
Tracking on Intensity-Modulated Sensor Data Streams* 
Michael J. Walsh 

Marcus L. Graham 
Roy L. Streit 

Tod E. Luginbuhl 
Lauren A. Mathews 

Naval Undersea Warfare Center Division 
Newport, Rhode Island USA 

walshmj,graha“l,streitrl,luginbuhlte,mathewsla@npt.nuwc.navy.mil 
401-832-4155,3846,4189,8241,7026 

Absfrucf-Conventional trackers are point trackers. Tracking 
energy on a field of sensor cells requires windowing, thresh- 
olding, and interpolating to arrive at data points to feed the 
tracker. This scheme poses problems when tracking energy 
that is distributed across many cells. Such signals are some- 
times termed “over-resolved.’’ It has been suggested that track- 
ing could be improved by decreasing the resolution of the sig- 
nal processor, so that the cells are large enough to encompass 
the bulk of the energy, and better match the point tracker as- 
sumptions. Larger arrays provide greater resolution at lower 
frequencies, with the potential for improved detection and 
classification performance, but in direct conflict with tracking 
“over-resolved” signals. 

These issues are addressed by the histogram-based probabilis- 
tic multi- hypothesis tracking (PMHT) method discussed in 
this paper, which provides a means for modeling and track- 
ing signals that may be spread across many sensor cells. This 
paper will focus on the initial development and testing of this 
algorithm for one-dimensional sensor data. Elements of the 
signal model, theory, and algorithm will be presented along 
with two frequency domain examples. 
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1. INTRODUCTION 

Tracking an unknown, nonstationary signal against a noisy, 
nonstationary background on an intensity-modulated sensor 
display is a difficult problem. Traditional techniques involve 
thresholding the sensor data and treating the exceedences as 
point measurements that are subsequently fed to a tracking al- 
gorithm. Choosing this threshold is a challenge in itself, and 
even then it is typically subject to a prescribed probability of 
detection and probability of false alarm. Linearizing the gener- 
alized frequency modulated (GFM) model in Luginbuhl [ 1,2] 
and adding some of the Bayesian structure from Streit [3] re- 
sults in a new tracking algorithm that uses all of the sensor data 
and avoids thresholding entirely. The fundamental premise of 
the proposed tracking algorithm is that losses due to threshold- 
ing can be eliminated completely if all of the sensor data are 
used by the tracking algorithm. 

Section 2 describes this new tracking algorithm, referred to 
herein as histogram-PMHT, or H-PMHT; in particular, the key 
aspects of its derivation are discussed. A concise statement 
of the H-PMHT algorithm applied to one-dimensional sensor 
data is given in section 3. Two frequency domain examples, 
one involving a simulated linear frequency modulated (FM) 
chirp and one involving an at-sea recorded bowhead whale 
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call, are presented in section 4. A summary is given in sec- 
tion 5. 

Incomplete-Data Likelihood Function 

Let 2, denote the sensor-data measurement vector at time t ,  

Zt = { Z t l , .  . . , Z t L } ,  t = 1,. . . ,T ,  (2.1) 
2. HISTOGRAM-PMHT 

Signal and Measurement Models 

The H-PMHT tracking algorithm is intrinsically a multi-signal 
tracking algorithm, and is based on a stochastic model of the 
signals and the noise background. As in [ l ,  21, it assumes 
that the signals, clutter, and background noise are described 
by a discrete mixture of continuous distributions in which each 
component PDF represents a target, clutter, or the background 
noise process. Furthermore, each component PDF may be a 
discrete rnixture PDF. The sensor data are indirect realizations 
of this underlying distribution. The approach taken is first to 
quantize the real-valued senor data into a “pseudo-histogram,’’ 
and then to use a multinomial distribution to model the counts 
in the hiljtogram cells. The cell-level intensities of the sen- 
sor data are directly proportional to the cell counts of the his- 
togram. The goal is to fit the underlying mixture distribution to 
the histogram at each scan; that is, to estimate the parameters 
of the mixture distribution that maximize the likelihood of the 
histogram at each scan. The theoretical framework of PMHT 
(see [4]) is used to “assign” the histogram samples to the mix- 
ture components, and to link these mixture distributions across 
scans with a dynamical signal model. 

Expectat ion - Maximization 

where zte is the output of the sensor at time t in display cell I 
(a sequence of unaveraged, magnitude-squared DFT data ver- 
sus frequency in the examples). Let h2 > 0 be a specified 
quantization level, an’d let 

Nt = {nil , .  . . , ntL} ,  t =: 1 ,..., T ,  (2.2) 

denote the quantized ineasurement vector corresponding to Zt , 
where 

nte = 

is the greatest integer less than or equal to zte/h2. Let 

L 

Ntc = C n t e  

(2.3) 

(2.4) 
e=i  

denote the: total cell count (sample size) at time t. Unlike in 
[ 1, 21, in [ 31 the quantized data vector ?lit is used as an inter- 
mediate variable in the derivation of the H-PMHT algorithm; 
at an appropriate point in the derivation, the measurement vec- 
tor Z+ is recovered in the limit as f i  + 0. 

As in [ 1,121, the quantized data vector Nt is assumed to have 
a multinomial distribution consisting of N t z  draws (with re- 
placement) on L “categories” with probabilities 

(2.5) -- pe(x t )  
P(-&) ’ e = I,. . , L,  

The expectation-maximization (EM) method formalized by 
Dempster, Laird, and Rubin (see [5]) is a powerful method for 
estimating the parameters of mixture distributions, and is the 
method used to solve the likelihood equation in H-PMHT. The 
method of EM is particularly well suited to so-called “miss- 
ing” data problems; that is, problems in which the parame- 
ters of interest are comparatively straightforward to estimate 
if the observed data set is augmented with certain unobserved 
data. The basic strategy of EM is to include the missing data 
as random variables in the likelihood function, take the expec- 
tation of the log-likelihood with respect to the missing data In equation (2.6), f c  7; xt) is the underlying mixture density 
conditioned on the observed data, and maximize the resulting and xt denotes the 

requires both the specification of the incomplete (observed) mixing proportions, which are implicit j,n all of the likelihood 

plus missing data) likelihood function. The incomplete- and distribution for the cluantized data vector Nt implies that the 
complete-data likelihood functions for H-PMHT are described counts Nt  cells and a sample size of 

Nix,  where the samples are independent and identically dis- in the next two sections. 

tributed with probability density function f ( ~ ;  X t )  (see [6] for 
more on 1he multinomial distribution). 

where 

pe(xt) = J ’ f ( T ; x t ) d r ,  e (2.6) 

and 

L 

P(&) = c Pe(X*).  (2.7) 
e= 1 

of the and he 
expression7 the function. The EM method parametelr vector of the mixture density at time t (minus the 

data (Observed data expressions in the se:quel). The assumr,tion of a multinomial data likelihood function, and the 

a histogram with 
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Let N = { N I ,  . . . , NT)  denote the collection of quantized 
measurement vectors, and let X = {XI, . . . , X T }  denote the 
set of mixture parameters to be estimated. Assuming the scans 
are independent, the incomplete-data likelihood function for 
N is given by 

t=l 

where 

In [ 1, 2, 31, a Bayesian model for the mixture parameters X is 
adopted. If p z  (X) denotes the a priori density of X, then the 
incomplete-data likelihood function is given by 

where the density pinc(NIX)  is essentially identical to the 
density (2.8), and differs only in its statistical interpretation 
(Bayesian conditioning versus parametric dependence). 

The derivation of a new prior density p s ( X )  in [3] is an im- 
portant contribution and theoretical development in H-PMHT. 
In short, in [3] it is shown that the prior needs to be suf- 
ficiently non-diffuse so that the synthetically generated his- 
togram counts N ,  which depend on the arbitrary quantization 
level h2, do not overwhelm the prior as h2 + 0. Under the 
usual Markov assumption on the signal states Xt , Bayes The- 
orem gives 

where the power of Ntc is necessary to account for the artifi- 
cial abundance of quantized data Nt at each scan. 

The sample density is assumed to be the mixture density 

M 

where the mixing proportions ntk 2 0 for all t and k, 
CEO 7rtk = 1 for all t, and the Gk(r1X;) are component 
probability density functions. For component 7r tO  Go (~lx't), 
7 r t O  represents the fraction of the total power due to the back- 
ground noise, and Go(TJXt) models the cell-to-cell varia- 
tion of the background noise. Likewise, for components 
7rtl  G1 ( T ( X t ) ,  . . . ,7rtM G ~ ( r l X t ) ,  n t k  is the fraction of the 
total power due to signal k, and Gk(~1Xt) models the varia- 
tion of signal k from cell to cell. The mixture model (2.12) as- 
sumes that the signal power levels may be spread across more 
than one cell of the sensor display. 

Let Kte = { k t e l , .  . . , ktenfe ) denote the components of 
the mixture that generated the missing variables & = 
{&I,. . . , & ~ n t e } .  It is assumed that the random variables in 
Kte are independent and identically distributed. Furthermore, 
l e tK t={Kt l ,  ..., K t L j a n d K = { K l ,  ..., KT}. 

Including the missing sample locations and their mixture com- 
ponent assignments, the complete-data likelihood function is 
given by 

T I, n+o 

t=i e=i ~ = i  
(2.13) 

where 

that is, the complete-data likelihood function is the product of 
all the histogram sample densities across all L cells and all T 
scans, scaled by the prior for the signal mixture parameters. 

E-Step 
Complete-Data Likelihood Function 

The missing data in H-PMHT are (1) the locations of the sam- 
ples that make up the pseudo-histogram, and (2) their mixture 
component assignments; that is, the components in the under- 
lying mixture distribution from which the samples are drawn. 

Let &e = { S t e l , .  . . , &en,,} denote the locations of the sam- 
ples within cell C. The random variables in are assumed 
to be independent and identically distributed with probabil- 
ity density function f(-rlXt)/Pe(Xt). Furthermore, let Q = 
{GI,. . . , S t L }  and S = {SI,. . . , S T } .  

The auxiliary function of the EM method, denoted here by Q ,  
is defined as the conditional expectation with respect to the 
missing data of the logarithm of the complete-data likelihood 
function given the observed data and the current values of the 
parameters X, denoted X': 

where E ~ K  denotes expectation with respect to the missing 
data. The mechanics of the E-step for H-PMHT are tedious ' 
but straightforward, and are well documented in [I, 2,31. The 
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final result in terms of the pseudo-histogram counts N is where 

!P(X,.Y') = l0gpzo(XO) 

(2.22) 

1 1 ~ f I l  T 
In [3] it is shown that by taking the limit fkx = p(x'I) log&tklZt-l ,k ( Q k I X t - l , k )  

t=1 

T L  = lim hz 9, (2.17) 

and using definition (2.3) for the quantization, the EM auxil- 

h2+0 

t=l  e=1 

iary function 9 can be replaced by @, a function of the un- 
quantized sensor data 2 = { 21, . . . , Zt}: The updated mixing proportions K t  are obtained at each time 

t by maximizing with respect to 7rt the Lagrangian equation 
involving Qt ,  and the constraint 7rto + 7rt1 + . . + 7rtM = 1. 

For this application. linear Gauss-Marlkov processes are as- 
sumed far the signals, so that for k == 1,. . . , M and t = 

1% PSt ]E t  - * (x't I X t  - 1) 11~t11 Qfl(X.,X/) = - 
T 

t=1 P(X,') 
T Lt M 

t=i e = i  k = ~  
+ 2; & l . f k ( ~ / X i )  logfi,(T/Xt) d7, (2.18) 1,. . . , T, the signal process models are:given by 

where N(r;  p, C) denotes the multivariate normal probability 
density function with mean p and covariance matrix C, the 
Ft-1 ,k  are known state matrices, and thle Qtk  are known pro- 
cess covariance matlices. 

Additionally, it is assumed that the signal components in the 
mixture distribution are also Gaussian, and that the means of 
these Gaiissians are linearly related to the states of the signals 
k = 1,. . . , M at times t = 1,. . . ,T ,  so that 

M-Step 

The objective of the M-step is to maximize the auxiliary func- 
tion !Pfi with respect to the unknown signal parameters X. To 
proceed, a p p ~ c a ~ o n - s p e c ~ ~ c  temS in the function 
(2.18) must be defined. 

Let 

X t  =' {ZtO,  Z t l  ,.. . , XtM}, t = O , 1 , .  . . T ,  (2.19) (2.25) 

where X ~ O  is the background noise parameter at time t, and x t k  
is the parameter of signal k at time t. Assuming the signals are where the Htk are known measurement matrices, and the Rtk 

independent at all times, 

G k ( + t k )  = M(T; H t k  x1'k7 Rtk), 

are known measurement covariance matrices. 

M Finally, the background noise distribution in this application 
P Z t l s t - l ( X ' t l x ' t - d  = n P Z t k J s t - l , b  ( X t k l Z t - 1 , k ) .  (2.20) is assumed to be uniform and known for all t ,  so that the 

k=O Go(~lzto) terms are all constants. 

With these assumpljons, it is shown in [3] that for X ( k )  = 
{ Z O k ,  x l , k , . .  . , X T k  1, the value of x(k) that maximizes the 
auxiliary function Q ~ x  for each signal k is the solution to 
a symmc:tric, block-tridiagonal, linear system of equations, 
and that this system is most efficiently solved by a recursive 

= *tx + Q k X ,  (2.21) Kalman smoothing filter. The details off this result are omitted 
here, but the filter steps are listed explicitly in the next section. 

It is readily shown that kfl can be separated into two terms, 
one involving the unknown mixing proportions T = {r tk} ,  
and one involving the unknown signal parameters X ,  

T M 

t=1 k=O 
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3. ONE-DIMENSIONAL TRACKING 
ALGORITHM STATEMENT 

2. Total bin probabilities fort = 1, . . . , T and e = 1, . . . , L: 

For one-dimensional tracking, the signal parameters of interest 
are typically the instantaneous location on the sensor display 
Yt (e.g., angle or frequency) and the instantaneous rate +t at 
time t; therefore, for signal k ,  

(3.2) 

For this two-state linear Markov model, the state matrices 
F t - l , k  and the process covariance matrices Q t - 1 , k  have sim- 
ple forms: I 

1 A t - 1  
F t - l , k  = [o 

1 ] , (3.3) 

where At is the elapsed time between time t and time t - 1, 
and 

[ At-l ] ' (3'4) 
& t - i , k  = q t - i , k  

where the q t - l , k  are scale factors (see [7, p. 841). 

For two-dimensional time-intensity data, the measurement 
matrices H t k  and the measurement covariance matrices R t k  

also have simple forms: 

H t k  = [I 01 , (3.5) 

R t k  = P&, (3.6) 

and 

where p:k is the variance of signal k at time t. 

Let {T::)} be the set of estimated mixing proportions and 
{XI?} the set of estimated signal states at the i-th EM itera- 
tion. At the beginning of the algorithm (the 0-th iteration), the 
mixing proportions { n$'} are initialized so that n::) > 0 and 

are initialized with nominal 
values for t = 1,. . . , T .  For iterations i = 0,1,2, .  . . , the 
following nine quantities are computed (see [3] for further de- 
tails): 

n$) +ntl  (0)  +-.-+a:% = 1 fort = 1,. . . , T .  The signal state 

sequences {ZIP,', xi:), . . . , x t M }  ( 0 )  

1. Component bin probabilities for t = 1,. . . , T ,  C = 
1 ,..., L,andk = 0,1, ..., M :  

k = 0, 
s, N(T;  H t k  x$, R t k )  d.r, k = 1, . . . , M .  

(3.7) 

3. Total scan probabilities for t = 1, . . . , T :  

(3.9) 

4. Bin centroids for t = 1,. . . , T ,  I = 1,. . . , L,  and k = 
1,. . . , M :  

(3.10) 

5.  Synthetic measurements for t = 1, . . . , T and k = 
1,. . . , M :  

6. Synthetic measurement covariance matrices for t = 
1, ..., Tandk = 1, ..., M :  

7. Synthetic process covariance matrices for 
t = 0,1, . . . , T - 1 and k = 1, . . . , M :  

(3.13) 

8. Estimated mixing proportions for t = 1, . . . , T and k = 
0, 1, . . . , M :  

9. Estimated signal states for t = 0,1, .  . . ,T and k = 
1, . . . , M ,  using (for computational efficiency) a recur- 
sive Kalman smoothing filter, which comprises a forward 
filter initialized at time t = 0 with e$il)(k) = z$) and 

a large (diffuse) state covariance matrix P;;:')(k), and 
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given, fort = 0,1,  . . . , T - 1, by the recursions rewritten as 

p("1) t + l l t  (IC) = Ftk p$+')(k) F& + Q t k ,  z(t) = Aexp[i R(t) t + z $1, 

R(t) = Ro + f j o  t ,  

(4.4) 

W g 1 ) ( k )  = P$-$(k) Hi+,,, and 

(4.5) 

where R(i)  is the instantaneous frequency in rads, Ro is the 
nominal frequency in rads, and ho is the: chirp-rate in rad/$. 

Without loss of geneirality, it is assumed that the signal is ob- 
served starting at time t = 0, and that estimates of the in- 
stantaneous frequency and frequency-rate of z ( t )  are required 
every 7 seconds. To avoid aliasing, the signal is sampled well 
above the Nyquist rate for the observabon period of interest 

and a backward filter initialized at time t = T with sr, wher,e s is the number of scans; that is 

by the recursion 

p(2+') 
t+llt+l(k) = P(?+l) t+llt ( k )  - 

wt?:l)(k) Ht+',k pjiT/2(k)7 
- (2+1)  (/.) = F t k  Ytlt  -(2+1) (IC) + w p ( k )  Y t + l l t + l  

xTk (%+I) - - fj!$)(k) andgiven,fort = T-l,T-2,. . . ,1, 
2T 
7,  

0, = - >> 2R(ST) ,  (4.6) 

where 0, is the sampling rate in rads, and 7,  is the sampling 
period in seconds. Using n to denote the sampling index, the 

z:;") = fj!;:')(k) + P$+')(k) Ft;: (Pi::;2(IC))-' 

[ z(2+1) t + l , h  - Ftk GL;:') (k)] , discrete-time versions of equations (4.4) and (4.5) are given by 

and, for t = 0, bv 

where the asterisk denotes matrix transposition. 

z(n7,) == A exp[i R(n7,) n7, + i $1 
4.3 == Aexp(iw[n] n -t i $), (4.7) 

(3.15) 
and 

w[n]  = WO +Ljon, (4.8) 
The most common convergence tests for termination of the al- 
gorithm are based on the rate of increase of the incomplete- for n = 0, .  . . , N - 1, where w [ n ]  is the instantaneous 
data likelihood function. Other tests are based on the rate of frequency in raasample, WO is the nominal frequency in 
change of the estimated parameters. In practice, usually some radsample, and Ljo is the chirp-rate in radsample2 (see [SI 
combination of these two tests is used. for details on time-sampling). 

4. EXAMPLES 
For simplicity, it is assumed that the signal z(t) is corrupted 
by additive, complex., zero-mean white Gaussian noise with 
variance 02; that is, tlhe observed time-series is given by 

Linear Chirp y[n] = 4.1 + 4n3, (4.9) 

where 

In this section, a two-state H-PMHT frequency tracker is used E{v[nl} = 0, (4.10) 
to track the instantaneous frequency and frequency-rate of a 
low-frequency linear chirp. 

E{v[n.] v[n + I C ] }  = o 2  S[IC], (4.11) 

for all n and k.  An observation interval of length 7 seconds 
a sampling period of length 7, secontis yields a time-series 

of length 7/7, + 1 samples every 7 seconds, for a total of 
N = S(T/K + 1) samples. 

For each observation interval, the signal-to-noise ratio (SNR) 
7 is defined as the ratio of the average signal power P to the 

(4.3) noise power c& in a, bin, 

Consider the COntinUOUS-time, complex-sinusoidal signal ~ ( t )  
with constant amplitude A and constant phase 4, 

z( t )  = Aexp[i 27ry(t)t + i $I7 (4.2) 

where 

7(t)  = 70 + ?o t, 

TO is the nominal frequency in Hz, and i.0 is the chirp-rate 
in Hds. Converting to radians, equations (4.2) and (4.3) are 

P 
7 - - -  

4 i n  
(4.12) 
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sequel. 

Figure 1. Magnitude-Squared STFT of Linear Chirp in 
White Gaussian Noise (q = 4 dB, p = 1 Bin (0.625 Hz), 
q = 1 x and Estimated Track 

For the signal of interest, the average signal power P = A2,  
SO q = A2/aii,. 

In this example, a low-frequency linear FM chirp with ampli- 
tude A = 1, phase q5 = 0, nominal frequency 70 = 20 Hz, 
and chirp-rate i /o = 0.125 Hds is sampled every 7, = 0.0125 
second, and its short-time Fourier transform (STFT) is taken 
every 7 = 1 second for S = 120 consecutive, nonoverlapping 
(unaveraged) blocks of data (scans) to yield a spectrogram of 
length ST = 2 minutes. This sampling period corresponds to 
a sampling rate of ys = 1 /7, = 80 Hz, which is well above the 
Nyquist rate of 2 r(S7) = 2 [TO + j o ( S 7 ) ]  = 70 Hz for the 
2-minute observation period. Each 1-second observation in- 
terval yields T/7, f 1 = 81 samples, for a total of N = 9720 
samples over the whole data set. The spectrogram for a signal 
with U = 5A is shown in Fig. 1. 

The STFT in this example is computed using a 128-point fast 
Fourier transform (FFT) and an 81-point Hamming window. 
The window sequence is normalized such that it sums to one; 
this scaling allows the magnitude-squared FFT output to be di- 
rectly interpreted as power. Since for a P-point DFT the spac- 
ing between DFT frequencies is 27r/P, and the relationship 
between the discrete-time frequency w and the continuous- 
time frequency 0 is w = R7,,  where 7, is the sampling period, 
the frequency resolution is given by 27rlP7, rads, so the DFT 
bin-width for this example is 1/(128 x 0.0125) = 0.625 Hz. 
Only the positive half of the spectrum is shown in Fig. 1, and 
only the first L = 64 bins of sensor data are considered in the 

The H-PMHT frequency tracker outlined in section 3 was im- 
plemented as a single-scan (T = l),  single-signal (M = 1) 
sequential filter and was applied to the data in Fig. 1 on a 
per-scan basis; that is, the scans were processed sequentially, 
where the estimate for the previous scan was used to initialize 
the estimate for the current scan (see [3 ] ) .  

The estimated instantaneous frequencies are shown connected 
by a solid line the figure. The jaggedness of the track will 
increase as the SNR drops and the signal power varies more 
from cell to cell. The jaggedness of the track is also a function 
of the process noise; the stochastic signal model allows for 
further excursions from the deterministic, constant-rate model 
as the process noise scale factor q is increased, resulting in 
larger random accelerations. There is an intimate relationship 
between the values of the filter parameters p and q, the SNR, 
the track initialization, and the tracker behavior. High SNR 
signals will tend to draw the signal component of the mixture 
closer if the signal is within the effective “gate” determined by 
p. The amount by which the signal component will move to 
data outside the range of the deterministic process model de- 
pends on the SNR, the value of q,  and the track‘s local estimate 
of its own quality (i.e., the size of the state covariance Ptlf. on 
zt) .  In low SNR, the “inertia” of the tracker will allow it to 
coast according to the deterministic process model until there 
is good reason (i.e., supporting data) for it to change course. 

Bowhead Whale Call 

The spectrogram of a 1.2-second bowhead whale call recorded 
at sea is shown in Fig. 2. This signal was sampled at 2500 
Hz and processed with a 421-point Chebyshev window and a 
1024-point FlT with a bin resolution of 2.4414 Hz. Values 
of p = 3 bins (7.3242 Hz) and q = 1 x were used to 
track this signal. The estimated instantaneous frequencies are 
shown connected by a solid line in Fig. 2. The intent of this 
example is to show the ability of the tracker to track complex, 
nonstationary signals, and the ability of the stochastic process 
model to accommodate dynamics of higher order than the de- 
terministic process model. The benefit of including process 
noise is the ability to track high dynamics with a reduced pa- 
rameter set. However, for too low a model order, the burden 
of tracking the signal dynamics falls squarely on the shoulders 
of the process noise, and the result for high process noise may 
be very jagged tracks or, for low processes noise, tracks whose 
dynamics lag those of the actual track. 
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5. CONCLUDING REMARKS 

(a) Linear-Scale 

Figure 2. Spectrogram of Bowhead Whale Call 

The H-PMHT tracking methodology avoids the thorny issues 
of threshollding the sensor data to provide measurements for a 
point tracker by (1) using all of the sensor data, and (2) mod- 
eling the signals as potentially distributed over several cells. 
The H-PMHT signal model is a stochastic model in that the 
signal centers are modeled as the component means of a dis- 
crete mixture distribution; the signal “widths” are modeled by 
the variances of the mixture components. 

The interpretation of the sensor output as a pseudo-histogram 
plays an important role in the derivation of H-PMHT. The real- 
valued cell outputs are quantized and treated as the cell counts ‘ 
of a pseudo-histogram whose distributioin is multinomial; the 
underlying density of this multinomial distribution is the mix- 
ture density of the signals and the background noise. It is a 
remarkabbe fact [3] tlhat the sensor data are recovered in the 
algorithm as the quantization level h2 is taken to zero. 

An important theoreQca1 development in the derivation of H- 
PMHT not discussed! in this paper is the use of a negative 
multinomial distribution (see [6]) to model sensor cells in 
which no (data are collected. The negative multinomial func- 
tions as an interpolator in this case, serving to restore the miss- 
ing cell counts in the histogram. In this capacity, the negative 
multinomial may be useful to reduce “edge effects” that may 
bias estim,ates when the tails of signal components extend be- 
yond the ends of the sensor display. The reader is referred to 
[3] for further details on the use of the negative multinomial in 
H-PMHT. 
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