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Abstract—Managing Wireless networks, particularly in indus-
trial and factory environments, to meet the escalating demands
of time critical applications has become more complex and
warrants proactive management strategies. This work introduces
an innovative approach to wireless network management enabled
by a Digital Twin (DT) designed and continuously enhanced
by real-time device telemetry and user inputs through an Ex-
tended Reality interface. By collecting real telemetry data from
network devices, our methodology defines and calibrates a DT
representation of the network, enabling accurate prediction of
wireless signal properties and network performance based on
simulation models. The DT serves as an automation tool to
analyze various scenarios, allowing for informed adjustments to
user applications, devices and network configurations. The paper
describes a real-life DT implementation of a wireless system
in a real enterprise network scenario. Experimental results are
provided demonstrating improved performance and user experi-
ence enabled by the proposed DT-based network management.
The proposed methodology addresses the challenges of real-
time network optimization and contributes to advance wireless
network management based on device and network telemetry.

Index Terms—Wireless, Digital Twin, IEEE 802.11, WLAN,
Wi-Fi Simulations

I. INTRODUCTION

A. Background and Motivation

As wireless applications become more demanding, the
challenges associated with managing and optimizing wire-
less networks have also become more pronounced. Wireless
connectivity and mobile standards are constantly evolving
thus introducing new capabilities, such as Time-Sensitive
Networking (TSN) and Ultra-Reliable Low Latency Com-
munications (URLLC) features to ensure data delivery with
bounded latency for time-critical systems and high quality user
experiences in a variety of vertical sectors [1] [2] [3]. New
wireless capabilities are also increasing complexity of network
management and optimization/configuration tasks [4].

The advent of Digital Twins (DTs) and AI capabilities
have the potential to enable new network management au-
tomation approaches, where networks can use telemetry and
AI to optimize performance in real-time [5]. DTs, based on
virtual models of physical systems, telemetry and optimization
algorithms, have been adopted across several industries as a
platform for decision making and optimization of engineer-
ing processes and systems [6]. Recently, DT concepts have

also been adapted for wireless networks [7] [8] [9] as they
offer new capabilities to capture complex device and network
behavior as well as dynamic conditions. DTs based on real
device/network telemetry can increase the accuracy of predic-
tive analytics and simulations, thus leading to more efficient
resource management and better quality of experience.

B. State of the Art: Digital Twins in Wireless Network Man-
agement

Traditionally, deployment of industrial wireless networks
involves significant design, planing and configuration efforts
to achieve optimized experiences and performance. In prac-
tice, typical wireless network management is still reactive,
mainly responding to issues that are reported by users or
devices. Emerging and future industrial control and automa-
tion systems are expected to rely even more on networks
to leverage advanced Edge/Cloud computing resources. As
such, managing wireless resources has become a core chal-
lenge to enable stable operation of Edge/Cloud-based con-
trol and automation [10]. In complex industrial environ-
ments, network performance can be impacted by dynamic
and stochastic factors, such as varying channel conditions,
interference, changes in the environment (e.g., movement
of users/infrastructure/machines). The ability to predict and
preemptively address network performance bottlenecks caused
by such dynamics becomes paramount, especially when ap-
plications are time-critical and distributed across a wireless
network. Wireless networks are expected to become self-
configuring and proactive-online-learning systems and the in-
tegration of DTs into network management presents a promis-
ing avenue for achieving these goals [7].

DTs, originally conceptualized in manufacturing and in-
dustrial settings [11], have found a natural fit in the realm
of wireless network management. DTs are being considered
as a key component of the sixth-generation (6G) wireless
systems [12]. By creating a virtual counterpart of the physical
network, it is possible to analyze various scenarios, predict
performance outcomes, and proactively optimize network con-
figuration. The basic concepts and envisioned architecture for
DTs of wireless systems are described in [7] and [12]. The
DT includes a physical interaction layer and a Twin object
layer. The physical interaction layer deals with connectivity



interfaces with end devices, network and computing infras-
tructure to collect telemetry and control/configure specific
device/infrastructure capabilities. The Twin object is a virtual
representations of a physical system or process and it can be
built based on modeling, simulation or data-driven learning
approaches. The DT also interacts with an application (or
service) layer, which includes the actual business processes
and applications of interest that define the requirements for
the network.

DTs of wireless networks are gaining significant attention,
but real deployments are still at very early stages [13]. Sev-
eral comprehensive surveys and vision/architectural designs
have been recently published highlighting potential directions
and open challenges [7] [12]. However, practical deployment
experiences and real-world testbed capabilities specific to
wireless systems have been limited to simple visualization
of system/network data [8] and wireless channel performance
emulation [14]. DTs with Extended Reality (XR) interfaces
have also appeared in the literature [15], [16], but an effective
integration of those concepts in real-time wireless network
management is still at a preliminary stage [17]. Enabling an
XR interaction layer with the end user adds a new spatial
dimension to the visualization of the wireless DT, providing
better contextualization of the data generated and observed by
the end user [18]. This information can be used to take action
in managing the network, providing additional information to
the wireless DT and further improving the modeling of Twin
objects.

C. Contributions and Paper Organization

This work contributes to the evolving field of DT for
wireless network management by presenting a comprehensive
methodology for designing a DT of a wireless network and
providing a real-life implementation of this methodology ap-
plied to a Wi-Fi network deployed in an real-world enterprise
environment. Our proposed methodology includes physical
interaction layer interfaces that collect telemetry data from
real devices, and a network twin object model that consists
of a network simulation model calibrated by device/network
telemetry. The network twin object is then used to predict net-
work behavior that impacts certain performance metrics. The
ultimate goal is to leverage these predictions to drive informed
changes in the configuration of the network or individual
devices, thereby improving overall network performance and
user experience. The contributions of this paper are as follows:

1) We describe a methodology to collect and integrate data
from the physical system into a DT through distribution
of ”probe” nodes across client and network devices.

2) We describe a Twin Object of a Wi-Fi Network that
combines simulation modeling and telemetry to predict
QoS for client devices. The Twin object uses real device
telemetry to enhance fidelity of the simulation models
and achieve more reliable DT predictions.

3) We demonstrate an XR interface that allows users to
provide feedback to tune the DT models in real-time.

4) We demonstrate the practical application of the proposed
methodology with a Wi-Fi network DT that predicts QoS
for mobile clients and recommends routes based on QoS
predictions.

D. Organization of the Paper

The remainder of this paper is organized as follows: Section
II provides a general overview of DTs, typical ingredients, ar-
chitecture, and applicability in the context of wireless network
management and optimization. Section III details our imple-
mentation methodology, including data collection, calibration
of the simulation model, and predictive analysis. Subsequent
sections describe application of this method to optimize a
simple use case, followed by a discussion of challenges,
lessons learned, and future directions. The paper concludes
with a summary of findings and their implications for the field
of wireless network management.

II. OVERVIEW OF DTS OF WIRELESS NETWORKS

This section describes the basic components of DTs of
wireless systems and some of the main design challenges.

A. Digital Twins of Wireless Networks

A DT of a wireless network can be used to optimize commu-
nication resources while addressing diverse, and sometimes,
conflicting Quality of Service (QoS) requirements for users
and applications. The authors in [12] describe a vision where
DT-enabled 6G networks are self-sustaining, and proactive-
online-learning based wireless systems that can meet highly
dynamic, and extreme latency, reliability and throughput re-
quirements. According to the taxonomy in [7], DTs of wireless
systems take inputs from real world devices to create virtual
representations of a wireless network, using tools from opti-
mization theory, game theory, and machine learning, to make
predictions and/or control decisions. As illustrated in Fig. 1,
a DT of a wireless network consists of the following building
blocks:

1) Physical System Interaction Layer: This layer provides
interfaces to collect telemetry from the physical system
and to configure the physical system. The physical system
includes user devices, network devices, and any relevant
infrastructure component of the wireless system that is
being considered. The interfaces may provide access to
various device state parameter. The interfaces may also
include access to device/network configuration param-
eters that determine the behavior of the system. For
instance, device and link state parameters may include
Received Signal Strength Indicator (RSSI), achievable
data rates, latency statistics, etc. Configuration parame-
ters may include transmit power, operational bandwidth,
medium access control (MAC) configuration parameters,
traffic shaping configurations, etc.

2) Twin Object Layer: this layer includes the twin objects
representing the state and/or behavior of the physical
system of interest. The twin objects are the core of the
DT implementation and they may be developed based on



Fig. 1. Digital Twin Components.

mathematical, physical or simulation models that capture
the relevant behavior of the physical system that is being
modeled. Multiple twin objects may be developed for
different aspects (or sub-systems) of a physical system.
The twin objects are used to perform predictions based on
scenarios of interest. They provide as outputs information
that can be converted into configuration parameters of the
physical system.

3) Service and Management Layer: the service layer in-
cludes interfaces for interacting with, managing and
accessing DT capabilities. This layer may be used by
autonomous devices to make use of the DT’s predictive
analytics and scenario optimization capabilities. For in-
stance, a mobile device may access a wireless network
DT as it starts a roaming procedure to request best
candidate neighboring access points (APs) to connect to,
in order to minimize data delivery latency. The service
layer also provides an interface for network managers to
configure and update DT models. As discussed in the
following sections, keeping the twin object models up to
date is a challenge, especially in dynamic environments.

Implementing and applying existing DT visions [12] [7]
to practical wireless networks and their applications involve
many open research questions. This work focuses on net-
work twin object design, prototyping and accuracy including
capabilities to capture dynamic environment changes. The
following sections discuss the challenges related to accuracy
of network twin objects and issues caused by dynamic envi-
ronment changes.

B. Twin Object Fidelity

Twin objects of wireless systems can be designed by mathe-
matical, experimental, data-driven modeling, or a combination
of these modeling approaches [7]. Mathematical models are
widely used in the evaluation of wireless communication
systems, but they are typically based on generic assumptions
that may not always be valid for a specific real-life scenario.
Experimental data has also been widely used to model wireless

signal propagation [19]. While widely used in the design of
wireless systems and standards, such generic channel models
try to represent typical scenarios and may not accurately
reflect specific properties of a complex environment such as
an industrial plant or manufacturing environment. Data-driven
models are emerging as a promising alternative to improve
accuracy of twin objects, although training data requirements
may represent a challenge. In order to achieve real perfor-
mance gains by using the DT of a wireless system, it is
necessary that the twin object represents the wireless system
with enough fidelity. Combination of multiple design methods,
such as mathematical models augmented by experimental or
data-driven insights, is expected to provide the best results.

C. System and Environment Dynamics

The fidelity of the twin object is also highly dependent
on the ability of the twin object to capture system and
environment dynamics that may impact the system behav-
ior. For instance, in a factory environment where machines,
metal objects and people are continuously moving, wireless
channel conditions and therefore link capabilities (e.g. ca-
pacity/throughput, error rate, latency, etc.) may dynamically
change. Although mathematical and experimental models of
wireless channels do account for certain dynamics, modeling
specific events and updating the models in real time is not
done in practice. The next sections describe a methodology
for designing a DT of wireless network that includes real-
time telemetry and an XR interface to update a twin object in
real-time to maintain high fidelity.

III. WIRELESS DT IMPLEMENTATION METHODOLOGY

Figure 2 shows the high level layout of the Wireless
Digital Twin components and interfaces used in the real-
life implementation developed as part of this work. The rest
of this section describes the various blocks and interface
implementation choices used in the paper.

A. Physical System Interaction through Mobile Probes

The physical system is the system or environment that
the DT tries to model and optimize. The physical system is
expected to provide interfaces to collect telemetry of various
system state parameters. The physical system is also expected
to expose configuration interfaces and control knobs for con-
trolling the state of the system. In our implementation the
physical system consists of a Wi-Fi network deployed at a
real warehouse/enterprise environment shown in Fig. 3. We
use a mobile robot as a representative use case where the
robot is configured to navigate through the environment while
maintaining connectivity with the Wi-Fi network. The mobile
robot executes emulated tasks that generate traffic flows that
require a certain level of QoS. As in any real wireless network,
the QoS is tightly coupled to the received signal strength and
a minimum transmission rates achievable in the link between
the robot and its serving AP.

The interaction interface with the physical system (e.g.
mobile robot and other devices on the wireless network) is



Fig. 2. Architecture of the DT System Implementation.

Fig. 3. Intel over-the-air wireless validation site (CASPER). RF controlled
office environment (21,000 ft2).

implemented by a mobile ”probe” application that provides
telemetry from the Wi-Fi stations (STA). The telemetry is
collected in real-time at multiple points along the robot’s
path and it includes RSSI, transmit data rate, connectivity/link
status, and current associated AP. Telemetry is also collected
from other devices on the network (e.g. multiple user compute
platforms). The probe also collects other metrics related to its
compute platform performance, however they have not been
used in the DT implementation in this paper. The probes report
the results to a central server at periodic intervals, which are
configurable. The reporting can also be configured to capture
specific locations in the environment and to report results
based on events. Furthermore, the probes can also generate
synthetic traffic in order to collect the data associated with
the quality of the links. In addition to collecting telemetry
from the client devices, the probes can also be deployed at
the network infrastructure, i.e., APs, to collect operational
parameters such as AP transmit power, channel utilization.
The mobile probe data is used to build the network twin
object model and continuously enable model updates leading
to higher fidelity.

B. XR based Human-Machine-Interface

The Human-Machine-Interface (HMI) defines a mechanism
for users to interact with the Wireless DT using XR devices.
XR offers an efficient way to simultaneously visualize teleme-
try of the network generated by multiple probes. Figure 4

Fig. 4. XR human-machine-interface. Probe application in laptops share
their location and RSSI with the digital twin. Information is integrated in
XR interface for user visualization. Tile color under laptops represent RSSI
values with green denoting high and red low. Association between mobile
devices and APs is displayed by green line.

shows an example of the XR interface designed for a real
enterprise building, referred in this paper as CASPER site,
where we can observe the real time telemetry, such as RSSI
collected by each of the laptops with probe application, by
simply looking at the color of the tiles below them. Users
can also visualize associations between client devices and
APs. Additional features include the capability to summon a
terminal or command window to inspect telemetry collected
by each probe, and a real time video feed of CASPER site.

A critical aspect of the XR interface is the capability to
annotate the environment. Some of the characteristics captured
in the original 3D model of the site might change over time.
Thus, annotation allows the user to add or change properties
of the physical environment for fine tuning the DT over time.

C. CASPER Network Twin Object

We implemented a twin object of the Wi-Fi network,
referred here as CASPER network twin object, which models
the network performance experienced by client devices in the
environment. We have selected a mobile robot application as
example to demonstrate the capability of the DT in optimizing
network performance. In our example, as the mobile robot
moves within the environment, the DT recommends routes
that are more likely to meet the QoS requirements of the
application traffic.

The main goal in designing the CASPER network twin
object is to model the impact of the Wi-Fi network on the
performance of applications running on clients under specific
scenarios and network conditions. We used a Wi-Fi network
simulation model that takes as initial input environment con-
figuration parameters including the site dimensions, devices
locations as well as operational parameters of the APs (e.g. op-
erating channels, transmit power, MAC layer configurations).
We use measurement data collected from the mobile probes
to calibrate the simulation model and improve the fidelity
of the twin object. The twin object is then used to estimate



performance that can be achieved by the mobile client across
various hypothetical routes in the environment.

The CASPER network twin object consists of a grid based
wireless performance model, where the entire site is divided
into cells of a configurable dimension. The model also takes
as input routes of interest within the site. A route consists of a
sequence of cells that a mobile client or a robot, for example,
would traverse to move from one point to another while it is
accomplishing a given task. In this work, the RSSI is used
as metric to measure the QoS, given that RSSI will directly
impact the achievable data rate over the wireless link. The
twin object estimates the RSSI of every AP in each cell in the
route for all routes. The RSSI estimate of a particular AP in
a cell is given by

R̂SSI(i,j) = Pi − 10Nj log(di,j)− ϵj (1)

where R̂SSI(i,j) is the estimated RSSI corresponding to
the i-th AP and j-th cell, with i = 1, ..,M , M the total
number of APs, j = 1, .., C and C the total number of cells.
Pi is the transmit power of the i-th AP, Nj is the adjusted
environmental coefficient associated to the j-th cell, d(i,j) is
the distance of the j-cell from the i-th AP, and ϵj is the
observed error between previously estimated and observed
values for the j-th cell. Nj and ϵj is initialized to 2, assuming
free space propagation, and zero respectively and as we get
measurements for a cell these are then adjusted. Every time
a new measurement is available in a cell, Nj for that cell is
adjusted in an iterative fashion using formulas listed below.

Nj =
1

M

∑
i=1,..,M

RSSI(i,j)/10log(di,j) (2)

where RSSI(i,j) is the measured RSSI between the i-th AP
and j-th cell. The adjusted N values are then averaged to get
Nadj(cell) for a cell. The error(cell) is calculated using

ϵj =
1

M

∑
i=1,..,M

(
RSSI(i,j) − R̂SSI(i,j)

)
(3)

The model then computes an expected QoS score estimate
for each cell, which is given by

Q̂oS(i,j) =
R̂SSI(i,j) −min(R̂SSI(i,j))

max(R̂SSI(i,j))−min(R̂SSI(i,j))
(4)

where max(R̂SSI(i,j)) and min(R̂SSI(i,j)) denote the his-
torical maximum and minimum estimated RSSI respectively.

Let {rl1, .., rlK} ⊂ {1, .., C} be a subset of cell indices
describing the l-th route in the DT, then we define the l-th
route QoS score as

Q̂oS
l
=

1

KM

∑
j=1,..,K

∑
i=1,..,M

R̂SSI(i,rlj) (5)

Fig. 5. Example of expected QoS Estimates for all routes calculated by the
model.

To estimate the RSSI in cells where real measurement is not
available, the model uses the nearest cell where measurement
is available as reference to estimate the path loss and the RSSI.
Let jn ∈ {1, .., C} be the index associated to the nearest cell
mentioned above, then instead of (1) we consider

R̂SSI(i,j) = R̂SSI(i,jn) − 10Njn log
d(i,j)

d(i,jn)
(6)

Fig. 5 shows an example of the output of CASPER network
twin object for a sample set of routes. This shows an example
of the QoS estimate available along the routes specified in 6.
Each point is color coded with red representing lowest possible
QoS score and dark green representing the highest possible
QoS score. The model starts assuming free space path loss to
calculate the RSSI in each cell and it is updated over time
by incorporating telemetry from the mobile probes as they
become available. As the real telemetry comes in, the twin
object first uses regression to estimates the path loss exponent
at the cell (2), thereby getting a measure of deviation from free
space simulation model. Secondly, a QoS score is estimated
for all cells in all configured routes as described in equation
5. The QoS score estimation for a cell also takes into account
the channel utilization value reported by the APs as a cost that
is also applied to the QoS score in (4). This simulation and
data-driven calibration is continuously carried out whenever
a new measurement data is available. As new measurement
data becomes available for a particular cell, its estimates are
adjusted and past estimates are aggregated. This way the twin
object model estimation error is minimized at every iteration
step and at any point in time, the model maintains an estimate
of expected QoS along all the configured routes for all stations
in the system. This information can be used to proactively
identify a degradation in expected QoS and take necessary
action.

Other network twin object models can be built using dif-
ferent simulation modes and telemetry data. The goal in this
work is to provide a representative methodology and examples
that can be extended to build other types of Wireless DTs.



Fig. 6. Physical Site Layout and possible routes for mobile agent.

IV. PERFORMANCE EVALUATION

In this section we describe an example use case and exper-
iments using the DT of the Wi-Fi network at the CASPER
site. The use case is a mobile robot connected to the Wi-Fi
network moving from one starting point to a target location,
emulating a mobile robot accomplishing a task. To complete its
task successfully, the robot has to move from the starting point
to the target location while maintaining a connection with an
Edge compute server to continuously transfer data emulating
a camera-generated video flow. As the robot moves it has a
choice of routes that it can take. The Wi-Fi network consists
of four APs deployed at fixed locations, as shown in Figure 6.
Although there is only one mobile robot in the experiments,
load can be generated in the network by using other static
client devices placed at various points. The static clients as
well as the mobile robot all run the mobile probes (described
in Section III.A) that collect telemetry and relay it back to a
back-end server to be aggregated along with telemetry coming
from the APs in the network. The aggregated telemetry is sent
to a server at located at a remote location where the DT is
hosted.

The DT derives estimates of the QoS that can be achieved
by the mobile robot for all the choices of routes that are
available to the robot and at any given point recommends
a route to take that has the expectation of best achievable
QoS as described by the equations in section 3.B. In order
to evaluate the DT fidelity, we compare the estimate of the
performance that the model has predicted for a specific route
with the actual measured performance achieved as the robot
navigates that route. Since the DT is continuously calibrating
and improving its accuracy, we also measure how many
iterations the model takes to achieve estimates on par with
the actual measurements.

V. RESULTS AND ANALYSIS

The following steps details the DT initialization procedure.

Step 1: Execute Robot Task for a given route.
Step 2: Collect telemetry and update measur.
Step 3: Compare measured QoS scores with the DT gen-
erated QoS score for the same route.

Fig. 7. Route 1 QoS Scores from Measured metrics.

Step 4: If Error from Step 3 is greater than a threshold,
adjust model parameters as detailed in section 3.B and
go to Step 1.

Step 5: If Error from Ste 3 is smaller or equal to a
threshold, stop and repeat procedure for the next route.

To evaluate the DT initialization, we run multiple iterations
of the initialization steps for one sample route. As we feed the
telemetry into the DT, we also extract the predictions from the
DT and compute the error between predicted and measured
cell QoS score. Fig 9 shows that for all cells in route 1, after
three iterations, the error between measured and predicted QoS
scores is significantly reduced.

After the DT is initialized, we set experiments where the
robot moves along select routes and we compare the QoS
scores measured with the scores generated by the DT. After
the robot moves along route 1, we collect the telemetry from
all probe nodes and compute the QoS score for each point
along the route. We then feed the measured values to the DT
for calibrating the model. The DT adjusts its parameters using
the measured values. Fig. 7 shows measured QoS scores using
the telemetry. The color map shows the scale of the QoS scores
for the cells in the route. The overall QoS score for the route
was measured to be 74. Fig. 8 shows the DT generated QoS
scores for the same route. The DT estimates a route QoS score
of 71, which is very close to the measured score. The DT also
estimates scores for all cells for which measurements were
not available. We can see that the model, after calibration, has
been able to estimate the expected QoS scores that are fairly
close to the actual measured values.

For evaluating the decision making and recommendation
capability of the DT, we add congestion along one of the routes
as the mobile robot starts its task. We assess whether the DT is
able to predict the degradation along the route and provide an
alternative route. The prediction and alternative routes can be
visualized by a user interacting over the XR interface or by an
autonomous service through a management interface. We then
repeat the experiment over both the routes with congestion



Fig. 8. Route 1 QoS Scores predicted and extrapolated by model.

Fig. 9. Error between the measured data and estimated results as the
Digital Model is being calibrated. In this case after the third iteration of
the calibration, the error is minimum.

enabled and compare the results.
Fig 10 and Fig 11 show the DT estimates and measured

value, respectively, of the route QoS score for both routes
with congestion along route 1. We can see that the model was
able to pick up the increase in channel utilization from the
AP telemetry and it was able to predict resulting degradation
along the route due to the congested AP.

The DT could be used to recommend an alternate route -
route 2 for the mobile robot to take. Note that the DT could
find multiple suitable routes. In this case, the user through the
XR interface annotated areas of the floor not allowed for robot
navigation, leaving the two routes discussed in this Section as
the only options Fig. 12 shows the XR visualization of the
possible routes found by the DT.

VI. CONCLUSION

We have shown how a DT model of a Wireless Network
environment and an associated use case, calibrated using
real telemetry coming from the physical system, can be put
together and used in real time to proactively and autonomously
detect performance degradation and suggest configuration
changes to improve and optimize the system performance.
We have also shown how the DT model can be evaluated by
comparing real performance with estimates of performance
generated by the model as well as measure calibration time

Fig. 10. The expected QoS over the two routes as predicted by the Digital
Twin. Here the route 2 is slightly better than the route 1 owing to congestion
along that route.

Fig. 11. Actual measured performance of the mobile agent as it traverses both
the routes when there is congestion along one of the routes. Performance over
route 2 is slightly better than performance over route 1.

required to improve the accuracy of the model. We have
also shown how a human-machine interface can be used
to interact with the DT model and adjust the model based
on out of band information that is available to an operator
occasionally. Although we have demonstrated the concept by
integrating a simple simulation model and calibrating it with
real data in a representative test environment, the concept can
be scaled and used in real world scenarios like an enterprise IT
network or an industrial wireless network to proactively and
autonomously manage the performance of applications over
the network. Next steps to this work may include expanding
upon this concept and incorporating coordination of multiple
application traffic across nodes in a wireless environment by
first modelling the application behaviour, calibrating the model
based on observation and then use the model to coordinate the
traffic flows for improved QoS.



Fig. 12. Visualization of calculated routes in XR interface. Routes are color
coded to indicate which one is best. User can use XR interface to select route
or allow the DT to automatically select it.
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