
Pre-Hardware Optimization of Spacecraft Image
Processing Software Algorithms and Hardware

Implementation1
Semion Kizhner, David J. Petrick, Thomas P. Flatley, Phyllis Hestnes, Marit Jentoft-Nilsen, Karin Blank

National Aeronautics and Space Administration
Goddard Space Flight Center

Greenbelt Road, Greenbelt MD, 20771

skizhner@pop5OO.gsfc.nasa.gov
tflatley@pop700.gsfc.nasa.gov

301-286-7029

AbstractSpacecraft telemetry rates and product complexity
have steadily increased over the last decade presenting a
problem for real-time processing by ground facilities. This
paper proposes a solution to a related problem for the
Geostationary Operational Environmental Spacecraft
(GOES-8) image data processing and color picture
generation (GOES-8 application). Although large super-
computer facilities are the obvious heritage solution, they
are very costly, making it imperative to seek a feasible
alternative engineering solution at a fraction of the cost. The
proposed solution is based on a Personal Computer (PC)
platform and synergy of optimized software algorithms and
reconfigurable computing hardware (RC) technologies,
such as Field Programmable Gate Arrays (FPGA) and
Digital Signal Processors (DSP). The solution involved
porting the GOES-8 application fiom its Silicon Graphics
Inc (SGI) WorkstatiodUNIX platform, making minor
platform specific changes to the GOES-8 application (so
that it runs on the PC), benchmarking the various code
segments, and implementing the most compute intensive
functions in hardware. After pre-hardware optimization
steps in the PC environment, the necessity for using RC
hardware implementation for bottleneck code became more
evident. The problem was solved beginning with the
methodology described in [l], [2], [3], and implementing a
novel methodology for this application. The PC-RC
interface bandwidth problem for the class of applications
with moderate input-output data rates but large intermediate
multi source data streams has been addressed and mitigated.
This opens a new class of satellite image processing
applications for bottleneck problem solution using RC
technologies. The issue of a science algorithm level of
abstraction necessary for RC hardware implementation is
also described. Selected software fimctions already
implemented in hardware were investigated for their direct
applicability with the intent to create a library of RC
functions for ongoing work. A complete class of spacecraft
image processing applications development using re-
codigurable computing technology to meet real-time

requirements, including methodology, performance results
and comparison with the existing system, is described in
this paper.

TABLE OF CONTENTS

INTRODUCTION
1 .o APPLICATION RUN-TIME COMPLEXITY, METHOD
2.0 HERITAGE APPLICATION OVERVIEW
3.0 PORTING THE APPLICATION
4.0 P!3RFORMANCE TIMING METHODOLOGY
5.0 TIMING TESTS ON THE NEW PLATFORM
6.0 OPTIMIZATION AND R c IMPLEMENTATION
7.0 SOLUTION DISCUSSION
8.0 NEW OPERATIONAL SYSTEM CONFIGURATION
CONCLUSIONS
REFERENCES
BIOGRAPHY
ACKNOWLEDGEMENTS

INTRODUCTION

The nominal telemetry rate of the GOES-8 imager
instrument is 2.22 Mega bits (Mb) per second (Mbs) and the
ground processing system receives information sufficient to
produce one color picture in 75 seconds. The GOES-8
application must be capable of processing the data and of
producing the largest sue output color picture in fewer than
75 seconds, or before the information arrival of the next
image telemetry data is complete. This 75-second threshold
is the Real-Time (RT) processing criteria. The GOES-8
operational application currently takes 291 seconds to
generate a large color picture fiom telemetry. This is
approximately 4 times greater than the real-time
requirement of 75 seconds.
Simple real-time processing of GOES raw telemetry data
has been accomplished using data captured by an antenna
on a school rooftop and processing a telemetry band, at a
time, out of the 5 bands. There are reasons why the
generation of a large color picture takes so long. This is

’ “US. Government work not protected by U.S. copyright.”

4-1975

mailto:skizhner@pop5OO.gsfc.nasa.gov
mailto:tflatley@pop700.gsfc.nasa.gov

because the GOES-8 application is scalable and can
generate small, medium and large color pictures. The
moderate volume of GOES-8 data required to generate a
single output color picture product is comprised of 12.5
Mega Bytes (MB) source telemetry (four infrared bands and
a visibility band), a 10.55MB prebuilt color map and a
prebuilt 0.425MB navigation file. Some intermediate data,
like sun angles, is derived during processing, bringing the
basic unit operations data volume to 25MB. Furthermore,
this moderate volume of data is expanded to 400MB within
the GOES-8 application during intermediate and complex
science data processing required for the large color picture
generation. The moderate telemetry volume expansion by a
factor of 30 and the associated computation complexity
phenomena are at the core of this application performance
problem.

NASA’s Dr. Dennis Chesters, the GOES-8 Principal
Investigator, and Marit Jentoft-Nilsen from the GOES-8
application development and operations team formulated
the problem: in order to meet the real-time processing
criteria the existing GOES-8 application’s run time that
comprises all processing required to produce an output
color picture, needs to be improved by at least a factor of
four. They also provided the GOES-8 application’s
Interactive Data Language (IDL) (Trademark of Research
Systems, Inc.) source code, input test data set and the native
SGI WorkstatiodUNIX platform timing performance
benchmarks (Section 5.0 Table 2). It was assumed in this
project that all production input data will be similarly
provided by the GOES-8 operations center on the native
WorkstationAJNlX platform, accessed over the Internet by
the proposed solution PC/RC platform, and that the output
will be directed to the same native Workstation/uNM
platform over the Intemet. Whilst, when the problem is
solved the solution can be demonstrated in the development
laboratory using real time telemetry.

The methodology that was used to solve this problem and
the solution comprise the subject of this paper.

1.0 APPLICATION RUN-TIME COMPLEXITY AND
THE SOLUTION METHODOLOGY

The phenomenon of moderate telemetry volume expansion
during science data processing is not specific to the GOES-
8 image data processing. This expansion often originates in
science data processing required to generate a complex
product. In the case of the GOES-8 application such a
product is a large color weather picture obtained by
processing telemetry 900x750 pixel multi band images. The
additional processing of GOES-8 spacecraft raw telemetry
involves computing sun angles for each data pixel, as well
as this small telemetry grid up-scaling to 1800x1500 pixels
(medium picture size) or to 3600x3000 pixels (large picture
size) and the associated with it interpolation, filtering and
smoothing algorithms that comprise the science data
processing complexity.

Spacecraft telemetry rates and telemetry product complexity
have steadily increased over the last decade. Generating
complex products from even moderate input data volumes
results in large intermediate data volumes. When a large
intermediate input-output data volume is coupled with multi
band and color nature of data and intensive computations it
becomes the core of a data processing application
performance problem.

1.1 Problem Complexity and Solution Goal
In the GOES-8 application, there is a need for a dual
exchange between the PC and RC board of 400MB of
intermediate data, and concurrent processing on the RC
component of an equivalent of 1080 Millions of floating
point operations (MFLOPS) within 30 seconds. This
presents a significant challenge to a low cost platform and
requires methodology considerations at the project outset.

The goal is to solve the problem with minimum resources.
This, for example, can be accomplished by using a DELL
Dimension XPS T550 PC on a Windows98 Operating
System with 768Ml3 SDRAM (three 256 h4E3 PC1 l O O M H z
SDRAM ECC memory modules), a Texas Instrument Inc.
(TI) DSP board TMS32OC6701 and an FPGA StarFire
board from Annapolis Micro Systems Inc.

A single inexpensive PC platform selection is motivated by
the interest in concentrating the processing intelligence, in
view of plans for extending the task from a ground platform
to spacecraft. ‘There are also available inexpensive FPGA
and DSP boards for the PC utilizing the Peripheral
Component Interface Bus (PCI) [5] . Furthermore, in
addition to the solution goal the main objective is to develop
in-house capabilities to apply this solution to a wide number
of other applications. The solution’s methodology depends
on a few basic: considerations that stem fiom this goal and
main objectives.

1.2 Methodology Basic Considerations
The origins of the large data volumes and intensive
computations were introduced above. It becomes apparent
that there is need for large memory resources, both on the
computer platform and its RC components, to handle large
volumes of data. There is consequently a need for fast data
transfer interfaces between the PC and RC board, as well as
between RAM memory and CPU on the PC, and external
memory and data paths on a DSP board. It was known that
the PC/PCI/FPGA board interface is utilizing 70% of the
PCI bus bandwidth and that the corresponding and
advertised DSP board ideal throughput is 160 Mbs (the
practical IO bandwidth for the PC-DSP PCI interface
appears twice less. than this number). Because the RC
boards carry small external memories there is a need to
partition the problem and associated data PC-RC streams
into IO blocks to satis@ memory limits. This, however,
requires careful sizing of the IO block (n) and the number of
IO transfers (k) to optimize the practical throughput and,

4-1976

in turn, requires a top Application Programming Interface
(API) level synchronization mechanism between the PC and
RC components. The RC technology state-of-the art
presently has limitations in these areas, namely the FPGA
board allows fast PCI bus and on-board 10 operations but
lacks serial floating point arithmetic (FPA) while the DSP
board provides the FPA but has smaller IO bandwidth. This
contributes to the problem complexity and requires pre-
hardware optimization efforts in order to use the RC board
advantages. New technologies allowing RC access by using
a PC RAM slot and floating point arithmetic libraries for
FPGA could soon provide a better RC option.

1.3 Methodology Roadmap
The proposed engineering solution methodology roadmap
was first to configure an IDL development environment on
a PC platform, convert the application from its native
SGT/UNIX platform to a lower cost PCNindows platform
(Windows Operating System is a Trademark of Microsoft
Corporation) and make it work on the new platform in
software and generate color pictures which are comparable
to those produced on the SGI/UNM platform for the same
test set of input files. The workable PC IDL code
application software is then optimized to achieve
comparable to the SGI/UND(platform or better run-time
performance and determine the PC bottlenecks. And finally,
the PC IDL software code bottlenecks are implemented in
high-speed, reconfigurable, computing hardware to achieve
real-time performance. The selected RC hardware must
make use of floating point arithmetic required by the
bottleneck science algorithms. Because IDL is not an open
source code environment the conversion of the entire
GOES-8 application into RC hardware is not feasible since
it would require reconstruction of many complex IDL
algorithms. Following are the few important steps along this
methodology roadmap implementation.

1.4 Methodology Critical Steps
Configuration control of the preempted GOES-8 application
IDL software version V2 and the newly procured IDL
development system (for Windows98) Version 5.3.1 for the
duration of this project was essential to this project success.
It is a mature application that has been used in operations
for a long time. This allowed freezing the code and its IDL
development system version for the duration of this project
(a few changes were made to the application code required
due to platform conversion).
This paper describes the methodology of pre-optimizing the
application sof iare on the new PC platform and seeking
out bottlenecks before bottleneck code implementation in
RC hardware such that the native platform performance
benchmarks are improved first. This approach allows to
develop insights into application internals and specifics
before attempting a front large-scale implementation of
code in hardware.
The PC-RC large intermediate multi source data streams IO
problem has been addressed and mitigated. This problem is
one of the reasons why some similar applications were

previously implemented in full in RC hardware. and at
greater costs. In such an application a moderate data rate
single stream input and output is handled by the RC
hardware, as well as all the computations. Exchange of
large multi source intermediate data streams between host
PC and RC hardware is avoided at the expense of a very
complex implementation of an entire application in RC
hardware.
Searching for the bottleneck code segments and only their-
RC harpdivare implementation, rather than the entire
application, is the main theme of this paper. This
methodology is based on the solution to the PC-RC large
intermediate multi source data streams exchange problem.
Making the converted application run on the new PC
platform and validating the sofiware product correctness
before hardware implementation tools was important in
avoiding later problems. This validation was done by
running the application on both platforms for the same set
of operational input files, and comparing the resulting
pictures. The native platform application may evolve and,
because of resulting picture file lossey compression, a slight
difference in the product pictures is expected and
acceptable.

1.5 Initial Observations and Lessons
Just porting the application @om its native operational
platform to the PC platform and limited pre-hardware
optimization improved the basic performance of the
application and provided new insights into the problem,
namely:

a) The PC platform production of the small and medium
size images (the scalability of the problem is described
below in Section 2.0) is faster by a factor of two in
comparison with the native platform and is already meeting
the real-time criteria.

4-1977

b) There was a performance loss in comparison with the
native platform benchmark for the generation of the large
color picture using the initial PC memory configuration of
128MJ3. It was determined that the PC memory size is a
significant factor in this application performance. The PC
platform memory was then upgraded to its maximum
allowable 768MB memory configuration including the PC
BIOS upgrade. This greatly improved the performance.

c) It is interesting that the native platform general
performance bottlenecks shifted on the PC to other, less
expected places in the application. Upgrading the PC
platform memory to meet most of the application’s
requirements and splitting the large picture generation
bottleneck code into 16 segments led to improving this case
difficult benchmark by a factor of two, and reaching the
real-time criteria performance goal within 50 seconds.
However, the 768MB memory and BIOS upgrades alone
were not enough to achieve this result. The original process
was still slow with this maximum memory confguration.
Only when splitting was introduced did we reach the 120

seconds result. This splitting also contains elements of
classical loop unrolling to economize on index processing
and the resulting data type was of single precision floating
point as opposed to double. This type change and its
implications are further described in Section 6.
d) Local optimization of functions may degrade the
application overall system performance.

The first observation (a) is quite natural: the newer PC
platform has a faster Pentium Ill processor and there is a
possible gain in computational performance in comparison
with the older workstation. The second observation (b) can
be attributed to the PCEC platform memory size and
configuration limitations. Since the processor is accessing
memory far more than any other device, and a shortage of
Random Access Memory (RAM) is definitely causing more
access of virtual memory on hard disk, the memory size and
access speed are important performance parameters. There
are subtle issues of platform computer cache memory
level(s) size, the number and size of computer/RC board
registers and operating system memory management, as
well as Input-Output (IO) drivers’ quality and data bus
bandwidth for PC-RC components data flow. For example,
each of the PC platform’s internal data storage levels Disk-
RAM-Caches-Registers may differ roughly in data access
speed by a factor of 4. The third observation (c) was
remarkable in the respect that the shift appeared in a
segment of code that allowed straightforward hardware
implementation and performance gain by a factor of ten and
consequently allowing to meet the real-time requirements.
The analysis of this segment of code also revealed the
significance of platform’s memory hierarchy and its
utilization by the bottleneck code processes. The fourth
observation (d) is subtle. It is important that optimization of
a selected code function in local execution mode (local
optimization) does not degrade the entire application
performance (application global optimization). A code
function may be forced into local minimum, for example, by
allocating to the h c t i o n more system resources (such as
memory) and this may degrade the global system
performance. Sharing the task analysis and up to-date
results with the application operations team ensured that
improvements on the native platform were made as a result
of this effort on the new development platform. As a result
of this approach the application was also moved from the
native UNlX platform to a newer interim uND(platform
and a new set of benchmark timing performance (UI32) was
provided by the GOES team (Section 5.0 Table 2) as this
work was in the hardware implementation phase.

2.0 THE HERITAGE APPLICATION OVERVIEW

A nominal run of the GOES-8 heritage application consists
of processing a set of telemetry-based input files (supplied
by preceding levels of operations) and producing color
pictures (end-product) used for weather prediction. The
typical run produces a single color picture using a sub-set of
input files of origin {title, nav, map, vis, ir2, ir3, ir4, ir5).

Each telemetry file name begins with a timestamp prefix in
the format of YYMMDDHH” that uniquely identifies
each subset. The rest of a file name is a fixed root G8I
(GOES-8 Visibility and Infrared bands) and followed by a
suffix 01 for ‘vis’ files, 02 for ir2, 03 for ir3, 04 for ir4 and
05 for ir5 bands. For example, an ir2 file that originated on
February 12, 2000 at 10 hours and 02 minutes GMT time
has a name 0002121002G8102.tif. The file name timestamp
must be within the specified for the run range of telemetry
times. The files that comprise this processing unit are

{0002~121002G8I01,0002121002G8I02
0002 121002G8I03,000212 1002G8104
0002121002G8105).

These ‘tif type files and the accompanied background color
map and navigation data files are described in more detail in
the following swtions.

2.1 Applicatiorr Scalability
The problem-scaling factor is specified in the application
top-level procedure as a sofhvare switch and determines the
size of the output color picture. This factor is the main
contributor to the application run time computational
complexity. The basic size of the output color picture is
900x750 pixels (switch value “small” equal to telemetry
image size) and 59 seconds are required to run it on the
native platform (uB1, UB2 Section 5.0 Table 2). The
picture “medium” size is 1800x1500 and the large picture
size is 3600x3000 (switch value “large”) and requires
expansion of the basic telemetry image by a factor of 16.
Although the first benchmark value for the small picture
generation on the native uND< platform (UB1) is already
under the real-time requirements criteria of 75 seconds, the
present benchmark performance for the medium size picture
is 100 seconds and for the large picture 291 seconds, or 4
times larger than desired, and needs at least that much an
order of improvement for the application to meet the real-
time processing criteria. A typical production heritage run
can be interpreted as a sequence of independent units each
processing a file set as described above. Each file is read
into RAM and appropriately scaled into intermediate arrays
whose size is depending on the hard-coded scale factor.

2.2 Application Resources Requirements
For large color picture generation, the application’s largest
bottleneck code segment is operating with intermediate data
in the form of 6 large arrays. One of these arrays is of
double precision floating point type (8 bytes) and 5 arrays
are of single precision floating point type (4 bytes).
Therefore the input arrays memory requirements can be
estimated to be 302.4MB. The three resulting arrays are a
subset of the input, but change type from input single to
output double precision floating point type during a
bottleneck recomputation. This requires an additional
259.2” of RAM increasing the minimum RAM
requirement to 561.6MB. There is always a need for some
memory depending on system internal operations and this

4-1978

can only be found experimentally by monitoring the
computational process memory allocation. It was
established experimentally that the GOES-8 application
required some 720h4B of heap (dynamic) memory for the
problem ‘large’ case factor. However, even upgrading the
PCRC platform to 768 MB RAM did not solve the problem
completely, but rather clarified the need to hrther analyze
the application and find areas of its possible implementation
in RC components on the new platform using parallelism
paradigms. There is no doubt that 1GB of memory and a
lGHz PC could solve this application performance problem.
However, the obvious solution of another super computer is
not acceptable because it would take years before it can be
made ready for space flight. Furthermore, there is still a
need to free a powerfd PC resource to perform intelligent
processing most of the time and move the routine intensive
computations to an RC component.

2.3 Application and Problem Partitioning for RC
Implementation
There are a few avenues of achieving parallel processing
benefits using FPGA or DSP RC technologies. They may
utilize different aspects of an application depending on its
Computational, IO and Interface requirements. To depict
the application natural avenues of possible parallel re-
configuration and problem partitioning we analyze the
application critical aspects and provide the model of this
application structure and data processing.

2.3.1 Computational Aspects
The computational aspects of the PC/RC platform include
the PC platform and RC software or firmware processors
and comprise:

- PC processor computational speed
- PC internal memory (RAM, caches, registers) sizes,
memory management by the Operating System , and
overhead of IO drivers

- Algorithms pre-hardware optimization
- RC board computational speed
- RC components memory types and sizes
- Existence in the application of independent bottleneck

code segments allowing segments parallel processing
implementation in hardware

- Image array interpretation as a vector for pixel-by-pixel
processing.

2.3.2 Auxiliary Storage and IO Interface Aspects
Auxiliary storage and IO data volumes and throughput
aspects may be the most important limitations in this
project. They are as follows:

- Moderate size operational telemetry file sets at remote
site and product destination site allow the use of
Intemet for file level transfers

- A PC/RC platform has adequate disk space size for
autonomous local IO operations

- A data processing unit is an independent file set on disk

that is fwlly loadable into a PC RAM to reduce disk IO
during processing
- A large volume of intermediate multi source data is
created in this application.
The data originates in different source files and arrays,
presenting a multi source aspect that requires multiple fast
IO transfers over the PCI bus between the PC and RC
components mainly because RC boards have small external
memories. For this reason the initial RC implementation
was reduced to a subset of the bottleneck code and
259.2Ml3 of data. The sustained data throughput supported
by the available DSP board was found experimentally and is
close to 8OMbs. This provides an estimate for the time
required to transfer the data from the PC to the DSP and
back as 26 seconds. If the bottleneck computation on the
DSP can proceed concurrently with the data transfer we can
achieve the reduced bottleneck processing under 30 seconds
using a DSP board. The FPGA board has advanced IO
capabilities and utilizes 70% of the PCI bus bandwidth.

2.3.3 Data Multi Source Aspects
The solution to the data multi source and large IO volume
aspects of the listed above domains may, in turn, be another
strong reason for a bottleneck code, as opposed to full code,
implementation in hardware. Full code implementation
relies on a single moderate rate stream IO, and thus narrows
the satellite image processing application domain. For
example, the PC-RC IO, over the currently fastest available
interface, the Peripheral Component Interface Bus using
CPU controlled or Direct Memory Access (DMA) IO,
significantly depends on the application IO data nature. A
single large data stream is the ideal case of DMA/PCI IO
mechanism. A multi source case when the RC target data
originates in different arrays on the PC presents an IO
performance problem and RC memory operand access
problem because the operands &om different data sources
are widely separated in RC extemal memory locations. This
is not the D W C I channel problem, but it is based in the
overhead of multi source DMA initiation or in pre-building
a single thread fiom the multi source data both on the PC
and the RC components. This multi source IO problem has
also been solved in this project. The chosen approach to
address this application multi source IO problem can also be
used for a wider class of satellite image processing
applications. The solution is illustrated in Section 7.2.

2.3.4 Application Model
The domains described above and their multiple interfaces
are depicted in the following processing model of the
GOES-8 application. The heritage processing deals with a
fiaction of the nominal telemetry stream at a selected rate of
0.2 Mbps resulting in a unit of data each 15 minutes or 10
times less the science maximum capacity rate of the GOES-
8 spacecraft. By re-organizing the heritage sequential
processing of independent processing data units

(Dl, D2, . . ., Dj, . . .}

4-1979

and the associated sub-processes of, say, three bottleneck
code segments {PI, P2, P3} (performance of which is also a
function of the data Dj size and content)

{ {D17P1,P2,P3}, {D2,Pl,P2,P3} ,... {Dj,Pl,P2,P3}, ... }

into problem partitions

(Dj,Pl) (Dj,P2) (Dj,P3), (wherej=1,2, ..., k)

the bottleneck processing can be implemented in parallel on
an FPGA or DSP (or more than one RC board - an FPGA
and a DSP pair), and can solve the run-time performance
problem. This, in turn, would allow support of real-time
image processing at the present rates and also at increased
rates of science data by a factor of ten. The combined power
of PC and RC system will keep the auxiliary storage
cumulative input data set small most of the time.

Computations Auxiliary (Disk) Storage

Internal Interfaces
13MB In and 0.6MB Out

7

PCI bus Intermediate Multi Source
Data Transfer Internet IO
6/3 FPGA Vector Process (400MB) or
5/2 DSP Vector Process (260- i/o)

GOES-S Intemet Site, 2.2Mbs
Data Source and Solution Product
0.6MB Destination

Figure 1. GOES-8 Application Model

2.4 Data Structures and Volumes
The ‘nav’ file, whose size is 0.428 MB, contains relevant
geographical information - a sequence of pairs of latitude
and longitude for the 361x301 grid of the spacecraft image
pixels preceded by a two-word header specifying the array
dimensions. The map file (a fvred prebuilt file) stores a pre-
selected terrestrial map on which the spacecraft images are
superimposed to get a color picture. The map file requires
10.34 MB of disk space. The input files ir2, ir3, ir4, and ir5
store spacecraft images in four infrared bands and require
0.659 million bytes (MB) of disk space each. The ‘vis’ or
irl file stores the visible band image and requires 10.548
MB of disk space. All input files except the nav file are Tag
Image File (TIF) format files. A unit processing single

output color picture is a 0.074MB (small color picture) to
0.201MB (medium color picture) to 0.600MB (large color
picture) file. This file is in a lossey-compressed file in Joint
Photographic Experts Group (JPEG) format. The pre-
hardware implementation timing tests performed on the PC
platform are summarized in Section 5.0 Table 2. The
application porting and a few initial enhancements to the
application software were based on experimental insights
into IDL and the application IDL code, and are described
next.

3.0 I’ORTING THE APPLICATION

The reconfigurable computing technology is just maturing
and is in need of a proficient application, which spacecraft
image processing can provide. At this time, implementation
of a telemetry processing application in hardware
necessitates careful pre-hardware implementation steps,
such as selecting a platform for which inexpensive RC
hardware exists, porting of an existing application (such as
the GOES-8 color picture generation application) from its
native platform to the new platform, defining and
optimizing algorithms, and selecting software programming
languages conducive to full or partial translation of a
software application into hardware. These steps are
described below on the precedent of the GOES-8
application, especially the porting of the application from its
native SGI Workstatioflnix platform to the
PC/Windows/RC platform.

3.1 lDL Platform Dependent Issues and Their
Resolution
A PC platform running the Windows operating system and
the same version of IDL as the native platform was selected
as the new platform. There exists a series of inexpensive RC
hardware boards and associated tools for the PC platform.
Firstly, the GOES application IDL source code and test data
files were ported (using the Internet file transfer protocol)
fiom its native platform to the PC/Windows development
platform. A fkee IDL demonstration package for the
PC/Windows development platform was obtained from the
vendor and rapidly evaluated to ensure the application
feasibility on the new platform. The application software
and data system initial study and evaluation on the
PCWindows platform were conducted. This resulted in
proving the feasibility of reimplementing the application on
the PC/Windows platform running IDL.

Secondly, two full IDL development systems Version 5.3.1
for the PCIWindows platform were procured, including
system maintenance and technical support. Both the IDL
system and the application were rapidly modified to allow
full compilation of the project and its successful run on the
new platform.

The porting of the GOES-8 IDL application from its native
WorkstationKTNM platform to a PC/Windows/FPGA/DSP
platform carries an associated and expected slew of

4-1980

platform depended issues. The few IDL system platform
dependent differences are mostly due to differences
between the two platforms’ operating systems. The NASA
and IDL vendor teams quickly resolved these differences.
For example, the IDL function SPAWN is using platform
operating system commands to spawn a concurrent process.
Since the operating system commands are different they
must be re-coded. File name and directories’ paths
specification and convention differences require change in
parsing algorithms and code. The PC is also a so-called
“little-endian” machine that swaps the two bytes in a 2-byte
word when reading input binary files fiom disk unlike the
uND(Workstation. This must be addressed when
accessing files in other than ‘tif or ‘jpeg’ format, like the
‘nav’ binary format file. The native SGI Workstation/UNIX
platform is using the IEEE-754 format for handling integer
and real numbers, as does the new PC platform. The
application does not have the new platform computer
identification ’x86’ in its internal table and defaults to an
SGI system representation of integers and floating-point
numbers after issuing a warning message. However, both
platforms use the same EEE-754 standard for integers and
real numbers representation, and this warning can be
ignored. The changes induced by the platform differences
are hlly described in the following section.

3.2 Source Code Modifications and Compilation
Platform-dependent modifications to the application source
code were required in order for the PC IDL project to
successfully compile and complete a full run. IDL project
“GOES” was created on the PClWindows98 platform using
the modified UNIX IDL source code modules. The
differences between the UNIX and the Windows98
operating systems and the IDL Version 5.3.1 specifics and
its implementation features for Windows were determined.
The corresponding changes to the GOES project source
code were then made in order to eliminate compilation
errors. For example, the two platforms have a typical CR-
CRLF text line delineation incompatibility. The UNIX
forward slashes ‘\’ in directory specifications were changed
to Windows notation ‘P to allow correct parsing of
directory and file names. The syntax of the SPAWN was
changed to execute a DOS batch file. The IDL option
/SWAP-E-LITTLE-ENDIAN was applied to the IDL
OPENR, which solved the problem in handling the
navigation data file.

Compilation of the complete GOES project on the
PC/Windows98 platform was a milestone, as was the first
run of the project on the new platform.

The top operational procedure was updated with IDL timing
analysis debugging statements and the help, /memory
statement. This allowed precise determination of the
maximum heap memory required by this application. In
summary, six source code modules were changed on the
PC/Windows98 platform and the depth of required changes
was minimal.

The GOES-8 application comprises 98 procedures,
functions and definition software files written in IDL. These
are using most of the features provided by the IDL
development environment. The model of the entire
application was provided above in Figure 1. It depicts the
application structures, which are susceptible to parallel
implementation in hardware.

3.3 First Successful Run
The first successful program run on the PC platform was
performed in two weeks after the PC platform IDL
development system arrival and installation. All of the
changes that were previously made effectively worked. This
run was made using the ported application for its default
output picture size of 1800 x 1500 (medium) and ten
available sets of input files. All 10 resulting color pictures
were written to the correct output directory in ‘jpeg’ format.
The pictures were immediately verified by just viewing
them while formal verification tools were under
development. Performance timing information was recorded
for each of the 10 files (Section 5 Table 2). The average run
time for a single loop to produce an output medium size
image was 80.21 seconds. The operation that consumed the
most time was ‘calc v,s,b with vis’. This operation averaged
36.27 seconds. The IDL function color-convert took an
average of 12.48 seconds varying from 6 to 20 seconds for a
large image generation (this processing is evidently data
dependent). Due to their hardware-compliant algorithms,
these two operations will be the first candidates for RC
implementation. After the PC memory was upgraded fiom
128 to 256 MB the problem medium size case run time was
reduced to 36 seconds and meets the real-time requirements.
However, achieving real-time performance for the largest
size output picture remained a challenge. The solution for
all sizes of output color pictures is described as follows.

3.4 Development of Tools
A complement of tools was explored and developed for this
conversion project. The tools fall in two main categories -
traditional tools used in software development (TSW) and
tools for RC hardware implementation (TRC). These tools
for input files and output color picture analysis and
computational performance studies are described in the
following subsections.

4-1981

3.4.1 Data Analysis and Software Debugging Tools
The publicly available software tool Hexview.exe was used
to analyze the navigation file (nav) structure. This resolved
the PC platform “endian” problem.

The structures of image files of type ‘tif, ‘tiff and ‘jpeg’
were analyzed using query tools provided by IDL and
printing the returned file structure variable. These formats’
latest standards were retrieved fi-om its holders’ Internet site
and used in tool development.

An IDL procedure was developed to compare the content of
two ‘jpeg’ format image files. This procedure takes the
names of two files to be compared as input parameters,
parses the file names to determine the file type ‘tif or
‘jpeg’, reads them into corresponding arrays using IDL read
procedures, and compares the contents pixel by pixel, and
retuming the count of mismatches for differences exceeding
a threshold. The comparison was done before and after
compression. The IDL utility functions were used to
determine the input files’ data types (integer, floating and
pixel value size byte, 2 bytes, 4 bytes, 8 bytes) and
indicators of lossey file encoding.

3.4.2 Tools for Memory and Timing Requirements
Studies
It was quickly realized that the PC platform memory size is
a critical factor in the application timing performance.
However, it was difficult to determine the exact memory
requirements for the GOES-8 application. IDL provides a
powerful function for inquiring the memory heap state at
any given point in the IDL code, namely:
help, /memory
This returns and prints information that was decisive in the
selection of optimal memory size for the new platform and a
platform that allows to be configured with this memory size.
IDL also provides the standard tools to inquire about current
system time and elapsed time between any two points in the
application code. It was also noticed that when initially
internal memory was not sufficiently large, computational
references to the part of virtual memory on the hard drive
overloaded the system. Memory upgrade would also
prolong the hard drive lifespan. Although platform memory
size is significant in timing performance of an application,
the timiig performance is a more complex function of
platform memory size, PC cache size, operating system
management of memory and especially its stack and heap
and other factors. The PC host and RC target C-code
modules’ timing was performed using ANSI C standard
timing functions. However, they were found to be
inadequate, and a timing function to accesses the Pentium
time stamp counter was developed in assembly language.

3.4.3 Tools for PC Host and DSP Target Modules
Debugging
There is no standard output feature in IDL V5.3 for the
external host module. This issue was resolved by
introducing in the host module a text file to store debugging
messages and analyzing them off-line at test end. Similarly,
there is no ready debugging mechanism outside the TI Code
Composer Studio. The issue of debugging the DSP target
module that implements the IDL bottleneck code was
resolved as follows. The few lines of IDL bottleneck
expressions were copied fiom the large GOES-8 IDL source
code and used in a small test IDL project. These lines were
then preceded by a few more lines of array initialization to
known values using IDL functions. This small project was
augmented by a few IDL code lines to display initial values
fi-om arrays’ first five and last five pixels before and after

computation. These then comprise the truth test data. Next,
the IDL-host module-DSP target module calling sequence
line is introduced into this test project replacing the IDL
bottleneck expressions and is run again. This yields results
from DSP target module computations, which are compared
manually with the truth data.

3.4.4 Tools for Array Pointer Validation Across
Different Programming Environments
A stand-alone program in C++ was developed to determine
the actual pointer handling issues across the IDL-Host C++-
DSP target code handling. The issues of pointer
assignments for initialization, pointer assignment
expressions needed for step-down into vectors and mixed
type pointers handling were analyzed and solved using this
program.

3.4.5 Tools for (Color Picture Validation
The 10 input file sets were used throughout this project.
These files were then given back to the native platform
operations team and processed there. The pairs of
corresponding pictures obtained on both platforms were
compared using the tools described above in Section 3.4.1.

4.0 P E R F C ” C E TIMING METHODOLOGY

The task of an application run time optimization is difficult
when software has already been implemented but not fully
documented. However, there are some benefits in working
with an existing, fully functional application such as the
GOES4 application. Existing application science
algorithms and s o h a r e code can be studied directly and
timing tests can be readily performed in order to localize
application performance bottlenecks. The following is the
description of the methodology employed in the run time
performance study of the GOES-8 application (also called
here IDL GOES-8 project) on the PCRC platform. The
IDL GOES-8 project operands (any IDL code except user
developed function calls) and the algorithms and options of
major IDL code functions were studied. The affects on run
time performance of minimum and minor changes to both
IDL operands code and algorithms were also studied.

Timing studies have uncommon complexity since run time
depends on many variables of different origin. Our interest
is in the optimization of the GOES-8 application run time
function T(p) - the run time required by the GOES-8
application to generate a single color picture product,
specifically

T(p) = T(d, g, a, c, C, i, r, 0) <= TO,

where TO is the real time criteria threshold defined in the
Introduction as 75 seconds. The variables are described as
follows:

- telemetry volume (d)
-
-

intermediate data expansion factor (g),
host algorithms time complexity (a),

- PC computational complexity (c),
- RC computational complexity (C),
- PC-RC interface bandwidth (i),
- Internet Interface bandwidth (r)
- other contributing variables (0) like O=O(M), where

M is the RC on-board external memory size.

T(p) not only depends on the numerical values of the
parameters d, g, a, c, i, r, 0 but also on the nature of the
source data. The data used in timing studies, with all these
parameters fixed, may yield a ratio of 2 between T(p) upper
and lower boundaries. For example, if an application
comprises a single data comparison to a constant and a
single result assignment depending on the comparison
outcome, using a data test pattern of constant values to
trigger the assignment will cause the application to run
twice longer for this specific input data set. The standard
approach on this time studying problem is to use carefully
prebuilt benchmark data sets. However, this is impractical
for this application and the timing tests data set was the test
data set of 10 telemetry files obtained from the GOES-8
operations team and was considered as representative of the
application standard input. These files were used to study
the timing affects of arguments (d) and (g). To study the
affects on the timing function of arguments (a) and (c) two
mechanisms were used:

- computing elapsed system time for IDL
functional calls and
investigating timing costs of basic IDL operands in
large loops.

-

These were used as the starting points in the attempt to
improve the application timing performance, and resulted in
determining the IDL algorithm and code bottlenecks.
Further studies of the effects of variables (c) and (i)
involved hardware implementation of the application IDL
bottleneck code using RC boards. It becomes rapidly
obvious that if selected for RC hardware implementation,
bottleneck code’s volume V=d*g requires time I(V, i) for
the data to be transmitted and the results retrieved from an
RC hardware board, then a simpler than T(p) relationship
between I, c, C, 4t and To determines the PCRC bottleneck
engineering implementation architecture, requiring that

c + I + 4t + C <To.

The PC-RC synchronization wait parameter 4t is described
below.

Towards the goal of generating the GOES4 color picture in
real time on the new PC/RC platform, the obvious frrst
objective is to make the application run correctly on the new
PC platform. Towards this objective, the conversion effort
was conducted from the UNIX to Windows operating
system as was already described above. The second
objective was to achieve on the new PC platform a
pe~ormance at least equal to the native platform

benchmarks before RC hardware implementation. Toward
this objective, the PC platform memory was upgraded fiom
an original 128MB to the PC maximum allowable
configuration of 768MB and pre-hardware optimization
steps were performed with steady improvement in the
application’s time performance. The third objective was to
implement the PC remaining largest bottleneck code
segment in RC hardware to achieve real time performance.
For this, similar to the first and second objectives, the initial
hardware implementation was debugged to produce a
correct color picture without regards to timing performance.
However, this came at a price of C >> To. Knowing that I <
To, this then led to an effort to implement different than
nominal pre-processing of source data in the host module
before writing it to the DSP for intensive computation in
order to attain DSP performance that yielded C<<To or a
ten-fold improvement. The pre-processing consisted of
replacing separate 10s for all data sources with a single
vector of quadruplets of source data pixels and a single IO
block. Aggregating the multi source input pixels into
quadruplets solved the multi source operand performance
problem on the DSP. With this done, the T(p) becomes
better than the software version and the remaining PC/RC
implementation optimization involves attaining a better I by
developing a better PC-RC PCI driver and to reduce
redundancy in the data passed to-from the PC-RC board.

The IDL development system data types’ specifics, as
compared to other development systems, like Matlab
(Trademark of Mathworks Inc.), were also determined.
This is necessary for IDL code implementation in hardware
because there are no cross-translators fiom IDL into
Hardware Description Language (VHDL). However, it is
known that some Matlab and C functions were implemented
in a hardware library. Knowing the similarities and specific
differences between IDL and Matlab can facilitate the IDL
application partial implementation in hardware.

Automatic generation of the application software modules
calling tree is required to analyze program time
performance. The existing utilities to do this were analyzed
and needed modification. Though this effort was started,
pressed by schedule, we built the application’s software
calling tree manually. There are 76 procedure and function
nodes in the tree and 25 end-nodes or leaves. There are also
dormant nodes like that are not called at all and some that
are not reachable on the PC platform, like the integer and
floating point conversion function for VMS-PC number
format conversions. The calling tree helps to evaluate the
problem size and complexity.

The hnction call frequency table is required in order to fmd
the modules, which are called most often. The tool to
generate this table is provided within the IDL development
system and the table can be used in selecting prominent
functions for embedding them directly into code in order to
reduce operating system overhead, while preserving code
maintainability.

4-1983

We have established a set of performance tracking tools
such as timing different segments of code and monitoring
heap activities for dynamic memory allocation and de-
allocation. These include IDL and Windows directives as
well as the timing points inserted by the GOES4
application’s development and platform conversion teams.

We have conducted an experimental study of the time cost
of basic IDL operations in a loop of an average (medium)
size pertinent to the GOES-8 application.

We have investigated the dependency of the application
time complexity on the number of input data transactions
(data driven component of time complexity). For example
the filter construction operations “<” or “>” on an array (x)
and scalar (l), say y=x<l, execution time greatly depends
on the number of elements in array (x) that are larger than
(l), because these elements are then replaced by 1 at the
increased time cost. This is why processing different files
requires slightly different amounts of time.

We have also investigated the filtering of data using a few
sequential additive filters, in order to derive simplified
filters with fewer computations. Presorting operand arrays
can significantly speed up the filtering.

We have evaluated the volume of input data for a run unit in
order to integrate a fast data interface between the
operational input data source and the new PC platform via
Internet. The total volume of inputs for a unit run is 23.60
MB. Only the ir and vis files are dynamic files of combined
volume 12.838 hlB or approximately 130 Mbps and can be
ingested into the PC platform using a 100 Mbps Ethernet
interface in acceptable time of a few seconds. This was used
to design the new operational ground system configuration
to include the heritage and conversion platforms in a local
point-to-point area network, as described in Section 8.

With the completion of these basic investigations of IDL
specifics and the IDL application performance, we were in a
better position to conduct timing tests, find the bottlenecks,
recover the new platform bottleneck algorithm’s definition
fiom the IDL code or published sources pointed to by the
IDL reference manual. From this point we proceeded to
make a few obvious code improvements and optimizing the
algorithms in the IDL code, mainly by using different
command options and processing array data as vectors were
applicable. The timing results and the efforts of algorithm’s
definition recovery and optimization are described in the
following section and the rest of the paper.

4.1 IDL Data Structure Specifics
Similar to the basic argument type of Matlab being a matrix,
the basic argument type in IDL is an array. It is important to
clarify the IDL definition of an array dimension and size.
The dimension definition is the classical one - the number
of subscripts needed to reference an array element. For

example, array A(3,3) has two dimensions. This is exactly
the same as a matrix dimension definition in Matlab. Each
dimension is numbered from left to right as dimension 1,
dimension 2, etc. In Matlab and C, dimension 1 corresponds
to a row and dimension 2 to a column. It is the opposite in
IDL. To correctly process an array that is passed as a
parameter from IDL to a C-function, indices in C must be in
reverse order compared to that in IDL. Size is pertinent to a
dimension and size is the number of subscript values that is
needed to reference all elements in the array along this
dimension, beginning with subscript 0. IDL has internal
limitations on array sizes, which are different fiom the
limits imposed by the platform operating system. For
example it does not allow allocation of a byte array of size 1
Giga Byte (GB) while Windows operating system allows
addressing of 2 GB of memory.

When a new or an existing array is equated to an
expression, it preempts the type of the longest type
argument in the expression. However, partial array
assignments leave the type of the resulting array unchanged.
This is natural since in a partial assignment it is unknown
how the rest of the array is going to be assigned, and IDL
prudently leaves the original array type unchanged and
instead implicitly casts the type of the argument arrays into
the type of the initial array. This is an important point
because when the assignment expressions contain just array
names and at least one DOUBLE array operand, the
resulting array type becomes DOUBLE, and thus requires
twice more memory. For example, one of the three resulting
arrays recomputed in the bottleneck code segment are
originally of single precision floating point type and each
occupying 43MB of RAM. After a recomputation that
involves an argument of double precision floating-point
type the array type is changed to DOUBLE and requires
twice more RAM. This may not be necessary for the result
precision and can be avoided when code is implemented in
hardware. Whenever such a saving is planned at the
apparent expense of accuracy, the science algorithms
originator must approve it. We introduced partial array
processing and array interpretation as vectors for
pre=hardware optimization tests and for RC
implementation.

4.2 User Implemented Loops
There are advantages and disadvantages in implementing
user-constructed loops. IDL hc t ions for operations on
arrays provide better time performance than for-loops
implementation by users for small arrays when all
computation arguments fit into the RAM heap. However,
for large arrays, as in the GOES-8 application this is not the
case. When the PC platform does not have sufficient
internal memory, it reverts to virtual memory on the disk for
IDL code segments and large dynamic memory allocation.
For example, the GOES-8 application required 20 minutes
for the basic operation of producing one large output color
picture with 128 MB RAM memory and 12 minutes with
256 MB memory. Replacing some IDL computations over

4-1984

arrays by partitioning reduces the need for one-time-
memory and the number of disk accesses, and reduces
computation time to less than 7 minutes. Of course, the
array operations under consideration are element-by-
element operations, allowing such direct array partitioning.
We have performed time cost analysis (Table 1 Section 4.3)
of one large loop and a few nested loops without any
operations in the loop implemented in DL. This time costs
are higher than expected for large loops (10 seconds for a
3600x3000 size) leading to the lesson learned that these
loops in IDL procedures that use large loops and have
performance under 10 seconds were implemented in IDL
system in some other compilation language with its
executable being embedded in the IDL system.

PC

UB1,

4.3 Elementary IDL Operations Cost
Different experiments were conducted to determine the time
cost of a few basic IDL operations, like +, *, <, >,
assignment and indexing. This was done in order to
determine segments of code where improvements would be
guaranteed. There are three modes of processing: nominal
(small), medium and large. The cost of an operation was
determined by timing an IDL FOR loop of length
1800x1500 (problem case ‘medium’) and having in the loop
a different expression with basic operations. A medium size
loop with external call clocked the same time as a loop with
an IDL call. Following is Table 1 summarizing operation
costs. Table 1 was obtained by timing a medium size loop
(2.7e6 loop counts) and a 128MB PC RAM configuration.

Columns Rows (sec)
900 750 128 16.00
900 750 256 16.00
900 750 768 14.00

900 750 58.45
(RT/4)

Table 1. Time cost of IDL operations

PC

IDL Time Expression FOR
Operation 1 I Timed I I

1800 1500 128 80.21
1800 1500 256 36.00
1800 1500 768 32.00

I Size
+ 1 2.5 1 a=1.0+2.0 I 2.7e6

uB1,

* 1 2.5 I a=1.0 * 2.0 1 2.7e6
+ and I 4.29 1 v=f[i] + f[i] [2.7e6

(RT/2)
1800 1500 90.00

uB2

I 1 a=3.0+4.0 1 I

1 39.54

< 1 3.13 I v=v< 0.0 I 2.7e6 1

UBI,
uB2

I 2.57 I F 1 . 0 1 2.7e6
++ 1 10.0 I a=1.0+2.0; I 1.8e7
- -

3600 3000 291.00
106.00

I I a=3.0+4.0 I I

subscripts
subscript
++

1.7 2.7e6
4.51 a=1.0+2.0; 2.7e6

5.0 TIMING TESTS ON THE NEW PLATFORM

U0

opera tion

Timing test runs were conducted on the PChVindows98
platform in order to collect timing results before algorithms
and code optimization and hardware implementation. The
IDL source algorithms and code performance timing results
on the PC platform were then analyzed in order to

1.3 1.8e7

determine the bottleneck code segments for hardware
implementation. The application time complexity was
evaluated on the PC/Windows98 platform for the three
required configurations of problem size - small medium and
large, and variable PC RAM memory size. The results of
these tests are described below in Table 2.

5.1 Timing Results
The real-time processing performance criteria “RT=75
seconds” was defined above in the Introduction. The
GOES-8 development and operations team provided the two
UNIX native platforms’ Benchmarks uB 1, uB2.

Table 2. GOES-8 Application Pre-Hardware Timing

I Platform 1 Image I Image 1 RAM I Time

1 3600 I 3000 1 256 1 760.00
I3600 I 3000 I512 I 150.00
I 3600] 3000] 768] 125.00

I I I I 1 (RT+50)

5.2 Development System Cost
The cost of the PC system was $2533. The cost of the IDL
development system for the PC was under $2K and the cost
of the memory upgrade was $1K. The cost of MS Visual
C++ 6.0 is $800. The cost of the FPGADSP board system
is under $2K.

6.0 OPTIMIZATION AND RC IMPLEMENTATION

The software application’s bottleneck algorithms were
determined, optimized and implemented in RC hardware
and software.

The issue of an acceptable definition for a computational
algorithm is still open. The work in this area is continuing in
the USA and intemational bodies that are developing related
standards. When this issue is encountered in software
engineering, the algorithm definition in many cases requires
reconstruction, refinement, and optimization.

4-1985

For the benefit of the GOES-8 application conversion
project, we give an operational definition of an algorithm.
We hope that this definition will be useful and practical for
other projects’ software and hardware implementation by
personnel versed in software and hardware programming.
An algorithm definition must be susceptible to direct and
rapid software or hardware implementation. All
implementations should produce the same required or better
output accuracy for identical inputs. The algorithm
definition, provided by documentation and the code
execution examples must be repeatable with manually
computed results. In case of discrepancies, there is a need to
go back to the code requirements or even one more step
back to the Algorithm Theoretical Basis Definition (ATBD)
provided by an instrument science team. The ATBD, in our
view, is more “a to be further defined” phase for an
algorithm operational definition that is useful for
engineering implementation.

6.1 Pre-Hardware Optimization
Porting the application from its native platform to the PC
platform, a few elementary enhancements to its IDL code,
upgrading the development PC platform to its maximum
memory capacity of 768 MB, and introducing the largest
bottleneck process split into 16 segments, allowed achieving
the 14 seconds performance improvement (a factor of 4) for
generation of the small size picture, and 32 seconds were
required for the medium size picture generation,
improvement by a factor of 2.5. This performance was
reached even before the code implementation in hardware.
All extraneous processes on the platform were terminated
before the IDL application run. Not initializing a large array
to zeros when all the elements are computed later or
allocating resource just before they are needed resulted in
improved performance. Also, in one case, a large array
computation expression was simplified by replacing a
computational component with a constant. A single term
was introduced to replace its multiple computations in the
largest bottleneck code segment. A unique splitting of a
large array handling process into sixteen segments reduced
concurrent requirement for heap memory by a factor of 16
and improved performance for the large color picture
generation. However, the 120 seconds required for the large
size picture generation was difficult to improve on the PC
platform, even as it is already at (RT-50) seconds. It is also
difficult to further improve the application performance for
the small and medium size images to allow higher telemetry
rates because the IDL procedures used in this application
are already optimized. Whilst the need for the GOES-8
application bottleneck code hardware implementation
becomes extremely evident and necessary, the approach
taken for this application is to implement in hardware only
the bottleneck code segments. We are also taking advantage
of the application data processing parallelism nature that
was established above in its application model and propose
to use two or more RC components for implementation of
independent bottlenecks once a solution for one bottleneck
is achieved.

6.2 Application Bottleneck Algorithms
The algorithms of the few critical IDL functions and
procedures we selected for possible optimization were
reconstructed by experimentation and reaching a consensus
with IDL vendor on their IDL implementation. The
following algorithms were analyzed in detail, optimized in
IDL or C++, arid the shifted bottleneck code segment was
the first to be implemented in RC hardware. It is important
that a selected function local optimization does not degrade
the entire application system performance.

6.2.1 Interpolation
The application is using the IDL bilinear interpolation
procedure INTERPOLATE for which the algorithm or
source code are not available. The INTERPOLATE is used
once in the application to derive angles of the sun altitude
on a 3600x3000 grid using pre-computed angles on a 100
times smaller 361x301 grid. It was requested by the GOES-
8 project that this procedure time performance be improved.
We reconstructed the IDL interpolation algorithm based on
run time analysis of the procedure and then optimized the
algorithm using the application specific a priory knowledge
about indices in rectangular arrays and similar to [3].

6.2.2 Fast Fourier Transform
The application is employing in one user procedure the Fast
Fourier Transform (fft2) on a two-dimensional (2-D) ir4
band image. The fft2 is used to correct and sharpen images
obtained by spacecraft in r4 band. The direct fft2 is
performed on ir4 file image and the lower frequencies are
then filtered and smoothed after which the backward fft2 is
performed. The result is superimposed on the source image,
sharpening the ir4 image. It was requested by the GOES-8
project that this procedure time performance also be
improved. The work towards satisfying this request was
based on the observation that the sum of prime factors of
source image sizes is equal to that of array sizes closest
approximations by numbers of power two. The ffi
computational complexity is known to be proportional to
this sum. Performing fft on the original arrays saves RAM
by a factor of 1.5 and contributes to better overall
performance. There are also very fast fft cores for FPGA
and DSP boards.

6.2.3 Color Systems Conversion
The application is using two color systems to describe
images namely, the (r,b,g) and the (h,s,v} systems. The
necessity to c;onvert from one to another is probably
dictated by the necessity to apply to images digital 0 and 1
cutoff filters. The (r,b,g} to {h,s,v} conversion maps the
{r,b,g} color values into range 0 <= {h,s,v} <= 1 that
facilitates this filtering in IDLY using IDL operations of
maximum (>) and minimum (<) on an image matrix and
corresponding constant of 1 or 0. After filtering the image is
converted back to {r,b,g} that is a convenient color system
for image visualization and display. IDL provides the
necessary procedure COLOR-CONVERT with an option

4-1986

RGB-HSV and HSV-RGB similar to [4]. However, this
procedure is notoriously slow. The IDL color conversion
functions performance also depends on input data content,
as much as by a factor of 2 for large images. It was
requested by the GOES-8 project that this procedure time
performance also be improved. The IDL algorithm was
reconstructed and implemented in C++. This resulted in
code better performance and could facilitate further
performance improvement by implementing the C-code on a
DSP board.

(fft2)
calc v,s,b
bumD size

6.3 Digital Filters
Multiple digital 0-1 filters are constructed and used
throughout the application. These filters are applied to large
arrays on a pixel basis and can be viewed as vector
operations. The time complexity is driven by vector size,
data content, and the number of filters applied. The filters
are implemented using the IDL maximum and minimum
functions (>, <) and some threshold constraints. These
filters comprise one of the bottlenecks and could also be
implemented in RC hardware.

1.66 0.76 27.50 11.87
0.44 0.44 15.00 6.15

6.4 Bottleneck Code Segment Shift
It can be observed from Table 3 that the benchmark timing
performance bottlenecks shifted from “interpolate”,
“sharpen ir4”, “calc v,s,b”, “calc v,s,b with vis” and
“color~convert” combined cost of 35% to 20% on the new
platform.

calc v,s,b wl
vis (shifted
bottleneck)
color

Table 3. Platform Performance Focus Shift

4.27 1.70 73.71 70.0

1.43 0.55 22.85 19.00

Function

2.09

convert
Unit files 59.00 14.00 291.00 125.00

read vis I 11.00 I 8.00 I 11.00 I 3.52 1

It appears that implementing the “calc v,s,b with vis” code
segment in RC hardware may gain the time needed to meet
the real-time performance criteria of 75 seconds. This is the
rationale for focusing the hardware implementation on this
segment of code first. This is also the rationale because it is
susceptible to problem partitioning and parallel
implementation as can be seen fiom the application model.
Note that memory increase shortened large input vis file

read because its buffer is now completely in RAM memory
and not partially in virtual memory on the hard drive.
Similarly, implementing “calc v,s,b with vis’’ in hardware,
will fiee PC RAM and improve the performance of the
following software function color convert. Table 3
summarizes the timing for cases UB1 Small (UBlS), PC
Small (PCS), UB1 Large (UBlL), PC Large (PCL). All PC
timing was obtained using the 768 MB upgraded memory.

Note, that pseudo-intps processes are not using
interpolation. The application running on the PC platform
required for smallest image 052MB of heap memory and for
the largest image case 549MB of heap memory. Since the
PC memory was upgraded to 768MB most of the
processing requires less disk IO and explaining the
interpolation, fft2 and color convert procedures
performance improvement. The goal now is to implement
the bottleneck ‘%alc v,s,b with vis” IDL code in FPGA or
DSP hardware to achieve the real time benchmark
performance of 75 seconds from the present 120 seconds.

6.5 Baseline RC Library
The accumulation of RC implemented functions and tools to
be used in a PC/WWOWS/RC environment is
incremental and will evolve over a period of time. The
development of tools for debugging RC hardware is of most
importance. In September-October of 2000, students from
WPI each implemented a Matlab function, for example the
simplified linear interpolation, statistical mean, and standard
deviation function in RC hardware. This was the initial
effort to evaluate the complexity of such an effort with
available FPGA and DSP boards and resulted in the
development of an FPGA floating point functions of
multiplication, addition and comparator. The proposed
hture work plan is to develop a baseline library of Matlab,
IDL, C and Java (Trademark of Sun Microsystems Inc.)
functions implemented in RC. The Annapolis Micro
Systems released its floating-point arithmetic library in
spring 2001. This will significantly facilitate the
development of the Baseline RC Library.

7.0 SOLUTION DISCUSSION

7.1 PC/Windows/RC Platform Configurations
The original PC/Windows98 platform was a DELL
Dimension XPS T550, with a Pentium III 550 h4Hz
processor, 128 MB RAM and a 20 GB hard drive. Its
memory was upgraded to 768 ME3 via the replacement and
additions of 2 256 MB PC 100 SDRAM Non-registered
modules. To overcome the PC BIOS memory limitations,
the BIOS was upgraded from Version A04 to A09, obtained
from DELL. Also added to the PC was the TMS3206701
DSP EVM (evaluation model board) board from Texas
Instruments, Inc. The DSP carries 2 external memory banks,
4 M E each. The bottleneck code was implemented as the
DSP target module.

4-1987

An alternative delivery PC platform is based on a DELL
XPS B933 Series Pentium IV Processor of 933 MHz, 1GB
RDRAM memory at 133 MHZ and a 75GB Hard Drive. The
system is running the Windows NT or Windows 2000
Operating System (Trademark of Microsoft Corporation).
The PC also carries the FPGA StarFire board from
Annapolis Micro Systems Inc. This device software driver
is only officially available for Intel x86 PC based platforms
running the Windows NT operating system. The FPGA
board has been programmed in VHDL to execute the
GOES-8 application bottleneck code segment and the same
bottleneck code was implemented in the DSP target module.

The series of a few large floating-point value vectors, that
are operands in the bottleneck computational expressions,
are passed using IDL EXTERNAL-CALL to the PC host
module. This host module was developed in Microsoft
Visual Studio C++ Version 6.0. This Language environment
is compatible with the FPGA/DSP host functions library
and the board PC driver for Windows 98, Windows NT, or
Windows 2000 Operating Systems developed by the RC
board vendors. The host module accepts the large vectors’
pointers and transmits the data to the FPGA or DSP board
for intensive computations. The host program also obtains
the resulting vectors from the FPGA or DSP board into their
original input vector place using the IDL pointers. When
the host module is finished, it returns control to the IDL
code. The IDL application then continues till completion.
The host source code is compiled and linked to create a
required by IDL DLL file that is placed into the IDL
primary directory. The IDL/TI vendor “make files” were
used to generate this DLL file. Extensive documentation
was developed to describe the development procedures for
both host and target module development, integration and
testing. A more powerful PC may be useful for speeding up
the FPGA code reconfiguration. A powerful PC platform
may even eliminate the need for RC components, however
the goal is to achieve real time performance with minimum
resources as to make the system more feasible for a future
space flight opportunity.

7.2 RC DSP Solution Specifics
These GOES-8 application bottlenecks are good candidates
for their code implementation in RC hardware that is
specialized to perform well in integer data processing-
intensive applications. However, the prevailing general
point of view was that data processing, involving floating
point operations, is not susceptible to direct RC hardware
implementation. The alternative experimental solution
involved a very costly conversion of floating point type data
to integer types and implementation of an entire s o h a r e
application in hardware. We have implemented the GOES-8
application bottlenecks code using floating-point arithmetic
on the FPGA and DSP boards.

The multi band data source specific requires partition of the
PC-RC data transfer stream into telemetry band segments or
aggregated data segments. This specific necessitates a need

to determine two parameters n, k. The first is the number of
columns from a data band array that is used in one transfer
and the second is the number of data transfer blocks for a
unit of operations. A transfer comprises n-columns from
each data source in separate 10s or one IO of aggregated
data from all sources. The two parameters n, k are bounded
by a few Diophantine equations derived from the fact that
an image is a 2-dimensional array of size (C, R), where C is
number of coluinns and R is the number of rows in IDL
notation or number of pixels in a column. Furthermore the
RC hardware boards carry a limited amount of external
memory banks (DSP SDRAM) each of size M. Let g be the
number of data source arrays and Sj a pixel size in bytes,
where l<=j<=g. The relations that describe the n, k are:

n, k are integers and k<=n.
n x k = C (due to array structure)
n x R x (S1+ S2 + ... + Sg)<=M

The GOES-8 project solution for DSP is n=k=60.
This is determined by the corresponding parameters

C=3600, R=3000, M=4x10**6,
s=s l+S2+S3+S4+S5=8+4+4+4=20.
Finding the largest value n delivers the fastest data transfer
time. Furthermore, within each of the k transmissions of n-
columns of all multi source arrays’ data, different
prearranging schemes were tested. This was necessary in
order to facilitate the RC component fast operands access
from its external memories. Initially g 10s in sequence
(each n-columns long) were performed on the PC for each
of the g data sources and in a loop of size k. The data
destination was the presently available external memory
bank on the DSP, beginning at memory entry address and
utilizing SxnxR or 3.6MB of the 4Ml3 memory bank. The
second prearrangement was to collect all operands, that are
used by the DSP module in one pass of its main
computational loop, into one consecutive group
(quadruplets) within a single transmission buffer on the PC.
However, this required that all inputs have the same data
type and input described above by S1=8 was casted in IDL
from double to single precision floating point type and
S1=4. The source data buffer length for this prearrangement
was 2.88Ml3. Preserving the k-size IO loop and pre-
arranging in the PC host module a single transfer buffer of
quadruplets of pixels from all the g data sources before
buffer transmission to the RC board alleviated the multi
source data access problem on the DSP and the PC-DSP IO
interface bandwidth problem.

A few words are due on the concept of pipelining. There is
work to be done before pipelining becomes possible -
pipeline route Survey, preparing the route, pre-processing
input data streams and after-pipelined computations laying
out the pipelined results in sequence. The literature concept
implies that this work is already done and is negligible. This
is not the reality in image data processing, where it is at the

4-1988

core of the overall performance problem, especially for an
FPGA board.

Selection of PCDSP data transfer mechanism must ensure
that that the computational power of the RC board is not
offset by the best data transfer rate limitations. RC board
vendor performance claims must be verified under the same
conditions that were used by the vendor in order for the
claimed benchmarks to have any meaning. The GOES-8
project fastest data transfer mechanism was determined to
be the Host to DSP Peripheral Interface Port (Hpi) high-
level host library functions.

There is a need to introduce a specific and fast PC-RC
operations API synchronization mechanism. Although the
choices are many, finding the acceptable one is a subtle
problem. For the GOES-8 project and DSP we selected two
system memory semaphores on the DSP board that are set
and monitored by the PC and DSP. There are specifics in
handling a wait state on a semaphore. While all DSPs are
equipped with a multiplier-adder-store or multiplier-
accumulator path that can produce a result in one instruction
cycle, the internal pipelining may result in latency more
than one cycle. Only when application code constitutes a
long series of multiple-accumulate operations (a so-called
DSP application) can DSP achieve its advertised
performance. If a multiply operation is preceded and
followed by other kind of operation, more than one
instruction cycles are spent waiting for the multiplier result.
The application code must be thus re-structured into a DSP
application for performance problem solution using a DSP.

7.2.1 RC/DSP Implementation Outline
The implementation of the bottleneck code segment on the
DSP board followed the same methodology as was used in
the project conversion. The roadmap to this methodology is
first to convert the bottleneck code from the PC IDL code to
the PC/Host C++ and DSP/Target code. Then make it work
on this PCRC platform to produce results comparable to
the PC/software only generated color pictures for the same
test set of input files. The workable PCRC code application
is then optimized to achieve comparable to the PC platform
IDL software code or better run-time performance. And
finally, optimize the RC target module to achieve real-time
performance.

The RC/DSP implementation consists of introducing a new
case value large-dsp' for the problem size switch. The main
processing IDL procedure is then using this switch to
activate the RC implementation mechanism.

case switch-arr-size of
'large-dsp' :

begin
v-float=TEMPORARY(v-float)/(this-s-alt+O. 1)
f%loat(f) ;To make all parameters of same type!
CALL-EXTERNAL(1ib-name('dmahostS'),
'dmahosts', f, v-float, new-v, new-s)

new-b=f*ir-float 1 *225+(fff)*temporary(new-b)
end

endcase

The RCDSP implementation is comprised of the PC host
and DSP target modules and associated make files -
dmahost8.q dmahostS.def, dmahost8.mak dmatarg8.q
linkl.cmd, dmatargKmak, and dmastates8.doc. The last is a
documentation file that contains the host and target module
synchronization states diagram. When the two make files
are executed from an MS-DOS window two files
dmahostKdl1, dmatarg8.out are created. This completes the
GOES-8.prj project RC/DSP configuration and the project
is ready for run to generate the large color picture using the
RCDSP implementation. It takes a few minutes from a
software change, for which the results are assured, to the
configuration of the host and target modules and project
execution.

7.2.2 PC/DSP Board Data Transfer and CPU Operations
The DSP memories' structure allows concurrent access to
each type of memory by the PC/DSP Processors or PCDSP
DMA Controllers. For example, the TI SDRAh4 is
comprised of two banks, Bank0 and Bank1 or for short - BO
and B1. This allows the application design topology where
host data transfer to and from the DSP board is concurrent
with DSP computations of the bottleneck expressions. This
depicts the possibility of the DSP part of the application
time complexity being closely approximated by

DSP(Time) = Time(IO/DMA) +
Time(DSP Processors) = Time(IODhL4) + Deltat,

where Deltat is small and can be ignored. This then makes
the DSP performance acceptable even at slower than
expected data transfer rates between the PC and DSP over
the PCI bus.

7.3 RC/FPGA Implementation Outline
The implementation of the bottleneck code segment on the
FPGA board involved many steps in order to ensure
calculated results did not vary from original software
versions of the algorithm. Initially, floating point
mathematical functions were developed and implemented
on the FPGA. Once results from these functions were
verified, they were streamed as required by the algorithm to
produce the interim final image. The FPGA board algorithm
was then transformed into a function call from IDL so that
the GOES-8 application could be run seamlessly from end-
to-end, with the FPGA board interface being transparent to
the user.

Initial development of the FPGA board algorithm segment
(henceforth referred to as the FPGA algorithm) was not
trivial. Interfaces between the FPGA and on-board memory
and floating point mathematical functions including
addition, subtraction, multiplication and comparison were
developed. The commercial of the shelf (COTS) RC board

4-1989

used for this development was the Annapolis Micro
Systems StarFire board. The StarFire board used utilizes a
Virtex XCV400 FPGA and has 1 MI3 of on-board SRAh4,
which is divided into 2 banks of 500 Kbytes each,
commonly referred to as the left and right banks. The initial
run of the FPGA algorithm utilized only the left bank of
memory and processed one set of data inputs at a time.
Although this method completely underutilizes the
performance of the FPGA, it was important to run the
algorithm in this mode for debugging purposes and in an
effort to validate the output data.
Once the output data was validated, efforts to optimize the
FPGA algorithm began. The first optimization step was to
run the algorithm using both banks of memory. This was
accomplished using a “ping-pong” method whereby one
bank of memory gets loaded by the processor over the PCI
bus while the other bank of memory is processed in the
FPGA. Implementation of “ping-ponging” memory cut
execution time of the FPGA algorithm by a factor of 2. At
this point in time, a COTS floating point math library
became available which utilized full pipelining with valid-
bits. This library contained all the math functions used by
the FPGA algorithm with the exception of a floating-point
compare. The COTS floating point math cores were
benchmarked against our previously developed math
functions resulting in decreased execution time of the FPGA
algorithm. This led to the development of a pipelined
comparator with the same input and output characteristics as
the COTS math cores.

7.4 PClRClWindows Platform Performance Timing
Results, Comparison and Analysis
We have reached and exceeded the real-time performance
for all required cases of the project, namely 14 seconds for
small, 32 seconds for medium and 75 seconds for large
color picture production as compared to the real time
requirement of 75 seconds. We have solved the GOES-8
application color picture product generation in real time
problem using a 55OMHz PC running Windows98
Operating System and a TMS32OC6701 Evaluation DSP
board. This platform is processing all five bands 2MHz
telemetry source in real time. The problem was also solved
using and FPGA board. Another experimental project using
an FPGA board allows real time data processing of 5 bands
fiom the TerraMODIS spacecraft 36-band lOMHz data
source or a 1.4h4Hz data stream. The GOES-8 project
solution demonstrates that the MODIS application could be
similarly implemented using the proposed methodology and
RC hardware floating point libraries.

7.4.1 PC-DSP IO Timing Results
The best data rate achieved using the DSP board
asynchronous data transfer mechanism was 12.8MBs. The
achieved data rate using the PC/DSP Host Peripheral
Interface (HPI) mechanism is 10.4Ml3s. However, it
allowed DSP to compute the bottleneck code concurrently
with data transfer, and the total time is comparable to the
data transfer time, or 25 seconds. The HPI mechanism was

selected for the application data transfer between the PC
and the DSP.

7.5 Reconfiguration Time
A DSP reconfiguration for a small code change is
comprising recompilation of host and target modules,
integration and rapid testing. The DSP target module
compilation and load onto the DSP is rapid, allowing fast
system reconfiguration.

8.0 NEW SYSTEM CONFIGURATION
The new system configuration (Figure 2) comprises
portions of the existing native SGVWorkstatiodUNM
platform and. the new PCRC platform connected by the
Intemet.

Native SGI WorkstatiodUNIX
Platfonn Remote FTP Intemet Site:

Source Telemetry Files
Resulting Files Destination

PC/Windows98/RC Platform
PC Intemet IO TaskO Inputs Source Flles

FTP Moderate Size 2 22Mbs Telemetry Flles to
PC Hard Dnve

IDL Disk IO reads a processing unit source data files

IDL Perform AU Intermediate Computations

IDL Optmzed GOES-I Application Code Taskl, Part I

set from PC Hard Drive to RAM

resultmg in Large Interme&ate Arrays fl-f7 - 400MB
of data that was used by the IDL Largest Bottleneck

IDL CALL-]EXTERNAL Mechanism Passes Pointers
fl-f7 to the PC C++ Host module dmahost6.dll

PC Host Module
Initializes the DSP/FPGA board@) and
Loads the COFF target code f ie dmatarg6.out
onto DSI’ using the PCI Bus. It then resets the DSP
from Halt Sate and the DSP target module is now running

concurrently!

Board S D I U Bank0 and Bank1 and retneves DSP results
DSP Target Code Module is Running Concurrently with Host

DSP Performs Bottleneck Computations until unit

PC Host task upon bottleneck unit processing completion

PC transfers array data from PC RAM to the RC DSP

completion.

returns control to IDL.
IDL Applicat~on Code Taskl, Part I1

IDL GOES-8 code completes computation and
writes resulting color picture to a file on the hard drive

PC Intemet IO TaskO Optionally Outputs Resultmg
0 2MB Image Flle to the Destmation Intemet Site usmg

Internet IC) FTP

Processes Next Image Telemetry Flles
IDL Applicat~on Taskl, Code Part I Cycles -

Figure 2. Solution Real Time Processing System

The new system makes use of portions of native processing,
that are preceding the GOES-8 native application and are

4-1990

maintaining the input files. An Internet task is running on
the new PCIRC platform and constantly seeks out on the
heritage platform a set of input files for the next image. It
ingests it onto the new platform using the common Internet
file transfer protocol utility (ftp). The new PCRC GOES-8
application generates the color pictures in real-time and f t ps
them back to, the native platform. This configuration can be
expended in the future to use a few FPGA or DSP boards
for next highest priority bottlenecks implementations in
hardware. These secondary bottleneck segments again
become prominent, although on a lower level, after the main
bottleneck code segment is implemented in hardware.

CONCLUSIONS

We have accomplished the goal we set out in the
introduction and achieved real-time performance of the
GOES-8 color picture generation application. We have
developed a new ground system configuration for this
specific project and laid the basis for its re-use in future
projects, including spacecraft on-board data processing. We
have developed a methodology that widens the field of
telemetry processing for RC technology applications that
require large intermediate multi source data IO and
concurrent intensive computations. This result also allows
support for other GOES products applications. We have
learned some lessons, including the lesson that cooperation
of the application science originatorslusers, application
developers and development systems' vendors is crucial to
such a project success.

REFERENCES

[11. T. Flatley, "Enabling the Earth Science Vision through
Reconfigurable Computing",
AIST-0132-0000, May 1999
[2]. M. Figueiredo, P. Stakem, T. Flatley, T. Hines,
"Extending NASA's Data Processing to
Spacecraft", IEEE Computer Magazine, pp. 1 15-1 18, June
1999
[3]. S. Kizhner, "On Fast Post-Processing of Global
Positioning System Simulator Truth Data and Receiver
Measurements and Solutions Data", Proceedings of ION
GPS'2000,14-17 September 2000, Salt Lake City, Utah
[4]. James D. Foley, el a1
Computer Graphics Principles and Practice,
Addison-Wesley Publishing Company, 1990
[5]. PCI Local Bus Specification Revision 2.1 by PCI
Special Interest Group, 1995

BIOGRAPHY

Semion Kizhner, an aerospace engineer with the National
Aeronautics and Space Administration (NASA) at the
Goddard Space Flight Center (GSFC), participated in the
development of the Space Shuttle launched Hitchhiker
carrier and several attached Shuttle payloads such as the

Robot Operated Materials Processing System (ROMPS). He
was responsible for establishing the Global Positioning
System (GPS) test facility at GSFC and supported GPS
simulations for several space projects, such as the OrbView-
2, SAC-A and EO-1 spacecrafts [3]. He is currently
developing capabilities to access spacecrafts as nodes on the
Internet and to accelerate generation of images derived from
the EOS Terra spacecraft MODIS instrument and GOES-8
spacecraft data. He graduated fiom Johns Hopkins
University with an MS degree in computer science.
David Petrick, an electrical engineering student with the
GSFC Electrical Systems Center Ground Systems Hardware
Branch, is currently working on implementing the GOES-8
image processing bottleneck software into reconfigurable
hardware. He is studying at the University of Pittsburgh
with a concentration in the area of signal processing and
telecommunications.
Tom Flatley is an electronics engineer at the NASNGSFC
and is currently the Associate Head of the Ground Systems
Hardware Branch. From 1993 to 1997 he had served as the
head of the Flight Electrical Systems Section and Flight
Component Development Group. Prior to 1993 he
developed numerous flight and ground components and
subsystems for various NASA missions. Mr. Flatley's
current work includes the coordination of Reconfigurable
Computing (RC) development activities for the GSFC
Electrical Systems Center, with emphasis on developing
RC technology for flight applications. This includes the
management of work in flight component, ground-based
functional prototype and development tool areas in
collaboration with government, industry, academic partners,
and teamed with applications fiom end users in the science
community [11, [2].
Phyllis Hestnes is an electrical engineer at NASA Goddard
Space Flight Center. She graduated fiom the University of
Maryland. Her primary interests include the design of
processor based systems and reconfigurable computing.
Marit Jentoft-Nilsen is a computer engineer at the
NASNGSFCISSAI. She graduated from the California
Institute of Technology and her primary interests are in
satellite image data processing. She has been developing the
GOES satellite telemetry data processing applications since
1993.
Karin Blank is a computer engineer with NASA, Goddard
Space Flight Center, and is currently working on
implementing GOES-8 algorithms on a digital signal
processor. She recently graduated from Worcester
Polytechnic Institute with a BS degree in computer science.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Dennis ChestersNASA
GSFC for support at all stages of this project. We also
would like to thank the Worcester Polytechnic Institute
students and their faculty advisors for their readiness to
tackle difficult short-term assignments in support 'of this
project - Keith Leveille, Jay Bose, Kenda Conklin, John
Hammond, Mark Hados, Karin Blank and professors Fred J.

4-1991

Looft, Donald N. Zwiep, David C. Brown. We are also
indebted to a large number of people from industry, who
have helped us with issues of their company products - from
Texas Instruments Navaid Karimi, Larry Stapleton, Rekha
Ramadas, Kevin Jones for help with DSP board issues; from
Research Systems Inc. Doug Loucks, James Jay Jones,
Adam Bielecki, Atle Borsholm, Carol Vandenbelt, Valiant
Villanueva for their excellent technical support.

4-1992

