
necessity to c;onvert from one to another is probably 
dictated by the necessity to apply to images digital 0 and 1 
cutoff filters. The (r,b,g} to {h,s,v} conversion maps the 
{r,b,g} color values into range 0 <= {h,s,v} <= 1 that 
facilitates this filtering in IDLY using IDL operations of 
maximum (>) and minimum (<) on an image matrix and 
corresponding constant of 1 or 0. After filtering the image is 
converted back to {r,b,g} that is a convenient color system 
for image visualization and display. IDL provides the 
necessary procedure COLOR-CONVERT with an option 
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RGB-HSV and HSV-RGB similar to [4]. However, this 
procedure is notoriously slow. The IDL color conversion 
functions performance also depends on input data content, 
as much as by a factor of 2 for large images. It was 
requested by the GOES-8 project that this procedure time 
performance also be improved. The IDL algorithm was 
reconstructed and implemented in C++. This resulted in 
code better performance and could facilitate further 
performance improvement by implementing the C-code on a 
DSP board. 

(fft2) 
calc v,s,b 
bumD size 

6.3 Digital Filters 
Multiple digital 0-1 filters are constructed and used 
throughout the application. These filters are applied to large 
arrays on a pixel basis and can be viewed as vector 
operations. The time complexity is driven by vector size, 
data content, and the number of filters applied. The filters 
are implemented using the IDL maximum and minimum 
functions (>, <) and some threshold constraints. These 
filters comprise one of the bottlenecks and could also be 
implemented in RC hardware. 

1.66 0.76 27.50 11.87 
0.44 0.44 15.00 6.15 

6.4 Bottleneck Code Segment Shift 
It can be observed from Table 3 that the benchmark timing 
performance bottlenecks shifted from “interpolate”, 
“sharpen ir4”, “calc v,s,b”, “calc v,s,b with vis” and 
“color~convert” combined cost of 35% to 20% on the new 
platform. 

calc v,s,b wl 
vis (shifted 
bottleneck) 
color 

Table 3. Platform Performance Focus Shift 

4.27 1.70 73.71 70.0 

1.43 0.55 22.85 19.00 

Function 

2.09 

convert 
Unit files 59.00 14.00 291.00 125.00 

read vis I 11.00 I 8.00 I 11.00 I 3.52 1 

It appears that implementing the “calc v,s,b with vis” code 
segment in RC hardware may gain the time needed to meet 
the real-time performance criteria of 75 seconds. This is the 
rationale for focusing the hardware implementation on this 
segment of code first. This is also the rationale because it is 
susceptible to problem partitioning and parallel 
implementation as can be seen fiom the application model. 
Note that memory increase shortened large input vis file 

read because its buffer is now completely in RAM memory 
and not partially in virtual memory on the hard drive. 
Similarly, implementing “calc v,s,b with vis’’ in hardware, 
will fiee PC RAM and improve the performance of the 
following software function color convert. Table 3 
summarizes the timing for cases UB1 Small (UBlS), PC 
Small (PCS), UB1 Large (UBlL), PC Large (PCL). All PC 
timing was obtained using the 768 MB upgraded memory. 

Note, that pseudo-intps processes are not using 
interpolation. The application running on the PC platform 
required for smallest image 052MB of heap memory and for 
the largest image case 549MB of heap memory. Since the 
PC memory was upgraded to 768MB most of the 
processing requires less disk IO and explaining the 
interpolation, fft2 and color convert procedures 
performance improvement. The goal now is to implement 
the bottleneck ‘%alc v,s,b with vis” IDL code in FPGA or 
DSP hardware to achieve the real time benchmark 
performance of 75 seconds from the present 120 seconds. 

6.5 Baseline RC Library 
The accumulation of RC implemented functions and tools to 
be used in a PC/WWOWS/RC environment is 
incremental and will evolve over a period of time. The 
development of tools for debugging RC hardware is of most 
importance. In September-October of 2000, students from 
WPI each implemented a Matlab function, for example the 
simplified linear interpolation, statistical mean, and standard 
deviation function in RC hardware. This was the initial 
effort to evaluate the complexity of such an effort with 
available FPGA and DSP boards and resulted in the 
development of an FPGA floating point functions of 
multiplication, addition and comparator. The proposed 
hture work plan is to develop a baseline library of Matlab, 
IDL, C and Java (Trademark of Sun Microsystems Inc.) 
functions implemented in RC. The Annapolis Micro 
Systems released its floating-point arithmetic library in 
spring 2001. This will significantly facilitate the 
development of the Baseline RC Library. 

7.0 SOLUTION DISCUSSION 

7.1 PC/Windows/RC Platform Configurations 
The original PC/Windows98 platform was a DELL 
Dimension XPS T550, with a Pentium III 550 h4Hz 
processor, 128 MB RAM and a 20 GB hard drive. Its 
memory was upgraded to 768 ME3 via the replacement and 
additions of 2 256 MB PC 100 SDRAM Non-registered 
modules. To overcome the PC BIOS memory limitations, 
the BIOS was upgraded from Version A04 to A09, obtained 
from DELL. Also added to the PC was the TMS3206701 
DSP EVM (evaluation model board) board from Texas 
Instruments, Inc. The DSP carries 2 external memory banks, 
4 M E  each. The bottleneck code was implemented as the 
DSP target module. 
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An alternative delivery PC platform is based on a DELL 
XPS B933 Series Pentium IV Processor of 933 MHz, 1GB 
RDRAM memory at 133 MHZ and a 75GB Hard Drive. The 
system is running the Windows NT or Windows 2000 
Operating System (Trademark of Microsoft Corporation). 
The PC also carries the FPGA StarFire board from 
Annapolis Micro Systems Inc. This device software driver 
is only officially available for Intel x86 PC based platforms 
running the Windows NT operating system. The FPGA 
board has been programmed in VHDL to execute the 
GOES-8 application bottleneck code segment and the same 
bottleneck code was implemented in the DSP target module. 

The series of a few large floating-point value vectors, that 
are operands in the bottleneck computational expressions, 
are passed using IDL EXTERNAL-CALL to the PC host 
module. This host module was developed in Microsoft 
Visual Studio C++ Version 6.0. This Language environment 
is compatible with the FPGA/DSP host functions library 
and the board PC driver for Windows 98, Windows NT, or 
Windows 2000 Operating Systems developed by the RC 
board vendors. The host module accepts the large vectors’ 
pointers and transmits the data to the FPGA or DSP board 
for intensive computations. The host program also obtains 
the resulting vectors from the FPGA or DSP board into their 
original input vector place using the IDL pointers. When 
the host module is finished, it returns control to the IDL 
code. The IDL application then continues till completion. 
The host source code is compiled and linked to create a 
required by IDL DLL file that is placed into the IDL 
primary directory. The IDL/TI vendor “make files” were 
used to generate this DLL file. Extensive documentation 
was developed to describe the development procedures for 
both host and target module development, integration and 
testing. A more powerful PC may be useful for speeding up 
the FPGA code reconfiguration. A powerful PC platform 
may even eliminate the need for RC components, however 
the goal is to achieve real time performance with minimum 
resources as to make the system more feasible for a future 
space flight opportunity. 

7.2 RC DSP Solution Specifics 
These GOES-8 application bottlenecks are good candidates 
for their code implementation in RC hardware that is 
specialized to perform well in integer data processing- 
intensive applications. However, the prevailing general 
point of view was that data processing, involving floating 
point operations, is not susceptible to direct RC hardware 
implementation. The alternative experimental solution 
involved a very costly conversion of floating point type data 
to integer types and implementation of an entire s o h a r e  
application in hardware. We have implemented the GOES-8 
application bottlenecks code using floating-point arithmetic 
on the FPGA and DSP boards. 

The multi band data source specific requires partition of the 
PC-RC data transfer stream into telemetry band segments or 
aggregated data segments. This specific necessitates a need 

to determine two parameters n, k. The first is the number of 
columns from a data band array that is used in one transfer 
and the second is the number of data transfer blocks for a 
unit of operations. A transfer comprises n-columns from 
each data source in separate 10s or one IO of aggregated 
data from all sources. The two parameters n, k are bounded 
by a few Diophantine equations derived from the fact that 
an image is a 2-dimensional array of size (C, R), where C is 
number of coluinns and R is the number of rows in IDL 
notation or number of pixels in a column. Furthermore the 
RC hardware boards carry a limited amount of external 
memory banks (DSP SDRAM) each of size M. Let g be the 
number of data source arrays and Sj a pixel size in bytes, 
where l<=j<=g. The relations that describe the n, k are: 

n, k are integers and k<=n. 
n x k = C (due to array structure) 
n x R x  (S1+ S2 + ... + Sg)<=M 

The GOES-8 project solution for DSP is n=k=60. 
This is determined by the corresponding parameters 

C=3600, R=3000, M=4x10**6, 
s=s l+S2+S3+S4+S5=8+4+4+4=20. 
Finding the largest value n delivers the fastest data transfer 
time. Furthermore, within each of the k transmissions of n- 
columns of all multi source arrays’ data, different 
prearranging schemes were tested. This was necessary in 
order to facilitate the RC component fast operands access 
from its external memories. Initially g 10s in sequence 
(each n-columns long) were performed on the PC for each 
of the g data sources and in a loop of size k. The data 
destination was the presently available external memory 
bank on the DSP, beginning at memory entry address and 
utilizing SxnxR or 3.6MB of the 4Ml3 memory bank. The 
second prearrangement was to collect all operands, that are 
used by the DSP module in one pass of its main 
computational loop, into one consecutive group 
(quadruplets) within a single transmission buffer on the PC. 
However, this required that all inputs have the same data 
type and input described above by S1=8 was casted in IDL 
from double to single precision floating point type and 
S1=4. The source data buffer length for this prearrangement 
was 2.88Ml3. Preserving the k-size IO loop and pre- 
arranging in the PC host module a single transfer buffer of 
quadruplets of pixels from all the g data sources before 
buffer transmission to the RC board alleviated the multi 
source data access problem on the DSP and the PC-DSP IO 
interface bandwidth problem. 

A few words are due on the concept of pipelining. There is 
work to be done before pipelining becomes possible - 
pipeline route Survey, preparing the route, pre-processing 
input data streams and after-pipelined computations laying 
out the pipelined results in sequence. The literature concept 
implies that this work is already done and is negligible. This 
is not the reality in image data processing, where it is at the 
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core of the overall performance problem, especially for an 
FPGA board. 

Selection of PCDSP data transfer mechanism must ensure 
that that the computational power of the RC board is not 
offset by the best data transfer rate limitations. RC board 
vendor performance claims must be verified under the same 
conditions that were used by the vendor in order for the 
claimed benchmarks to have any meaning. The GOES-8 
project fastest data transfer mechanism was determined to 
be the Host to DSP Peripheral Interface Port (Hpi) high- 
level host library functions. 

There is a need to introduce a specific and fast PC-RC 
operations API synchronization mechanism. Although the 
choices are many, finding the acceptable one is a subtle 
problem. For the GOES-8 project and DSP we selected two 
system memory semaphores on the DSP board that are set 
and monitored by the PC and DSP. There are specifics in 
handling a wait state on a semaphore. While all DSPs are 
equipped with a multiplier-adder-store or multiplier- 
accumulator path that can produce a result in one instruction 
cycle, the internal pipelining may result in latency more 
than one cycle. Only when application code constitutes a 
long series of multiple-accumulate operations (a so-called 
DSP application) can DSP achieve its advertised 
performance. If a multiply operation is preceded and 
followed by other kind of operation, more than one 
instruction cycles are spent waiting for the multiplier result. 
The application code must be thus re-structured into a DSP 
application for performance problem solution using a DSP. 

7.2.1 RC/DSP Implementation Outline 
The implementation of the bottleneck code segment on the 
DSP board followed the same methodology as was used in 
the project conversion. The roadmap to this methodology is 
first to convert the bottleneck code from the PC IDL code to 
the PC/Host C++ and DSP/Target code. Then make it work 
on this PCRC platform to produce results comparable to 
the PC/software only generated color pictures for the same 
test set of input files. The workable PCRC code application 
is then optimized to achieve comparable to the PC platform 
IDL software code or better run-time performance. And 
finally, optimize the RC target module to achieve real-time 
performance. 

The RC/DSP implementation consists of introducing a new 
case value large-dsp' for the problem size switch. The main 
processing IDL procedure is then using this switch to 
activate the RC implementation mechanism. 

case switch-arr-size of 
'large-dsp' : 

begin 
v-float=TEMPORARY( v-float)/( this-s-alt+O. 1 ) 
f%loat(f) ;To make all parameters of same type! 
CALL-EXTERNAL(1ib-name('dmahostS'), 
'dmahosts', f, v-float, new-v, new-s) 

new-b=f*ir-float 1 *225+( fff)*temporary(new-b) 
end 

endcase 

The RCDSP implementation is comprised of the PC host 
and DSP target modules and associated make files - 
dmahost8.q dmahostS.def, dmahost8.mak dmatarg8.q 
linkl.cmd, dmatargKmak, and dmastates8.doc. The last is a 
documentation file that contains the host and target module 
synchronization states diagram. When the two make files 
are executed from an MS-DOS window two files 
dmahostKdl1, dmatarg8.out are created. This completes the 
GOES-8.prj project RC/DSP configuration and the project 
is ready for run to generate the large color picture using the 
RCDSP implementation. It takes a few minutes from a 
software change, for which the results are assured, to the 
configuration of the host and target modules and project 
execution. 

7.2.2 PC/DSP Board Data Transfer and CPU Operations 
The DSP memories' structure allows concurrent access to 
each type of memory by the PC/DSP Processors or PCDSP 
DMA Controllers. For example, the TI SDRAh4 is 
comprised of two banks, Bank0 and Bank1 or for short - BO 
and B1. This allows the application design topology where 
host data transfer to and from the DSP board is concurrent 
with DSP computations of the bottleneck expressions. This 
depicts the possibility of the DSP part of the application 
time complexity being closely approximated by 

DSP(Time) = Time(IO/DMA) + 
Time(DSP Processors) = Time(IODhL4) + Deltat, 

where Deltat is small and can be ignored. This then makes 
the DSP performance acceptable even at slower than 
expected data transfer rates between the PC and DSP over 
the PCI bus. 

7.3 RC/FPGA Implementation Outline 
The implementation of the bottleneck code segment on the 
FPGA board involved many steps in order to ensure 
calculated results did not vary from original software 
versions of the algorithm. Initially, floating point 
mathematical functions were developed and implemented 
on the FPGA. Once results from these functions were 
verified, they were streamed as required by the algorithm to 
produce the interim final image. The FPGA board algorithm 
was then transformed into a function call from IDL so that 
the GOES-8 application could be run seamlessly from end- 
to-end, with the FPGA board interface being transparent to 
the user. 

Initial development of the FPGA board algorithm segment 
(henceforth referred to as the FPGA algorithm) was not 
trivial. Interfaces between the FPGA and on-board memory 
and floating point mathematical functions including 
addition, subtraction, multiplication and comparison were 
developed. The commercial of the shelf (COTS) RC board 
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used for this development was the Annapolis Micro 
Systems StarFire board. The StarFire board used utilizes a 
Virtex XCV400 FPGA and has 1 MI3 of on-board SRAh4, 
which is divided into 2 banks of 500 Kbytes each, 
commonly referred to as the left and right banks. The initial 
run of the FPGA algorithm utilized only the left bank of 
memory and processed one set of data inputs at a time. 
Although this method completely underutilizes the 
performance of the FPGA, it was important to run the 
algorithm in this mode for debugging purposes and in an 
effort to validate the output data. 
Once the output data was validated, efforts to optimize the 
FPGA algorithm began. The first optimization step was to 
run the algorithm using both banks of memory. This was 
accomplished using a “ping-pong” method whereby one 
bank of memory gets loaded by the processor over the PCI 
bus while the other bank of memory is processed in the 
FPGA. Implementation of “ping-ponging” memory cut 
execution time of the FPGA algorithm by a factor of 2. At 
this point in time, a COTS floating point math library 
became available which utilized full pipelining with valid- 
bits. This library contained all the math functions used by 
the FPGA algorithm with the exception of a floating-point 
compare. The COTS floating point math cores were 
benchmarked against our previously developed math 
functions resulting in decreased execution time of the FPGA 
algorithm. This led to the development of a pipelined 
comparator with the same input and output characteristics as 
the COTS math cores. 

7.4 PClRClWindows Platform Performance Timing 
Results, Comparison and Analysis 
We have reached and exceeded the real-time performance 
for all required cases of the project, namely 14 seconds for 
small, 32 seconds for medium and 75 seconds for large 
color picture production as compared to the real time 
requirement of 75 seconds. We have solved the GOES-8 
application color picture product generation in real time 
problem using a 55OMHz PC running Windows98 
Operating System and a TMS32OC6701 Evaluation DSP 
board. This platform is processing all five bands 2MHz 
telemetry source in real time. The problem was also solved 
using and FPGA board. Another experimental project using 
an FPGA board allows real time data processing of 5 bands 
fiom the TerraMODIS spacecraft 36-band lOMHz data 
source or a 1.4h4Hz data stream. The GOES-8 project 
solution demonstrates that the MODIS application could be 
similarly implemented using the proposed methodology and 
RC hardware floating point libraries. 

7.4.1 PC-DSP IO Timing Results 
The best data rate achieved using the DSP board 
asynchronous data transfer mechanism was 12.8MBs. The 
achieved data rate using the PC/DSP Host Peripheral 
Interface (HPI) mechanism is 10.4Ml3s. However, it 
allowed DSP to compute the bottleneck code concurrently 
with data transfer, and the total time is comparable to the 
data transfer time, or 25 seconds. The HPI mechanism was 

selected for the application data transfer between the PC 
and the DSP. 

7.5 Reconfiguration Time 
A DSP reconfiguration for a small code change is 
comprising recompilation of host and target modules, 
integration and rapid testing. The DSP target module 
compilation and load onto the DSP is rapid, allowing fast 
system reconfiguration. 

8.0 NEW SYSTEM CONFIGURATION 
The new system configuration (Figure 2) comprises 
portions of the existing native SGVWorkstatiodUNM 
platform and. the new PCRC platform connected by the 
Intemet. 

Native SGI WorkstatiodUNIX 
Platfonn Remote FTP Intemet Site: 

Source Telemetry Files 
Resulting Files Destination 

PC/Windows98/RC Platform 
PC Intemet IO TaskO Inputs Source Flles 

FTP Moderate Size 2 22Mbs Telemetry Flles to 
PC Hard Dnve 

IDL Disk IO reads a processing unit source data files 

IDL Perform AU Intermediate Computations 

IDL Optmzed GOES-I Application Code Taskl, Part I 

set from PC Hard Drive to RAM 

resultmg in Large Interme&ate Arrays fl-f7 - 400MB 
of data that was used by the IDL Largest Bottleneck 

IDL CALL-]EXTERNAL Mechanism Passes Pointers 
fl-f7 to the PC C++ Host module dmahost6.dll 

PC Host Module 
Initializes the DSP/FPGA board@) and 
Loads the COFF target code f ie  dmatarg6.out 
onto DSI’ using the PCI Bus. It then resets the DSP 
from Halt Sate and the DSP target module is now running 

concurrently! 

Board S D I U  Bank0 and Bank1 and retneves DSP results 
DSP Target Code Module is Running Concurrently with Host 

DSP Performs Bottleneck Computations until unit 

PC Host task upon bottleneck unit processing completion 

PC transfers array data from PC RAM to the RC DSP 

completion. 

returns control to IDL. 
IDL Applicat~on Code Taskl, Part I1 

IDL GOES-8 code completes computation and 
writes resulting color picture to a file on the hard drive 

PC Intemet IO TaskO Optionally Outputs Resultmg 
0 2MB Image Flle to the Destmation Intemet Site usmg 

Internet IC) FTP 

Processes Next Image Telemetry Flles 
IDL Applicat~on Taskl, Code Part I Cycles - 

Figure 2. Solution Real Time Processing System 

The new system makes use of portions of native processing, 
that are preceding the GOES-8 native application and are 
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maintaining the input files. An Internet task is running on 
the new PCIRC platform and constantly seeks out on the 
heritage platform a set of input files for the next image. It 
ingests it onto the new platform using the common Internet 
file transfer protocol utility (ftp). The new PCRC GOES-8 
application generates the color pictures in real-time and f t ps  
them back to, the native platform. This configuration can be 
expended in the future to use a few FPGA or DSP boards 
for next highest priority bottlenecks implementations in 
hardware. These secondary bottleneck segments again 
become prominent, although on a lower level, after the main 
bottleneck code segment is implemented in hardware. 

CONCLUSIONS 

We have accomplished the goal we set out in the 
introduction and achieved real-time performance of the 
GOES-8 color picture generation application. We have 
developed a new ground system configuration for this 
specific project and laid the basis for its re-use in future 
projects, including spacecraft on-board data processing. We 
have developed a methodology that widens the field of 
telemetry processing for RC technology applications that 
require large intermediate multi source data IO and 
concurrent intensive computations. This result also allows 
support for other GOES products applications. We have 
learned some lessons, including the lesson that cooperation 
of the application science originatorslusers, application 
developers and development systems' vendors is crucial to 
such a project success. 
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