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Abstract-Traditional bearings-only target motion analysis The second formulation is novel in that it assumes the mea­
(TMA) statistical models assume a priori that measurements surements determine a sequence of statistically independent 
are independent when conditioned on the target. This paper pre-detection "empirical" PDF's on target state. Multiplying 
presents a novel track-before-detect "empirical" maximum a these densities gives the overall empirical density on target 
posteriori (EMAP) approach in which measurements are as- state. EMAP target state estimates are defined by evaluating 
sumed independent prior to the detection decision. The EMAP the empirical density for a specified class of parametric target 
estimators proposed here are joint detection/estimation meth- motion models. EMAP estimates are computed numerically 
ods whose intended use is target tracking. A limiting case - without taking the gradient of the likelihood function - by 
of the EMAP formulation is shown to be equivalent to the the new expectation-maximization (EM) based algorithm de­
traditional maximum likelihood (ML) formulation. Triangu- rived in this paper. In contrast to the ML likelihood function, 
lation and constant velocity target examples are presented. the EMAP likelihood function is a product of range marginals 
The EMAP algorithm is an iteratively re-weighted linear least over a parameterized target density, called herein the geomet­
squares algorithm for these problems, and has significantly ric kernel. It will be seen that adjusting the down-range vari­
lower computational complexity than the standard ML estima- ance parameter of the kernel is an intuitive method for speed­
tor. ing up solution convergence and controlling solution accuracy. 
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1. INTRODUCTION 

Two formulations of the bearings-only target motion analy­
sis (TMA) problem are discussed in this paper. The formu­
lations use nearly indistinguishable statistical probability den­
sity functions (PDF's) of the mea�ured bearings, but they dif­
fer significantly in their statistical interpretation. The first 
formulation based on the ML method is standard because it 
assumes measurements are statistically independent, condi­
tioned on target state. ML target state estimates are defined 
using a specified target motion model and can be obtained nu­
merically by gradient ascent procedures, which require com­
puting the derivatives of the likelihood function with respect 
to target state variables, or by search procedures (e.g., genetic 
algorithms) which perform extensive enumeration of possible 
target state variables. 

• U.S. Government work not protected by U.S. Copyright. 

The main contributions of this paper are a novel mathematical 
treatment of the observability issue for passive sonar TMA, 
first reported in [1], and the derivation of an iteratively re­
weighted linear least squares target state estimation algorithm 
using the method of EM. Unlike the standard ML algorithm, 
this new algorithm does not require computing the gradient of 
the likelihood function in most cases of practical interest. 

Section 2 develops notation and basic probabilistic structures 
used throughout the paper. Section 3 discusses the ML formu­
lation of the bearings-only TMA problem for constant velocity 
targets. The EMAP formulation for constant velocity targets 
is presented in Section 4. Derivation of the EMAP estimation 
algorithm is given in Section 5. The asymptotic equivalence 
of the EMAP and ML approaches to the bearings-only TMA 
problem is shown in Section 6. Examples are given in Section 
7. Summary and concluding remarks are given in Section 8. 

2. NO TATION AND DEFINI TIONS 

The radiated sound field of a single point target impinges upon 
a sensor array, and the sensor signal processor generates an 
estimate of arrival angle at the sensor location. Arrival angles 
are estimates of azimuthal bearings, so the observable target 
coordinates lie in a horizontal plane. Let (x, y, z) denote target 
position at an arbitrary. but fixed, time. Azimuthal angles are 
measured in the x-y plane counter-clockwise from the positive 
x axis. Let Z = () denote the measured bearing of the target 
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when sensor position is XO = (XO, yO, ZO). 

Both ML and EMAP formulations of the bearings-only TMA 
problem use a marginalization approach to avoid estimating 
target depth. Let the conditional PDF of bearing to the target 
be denoted by PBlxyzx"yOzO (6Ix, y, z, xO, yO, ZO). Marginaliz­
ing over target depth gives 

== POlxyx"yOzO (6Ix, y, xO, yO, ZO), (2.1) 

where the second term in thc integrand denotes the a pri­
ori target depth PDF, which is zero outside the water column 
[Zmin' zmaxl and is assumed known. If the target has a known 
fixed depth, then the a priori target depth density is simply the 
Dirac delta function located at the given target depth. 

The marginal PDF (2.1) is called simply the bearing density 
throughout the sequel. In general, the bearing density is writ­
ten 

A deterministic target motion model is specified, so that Xn = 
x(tn) and Yn = y(tn). The standard target motion model for 
bearings-only TMA is constant velocity, so 

[ x(t) ] 
y(t) t

t
; � :1 

[ 
;� ] + t: -_t�l [ 

= a(t) [ �� ] + j3(t) [ �� ] (3.2) 

for t1 S t S tN, The model (3.2) uses end-point param­
eterization because the position parameters {Xl , Yl, X N , Y N } 
are dimensionally commensurate (a useful feature if Cramer­
Rao lower bounds on estimation error are compared); how­
ever, the end-point model is mathematically equivalent to the 
more common position-velocity model. Target state is there­
fore fully parameterized by ..\. = {x], Yl , X N , Y N }, so that 
X = X (..\.) = {x (..\.), Y (..\.)}. Hence, the target state estimate 
is determined from the ML parameter estimate 

PZ1XXO (ZIX, XO) == PBlxyxOyoZ" (elx, y,xO, yO ,ZO), 
where target state is defined by X = (x, y, s) . 

(2.2) Taking the gradient of the conditional likelihood function with 
respect to ..\. and setting the result to zero gives the necessary 
conditions to be solved by appropriate numerical procedures. 

For later reference, the down-range marginal density of a PDF 

f xy (x, y) with respect to the (one-dimensional) Cartesian vari­
abIes x and y is defined by 

frp(¢» == 100 !xy(pcos¢>,psin¢» pdp, 

(2.3) 

where (p, r/» are the polar coordinates of the target. The PDF 

!xy(x, y) is said to be diffuse down-range if 

fxy(pCos ¢>,psin¢» p ()( { t� (¢», p> 0, 
p S O. (2.4) 

It follows from (2.4) that a diffuse down-range density is not 
necessarily diffuse in x and y. 

3. MAXIMUM LIKELIHOOD FORMULATION 

Let Z == {Zn}�=l == {en}�=l denote a sequence of in de pen­
dent bearing measurements on the same target obtained at sen­
sor locationsXo == {X�}�=] == {x�"y�,Z�}�=l and at times 
{tn}:;'=]. The measurements are not rcquired to be identically 
distributed. Let X == {Xn}�=l == {xn' Yn}:;,=l denote the 
sequence of target states at the measurement times {tn}:;,=l' 
Without loss of generality, it is supposed that {tn }:;'=1 are 
listed in increasing order, that is, tn � tn+l' n = 1, . . . ,N-1. 

As is typical in TMA problems, the measurements Z are as­
sumed independent, conditioned on target state. The condi­
tional likelihood function of Z is then given by 

N 

..czlxx"(Z IX,XO) = n PZnlxnx�(ZnIXn'X�). (3.1) 
n=l 

A potentially serious difficulty with using the necessary ML 
conditions is that the gradient of the likelihood function is re­
quired with respect to the target parameter vector..\.. Because 
the gradient is typically required at each iteration of a numer­
ical procedure, ML estimates are often difficult and time con­
suming to compute. Also, the use of gradients may lead to 
unreliable search directions under weak observability condi­
tions. 

A maximum a posteriori (MAP) formulation can be obtained 
from the ML formulation by incorporating an appropriate a 
priori density on the end-point parameters of the constant ve­
locity target model. Alternatively, a target process noise model 
can be included to compensate for target maneuvers. MAP es­
timators are not pursued further in this paper; however, the 
EMAP formulation presented in the next section is readily 
adaptcd to eithcr of these approaches to MAP estimation. 

The traditional bearings-only TMA problem is obtained from 
(3.1) by assuming straight line propagation in the azimuthal 
plane. In this case, simple geometry and additive Gaussian 
noise assumptions give 

where an denotes the standard deviation of 6n- Substituting 
(3.4) into (3.1) and taking the natural logarithm gives the usual 
l/a;'-weighted nonlinear least squares problem of traditional 
bearings-only TMA. 



4. EMPIRICAL MAP FORMULATION 

Traditional TMA statistical models are post-detection models, 
that is, they assume a priori that the measurements Z be­
long to a common target with motion of a specified parametric 
form (e.g., Equation (3.2». Post-detection tracking implies 
that measurements are independent if they are conditioned on 
the target. ML estimators thus answer the question "Given 
data generated from a target track, which parameterized track 
best fits the data?" 

In contrast, the EMAP estimators proposed here differ fun­
damentally from traditional post-detection TMA because they 
are joint detection/estimation methods which seek to answer 
the alternative question "Does a target track of the specified 
parametric form fit the data?" A generalized likelihood ratio 
test (GLRT) in which track parameters are estimated and sub­
stituted into a likelihood ratio is the EMAP answer to the ques­
tion; however, it is the estimated track -'- and not the GLRT 
detector - which is the object of interest in this paper. 

The data {(Zn,X�)}�=l are assumed statistically indepen­
dent because measurements are not specified a priori to belong 
to the same track. Independence implies that 

N 

pZxo(Z,XO) = II pz"x:: (Zn,X�). (4.1) 
n=) 

The data {(Zn,X�)}�=l contribute independent probability 
density assessments of "potential" target position that are valid 
at the times at which the measurements are obtained. Let 

XQ == {X;;};;=l == {x�'Y�};;=1 denote so-called "empiri­
cal" random variables associated with potential locations. Em­
pirical random variables are assumed indcpendent when con­
ditioned on their corresponding measurements and sensor lo­
cations; hence, the empirical target location PDF for the full 
data set is 

N 

PXolzxo (XflIZ,XO) = II Px�;z"x;: (X� IZ,,,X� ), 
n=1 

(4.2) 

The empirical target likelihood function (4.2) is evaluated for 
specified parametric target motion models, once the condi­
tional density of X;; is defined. 

Full target state is not observable from a sihgle bearing mca­
surement. Consequently, the dummy random variable rn is 
introduced to model the "missing" sensor range measurement 
corresponding to (}n, and the density of the empirical variable 

X;; is expressed as a marginal density over rn. Using Bayes 
Theorem, thc marginal density is written in the form 

PX;?/ZnX:; (X;; IZn'X�) = 

100 Px�y;:/rn ZnX� (x�, y� Irn, Zn, X�) 

x PrnlZnX� (I"n IZn'X�) dl"n. (4.3) 

o 

The statistical relationship between the missing range mea-
surement r n and the other random variables must be defined. 
Substituting the integral (4.3) into (4.2) gives the overall em­
pirical PDF as a product of integrals. 

Each term in the integrand of the integral representation (4.3) 
has a meaningful physical interpretation. The first term, called 
the geometric kernel, is a density on empirical target position, 
and it is conditioned on range, bearing, and sensor position. 
For bearings-only TMA problems, the geometric kernel is as­
sumed to be a bivariate Gaussian whose mean vector and co­

variance matrix are determined by the conditioning variables. 
The kernel's mean vector is determined by range, bearing, and 
sensor location; the kernel's covariance matrix is a joint func­
tion of all the conditioning variables. Purely geometric con­
siderations (see Appendix A of [1] for thc special case when 
the sensor lies at the origin) gives the kernel in the form 

" 0  {} ]' xn - Xn - rn cos n A () 
Yfl_yo - I" sin{} ( ",O"n,l\:n) 
n n n n 

[ x� - x� - I"nCos(}n ]} 
X fl ° . () , Yn - Yn - I"n 8m n (4.4) 

where A((}n, O"n, I\:n) is the inverse covariance matrix. Loosely 
speaking, the cross-range and down-range variances of the ge­
ometric kernel are determined by the sensor and a free design 
parameter, respectively, together with square law azimuthal 
dispersion of empirical target location. 

The standard deviation of the measured bearing (}n is denoted 
by O"n == O"({}n), and it is determined by sensor signal pro­
cessing considerations. The bearing variance 0"2 (.) may be 
constant, but in general it depends parametrically on bearing 
because of beamwidth equalization issues (i.e., some beams 
may be narrower than others). 

The standard deviation of the missing range measurement rn, 
denoted in (4.4) by "'n == 1\:( {} n), is a new and potentially useful 
free design parameter which can be used to control solution ac­
curacy and rate of convergence. Using a down-range variance 
greater than I\:� will increase the smearing of the down-range 
mixture components and, conversely, using a smaller variance 
will decrease the smearing. This opens the possibility in prac­
tice of using what may be called a "monotone" simulated an­
nealing schcme in which the down-range variance is initially 
made too large to speed up convergence, and is then monotoni­
cally reduced in stages to the desired level of accuracy, namely 

I\:�. 

The second density in the integrand of (4.3) specifies the sen­
sor measurement window for the missing range measurement. 
It is derived by assuming that the a priori joint density of 

the measurement pair (rn, en) corresponds to a uniformly dis­
tributed point over a feasible region R(X�) of the x-Y plane 
whose inner and outer radii are given by the radial functions 
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rmin(l'n'X�) and rmax(Bn,X�), respectively. The outer ra­
dius may be interpreted as the maximum range at which sig­
nals of specified (maximum) source level are detected with 
specified probability Pa. Similarly, the inner radius may be 
interpreted as the near-field limit of the sensor, i.e., the min­
imum range at which the sensor's beamformer reliably esti­
mates bearings. Thus, in polar coordinates, the joint density of 
(rn' Bn) is given by 

for (rn' Bn) E R(X�), 
otherwise, 

(4.5) 

where A( X �) is the reciprocal of the area of the feasible region 
R(X;'). Conditioning on bearing as well as sensor location 
gives, using Bayes Theorem, 

forrmin(Bn,X�) :::; rn 
:::; rmax(Bn'X�), 

otherwise, 
(4.6) 

where the normalization constant is c(Bn' X;') 
2/(r�ax(Bn,X�) - r�in(BT"X�)), The a priori bearing 
density POnjX� (BnIX�) is uniformly distributed if and only if 
the normalization constant c(Bn, X;') is independent of Bn. 

The integral representation appropriate for the bearings-only 
TMA problem is obtained from the general expression (4.3) 

by substituting the specific forms (4.4) and (4.6). The result is 

Px�y�jZnx:: (x�,Y�IZn,X�) = c(Bn, X�) 

where the proportionality factor is given by 

c(B XO) _ s(Bn' X;') n, TO - 27r(T(Bn)�(Bn)' 

]' 
]} �n

, (4.7) 

(4.8) 

The integral representation (4.7) is fundamental to the formu­
lation of the EMAP likelihood function. 

Appendix B of [l] shows that the down-range marginal density 
of the integral (4.7) is closely approximated by the Gaussian 
distribution, provided the bearing measurement standard devi­
ation (Tn is small, say on the order of several degrees or less. 
The result shows (with appropriate use of diffuse priors) that 
the traditional bearings-only TMA problem is recovered from 
(4.7) via down-range marginalization. The standard ML ap­
proach (see Section 3) to the bearings-only TMA problem is 
obtained asymptotically as � -+ 0, as shown in Section 6. 

Let A = {Xl, YI, X N , Y N }, as in the ML formulation of Section 
3. Substituting the target model parameterization (3.2) into the 

integral representation (4.7), and then substituting the result 
into the likelihood function (4.2) gives 

where the quadratic form Qn == Qn(rn; A) of the exponential 
term is 

Q = [ a(tn)xl + f3(tn)XN - x� - rn cos Bn ]1 n a(tn)Yl + f3(tn)YN - y� - rn sinBn 
x A(Bn, (Tn, �n) 

X 
[ a(tn)Xl + f3(tn)XN - x� - rn cos Bn ] 

(4.10) a(tn)Yl + f3(tn)YN - y� - rn sinBn ' 

and where the bearing and down-range standard deviations of 
the geometric kernel are given by (Tn == (T(Bn) and �n == 
K(Bn). The forms of (TO and �(.) are derived from sensor 
signal processing considerations, and chosen for solution ac­
curacy/rate of convergence criteria, respectively. 

The likelihood function (4.9) yields the EMAP parameter es­
timate 

AEMAP = argm?, PX"yrljzxo(x().),Y().)IZ,XO). (4.11) 

The standard necessary conditions for the EMAP estimate 
(4.11) are found by setting the gradient of the posterior likeli­
hood (4.9) with respect to the position parameters). to zero. 

5. EMAP ALGORITHM DERIVATION AND 
STATEMENT 

A general EMAP estimation algorithm is derived in this sec­
tion using the method of EM. Familiarity with the method of 
EM is assumed. General discussions of the method are widely 
available; for a general introduction, see [2, 3,4]. For applica­
tions of the EM method specifically to Gaussian mixtures, see 
[5,6, 7]. The EMAP algorithm is derived for constant velocity 
target motion; however, the derivation is very general and is 
easily extended to more general models. 

The EMAP algorithm may be derived by discretizing the in­
tegrals in the likelihood function (4.9); however, discretiza­
tion needlessly obscures the discussion. Instead, integrals are 
retained in the following derivation. The objective of the E­
step is to define the so-called auxiliary function of the EM 
method and to simplify it if possible. The auxiliary func­
tion depends on two sets of target end-point parameter vec­
tors, N = {x�,y�,XN'YN} and A = {Xt,YI,XN,YN}, where 
N is an initial (given) estimate and), is arbitrary. The terms 
of the auxiliary function that are functions of A are, using the 
quadratic form Qn(rn; A) defined by equation (4.10), 

1 'IT()') = -2'lTMSE().), (5.1) 



where 

N Trnax(6n ,x.;:) 
WMSE(A) = L f WOn (rn; X) Qn(1"n; A) �n 

n=l Ttnin(On,X;:) 
n 
(5.2) 

is a weighted mean squared error, and where the weights in 
(5.2) are given by the (Bayesian) ratio 

exp {-Qn(�n ;>").} J... 
21'n Tn 

WOn (1" n; A') = -------''----''---�--­rrnax(9n,X�) 

J exp {-Qn(r
2
n;>")} dr., 

2rn rn 
rInin(9n,X�) 

(5.3) 

The details of this important but tedious step are given in the 
Appendix 8. The weights (5.3) are nonnegative, so it is evident 
from (5.2) that WMSE(A) is a nonnegative quadratic function 
of A. 

The objective of the M-step is to maximize the auxiliary func­
tion as a function of the parameter vector A. Let the time de­
pendent matrix H(t) be given by the 2 x 4 matrix 

H(t) = 
[ a(t) pet) 

o 0 
o 
aCt) �(t) ] (5.4) 

. (cf. Equation (3.2)). The weights (5.3) depend on the initial 
. parameter vector X, but not on A; hence, setting the gradient 
of W(A) with respect to >.. to ze.ro and solving for>.. gives the 
updated parameter estimate 

A+ == argmax W(A) == argmin WMSE(>") 
>. >. 

= (t An(On») -1 (t bn(On») , (5.5) 

where An(On) is the 4 x 4 matrix given by 

(5.6) 

and bn(On) is a vector of length 4 given by 

rrn�;x:(6n ,x;:.) 

X f WOn (rn; A') [ �1:�: ��::: ] �;.n. (5.7) 

rJTlin(@n,X�) 

It is evident that the matrices given in (5.6) have rank at most 
2, so the matrix whose inverse is required in (5.5) attains full 
rank if only if the target is observable (in the statistical sense) 
from the measured data set. Observability questions are widely 
discussed in bearings-only TMA problems, but lie outside the 
intended scope of this paper. 

The EMAP algorithm is an iteratively re-weighted linear least 
squares algorithm. Explicitly, the algorithm takes the follow­
ing recursive form: 

1. Let an == aCOn) and "'n == ",(On) for 1::; n ::;  N. 
2. Initialize the target end-point parameter 

>. (0) _ ( 0) (0) (0) (0)) 
- Xl ,YI 'XN 'YN , 

and set k = O. 

3. For k ;::: 0, define the unnormalized weight function 

4. 

( 'A(k)- {-Qn(rn;A(k)} WOn rn, - exp 21"2 ' n 

where the quadratic form is defined by (4.10). 

Compute the 3N one-dimensional integrals 

rrnin(en,X�) 

1 ::; n ::; N, f. = 1,2,3 . 

(5.8) 

(5.9) 

5. Using the integrals (5.9), compute the 4 x 4 matrix 

and the length 4 vector 

N 
b(k) == L H' (tn)A(On, O'n, "'n) 

n=1 
x _n__ n + _n__ n (d(kl(3) [ XO] d(k)(2) [ COSB ]) 

d�k)(l) y� d�)(1) sinOn . (5.11) 

6. Finally, compute the updated parameter vector 

(5.12) 

Linear least squares problems such as (5.5) are in practice best 
solved by reliable methods of numerical matrix analysis, in­
stead of using the normal equations (5.12). Details are left to 
the reader. 

6. ML ApPROACH AS THE ASYMPTOTIC LIMIT 
OFEMAP 

Laplace's method for obtaining asymptotic expansions of inte­
grals is used in this section to reveal the closc relationship be­
tween the EMAP integral representation (4.7) and the standard 
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Gaussian bearing error expression (3.4). Consider the generic letting 
Laplace-type integral 

I()") = lb e-Aq,(t) f(t) dt, (6.1) 

where ¢(t) is such that its absolute minimum on the interval 
[a, b] occurs at the point t = to, where a < to < b, ¢' (to) = 0, 
and ¢// (to) > O. It is assumed that f(t) has at least 2 and ¢(t) 
has at least 4 continuous derivatives on [a, b]. The classical 
Laplace asymptotic expression, given by 

27r -Aq,(to) (e-Aq,(tO») I()") = )..¢//(to) f(to) e + 0 )3 , (6.2) 

holds as ).. � 00. It is derived rigorously using Watson's 
lemma in [8]. Expression (6.2) is merely the first term in an 
asymptotic expansion of the integral (6.1). The next term is 
not given in [8], but can be derived following their method (af­
ter fixing a minor numerical error in a coefficient). Omitting 
the tedious details, the result is 

l' rn 
1'1 rmin(8n'X�) 
r2 rmax(8n'X�) 
X X� - X� 
Y y� -y� 
I\, I\,n = 1\,(8n) 
a an =a(8n) 
'Y 27r0'(8n)I\,(8n)c(Bn, X�) 

and by algebraically manipulating the quadratic form. The 
asymptotic form of (6.5) is sought as I\, � 0; hence, ",-2 plays 
the role of)" and a(r) plays the role of ¢(t) in (6.1). The nec­
essary condition for the minimum of a(1') is that its derivative 
be zero. The unique root of a' (r) = 0 is 

ro = x cos 8 + Y sin 8. (6.7) 

It is assumed that ro is interior to the range of integration in 
(6.5). The second order condition is also satisfied, that is, 

�a(r) 
I dr2 r=ro 

The function 

1 
------"'2 > O. 
(xcosB + ysin8) 

(6.8) 

(6.3) g(1') = _'Y_ r-l exp {_ b(r)} 
27r0'1\, 0'2 

where the coefficient C is given by 

[1 (¢/I/(tO))2 1 ¢IV(tO) ] C = f(ta) 2" ¢"(to) - 3 ¢//(to) 

f' ( ) if/// (to) f// ( ) 6 - to ¢"(to) + to· ( .4) 

These asymptotic results are applied to integrals of the form 
(4.7) and (5.9). 

The particular integrals of interest in this paper take the form 

Je(I\,) = _'Y_ {r. 1'-l exp {_ a(1') _ b(1')} dr, 27ral\, Jr1 1\,2 a2 
R. = 1, 2,3, (6.5) 

where 

a(1') � [1- XCOSB;YSinBr 

"21 [XSinB -1' YCOSB] b(r) = 
:2 

(6.6) 

The special case J1 (I\,) is equivalent to (4.7), as is seen by 

plays the role of f(t) in (6.1). Using (6.2) and the fact that 
aero) = 0 gives the asymptotic result 

27r 
I\, --+ O. (6.9) ",-2 a" (ro) , 

Substituting (6.7) and (6.8) into (6.9) and simplifying gives 

'Y 1 Je(I\,) = . fi>= l 1 y 27ra Ixcos8 + ysin81 -

-1 xsinB - ycos8 x exp 2a2 (XCOS8 + YSin8) , { 
2} '" --+ O. (6.10) 

Because (x cos8+y sin8, xsin8-y cos-B) are the coordinates 
of the point (x, y) after rotating the coordinate system by B, 

x sin B - y cos B 
(-1 (Y) 8) ---::---"--:--::- = tan tan - -

x cos 8 + y sin B x 

� tan-1 (�) - 8, (6.11) 

where the approximation in (6.11) is valid for small bearing 
measurement errors. Substituting (6.11) into (6.10) gives the 
approximation 

J ( )!:Y _,_ p(x cos 8 + ysinB) 
l"' - fi>= il y27ra IxcosB+ysinBI -

x exp {�� (B-tan-1 (�)r}. (6.12) 



For £ = 1, (6.12) is 

J1(1I:) � -"(-exp {�((J _ tan-1 (�))2}. V27ru 2u2 x 

triangulation problem. The target parameters to be estimated 
are the fixed locations>' = {x, y}. The quadratic terms Qn" == 

(6.13) Qnk(Tnk; >.) in (A.3) become 

The result (6.13) is important because it shows that the clas­
sical ML formulation of the bearings-only TMA problem is 
recovered in the limit as II: -t O. Greater accuracy may be 
sought by using the next term in the asymptotic expansion. 

Q [ x-x� -Tn"COS(Jn ]'A((J ) nk= 0 • (J n,Un,lI:n Y - Yn - Tnk sm n 

[X - x� - Tn" cos On ] X 0 • (J , Y - Yn - Tnk sm n (7.1) 

Small measurement errors are typical in applications; however, for the fixed target model. For triangulation, the matrix H(tn) 
if measurement errors are sufficiently large that the approxi- defined in (A.22) reduces to the 2 x 2 identity matrix, the ma­
mation (6.13) is inadequate, one may use the alternative den- trix (A.28) reduces to the 2 x 2 matrix 
sity 

J ) � "( , { -1 (x sin (J - Y cos (J) 2 } ll\: = -- exp -( V27ru 2u2 X cos (J + Y sin (J (6.14) 

in ilie ML formulation. The model (6.14) is closely re­
lated to the pseudo-linear approximations used for traditional 
bearings-only TMA. The earliest references to approximations 
of this type are [9] and [10]; pseudo-linear methods are dis­
cussed extensively in [II], where an extensive bibliography is 
also given. 

7. EXAMPLES 
Triangulation 

To illustrate application of the EMAP estimation algorithm of 
Section 5, consider first the example in Figure I, which shows 
the sensor moving on a fixed course of 5° at a speed of 10 knots 
(� 5.14 meters/second) toward a fixed target initially 10,000 
yards (914 4  meters) away at a bearing of 00 (recall that all an­
gles are measured counter-clockwise from ilie x axis). This is 
a classic triangulation problem in which the target parameters 
>. = {x, y} are estimated from a series of azimuthal bearing 
measurements Z = {Bn};;=l taken at times t = {tn};;=l' 
In this example, the sensor takes bearing measurements at I 

2000� 

-'-;-00.--."'-"""'-"-" -"",--�-,-",,'--=�=­
x(",) 

Figure I: Classic triangulation example. 

minute intervals on a 10 minute leg for a total of 11 measure-

(7.2) 

and the vector (A.29) reduces to the lengili 2 vector 

Figure 2 shows a plot of the likelihood function (A.2) in deci­
bels referenced to ilie maximum likelihood value for vari­
ous values of the target location parameters >.. For each n, 

2OO� ___ " 

,�f:::' ==== ------'"-__ ' i---- ""--- ->0---- -_20_ 
':L=--=== _ -5-� ===-:="-

' 

-- -1 ______ _ 

----I __ 

_200L 

Figure 2: EMAP likelihood function (dEI/max) for triangula­
tion example. 

Kn = 79 sample ranges, from 500 to 20,000 yards equis­
paced every 250 yards, were used for ilie summation in (A.2). 
The plot is generated with measurement standard deviations 
0' = uor and I\: = lI:oT (see Appendix A of [1]), with dimen­
sionless standard deviations at T = 1 meter of 0'0 = 0.0175 
and 1\;0 = 0.0873 for each bearing measurement. The value 
of Uo corresponds to a bearing standard deviation of 10. The 
values of 0' and K translate roughly to cross- and down-range 
standard deviations of 200 and 1000 yards, respectively, for a 
target 10,000 yards away. 

ments. The scatter plot of Figure 3 shows the estimation results for 
250 Monte Carlo runs of ilie EMAP algorithm. For each run, 

The E- and M-steps of the EMAP algorithm derived in the new measurements Z = {8n}��1 are generated, and the loca­
Appendix 8 are essentially unchanged for this reduced order tion parameters are initialized for a target at 15,000 yards with 

449 



450 

20oo� 
I 1500� i 
I 

1000-

500� 

-500� 

-10oor 
_1500� 

-2000� -� 
7500 8000 8600 9000 9500 10000 10500 11000 i 1500 :K(m) 

Figure 3: EMAP algorithm results for a 250 run Monte Carlo 
simulation. The EMAP and ML 90% containment ellipses are 
shown with solid and dashed lines, respectively. 

a 45° bearing. The values 0"0 = 0.0175 and 1\;0 = 0.0873 are 
used for the measurement standard deviations. An increase in 
the log-likelihood function (A.2) of less than 1 x 10-8 is used 
as the stopping criterion for the EMAP algorithm. The aver­
age number of iterations for each run is approximately 175. 
Included in the plot are the 90% containment ellipses based on 
the sample covariances of the EMAP and ML estimates, where 
the ML estimates (not plotted) are computed as described in 
Section 3. The two containment regions are indistinguishable. 
In fact, the EMAP estimates approach the ML estimates ex­
actly as the down-range variance ",2 is taken sufficiently small 
(see Section 6). 

Constant Velocity Target 
For a constant velocity target, the target parameters to 
be estimatcd are the end points of target motion, ..\. = 

{Xl, Yl, XN, YN}' Figure 4 shows the sensor moving on a fixed 
course of 5° at a speed of 10 knots on the first leg, followed by 
a fixed course of 95° at a speed of 10 knots on the second leg 
after a 1 minute simulated maneuver. The target starts 10,000 

I 2000-

------------�-----
o 1000 2000 3000 4000 5000 SODO 1000 11000 0000 

_(m) 

Figure 4: Constant velocity target example. 

yards away at a bearing of 0°, and moves with a constant speed 
of 5 knots on a 180° course. The sensor takes bearing measure­
ments at 1 minute intervals on both 10 minute legs for a total 
of 22 measurements. 

Figure 5 shows the results of a 250 run Monte Carlo simula­
tion of the EMAP algorithm for this problem using the same 
sample ranges, values for 170 and 1\;0, and stopping criterion 
used for the triangulation example. For each run, new mea-

l000� 
, 

500-

-1000-

-500� 

-1000� 

8000 

sooo 5SOO 6000 xN(m) 

(a) Final location (XN, YN). 

9000 9$00 Kl(m) 

(b) Initial location (x 1, Y 1 ). 

7000 

10000 10500 

Figure 5: EMAP algorithm results for constant velocity target 
example. The EMAP and ML 90% containment ellipses are 
shown with solid and dashed lines, respectively. 

surements Z = {8n}��1 are generated, and the location pa­
rameters are initialized for a target moving from 15,000 yards 
away at a bearing of 45°, to a position 10,000 yards away at 
a 315° bearing, both with respect to the sensor's initial posi­
tion. The average number of iterations for each run is approxi­
mately 70. The 90% containment ellipses based on the sample 
covariances of the EMAP estimates and the ML estimates (not 
plotted) are shown about the true target end points. As with 
the triangulation example, the EMAP and ML containment re­
gions are nearly equivalent. 

Figure 6 shows plots of the log-likelihood function (A.2) at 
each iteration for single runs of the EMAP algorithm for the 
constant velocity target and triangulation problems. The EM 
method guarantees that the log-likelihood will increase at each 
step_ This property is an excellent consistency check in prac­
tice. 
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Figure 6: Log-likelihood functions for constant velocity target 
and triangulation examples. 

Figure 7 shows plots of the weights {1I)Z, (rlk; X) n�l down 
the first line of bearing at several iterations for a single run of 
the EMAP algorithm for the constant velocity target example. 
These weights describe the distribution of the components in 
the mixture for the first bearing. As the iterations increase, the 
peak of this distribution moves like a "breaking wave" closer to 
the component associated with the empirical target most likely 
to have generated the measurement. On the first iteration, the 
weight associated with the largest sampling range down the 
first line of bearing is essentially equal to 1 due to the poor ini­
tialization. The remaining weights are all nearly zero, as the 
sum of all the weights must add to 1 for each bearing (cj. Equa­
tion (A.12». On the second iteration, the estimate of ,\ im­
proves, and more mixture components contribute to the PDF 
of the target. The weight scales of the second and subsequent 
plots in Figure 7 are reduced to make the weight distributions 
more pronounced. Examination of the plot in Figure 7 for the 
final iteration of one run of the EMAP algorithm reveals that 
the standard deviation of the weight distribution is approxi­
mately 1000 yards, which is roughly the value of fL for the 
target range in this example. The down-range variance speci­
fies a window over which the most significant components in 

0.1! iter=2 

i O�-B"'��-:�. -- _: ��.;"-""�,�,.�.",,,,,,"""'-'f'�-,���-=,,_ 

2000 4000 6000 8000 10000 12000 14000 
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0.2,--------�--------c 
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2000 4000 6000 8000 10000 12000 14000 18000 1 BOOO 

02�, ---------__ -----
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02--.-·---�-��--. ----� 

0.1 iler .. 10 

0.1- iter:15 

0,1' itc, .. 20 

,',-- '':-'-'�' ' �' 
BOOO " 10000 12000 14000 16000 lBOoo 

-;f:t;. .. i 

0",·",' 2OOo�--�'4fu6"""'600{)�'- 8000;--' -;,c;;;ooo;;oo--;;,�;'C�;:-'-( -l400:0:VO--ts6bo-:: �� 
02 --�------------������ 

Figure 7: Down-range weights for first bearing at several iter­
ations. 

the mixture for each bearing are averaged. 

Comments 

The above examples are generalized for a maneuvering tar­
get by treating the maneuver time as an unknown parameter, 
and estimating it between EM iterations. This extension of 
the EM method is referred to as the generalized EM, or GEM, 
method, and is discussed in [4]. Maneuver time is estimated in 
the GEM framework by conducting a one dimensional search 
on maneuver time to increase the value of the auxiliary func­
tion between iterations. That is, maneuver time is chosen to 
maximize the auxiliary function over its value at the current 
target positional estimates, rather than to maximize the auxil­
iary function over the whole parameters space simultaneously. 
It is shown in [4] that the likelihood function does not decrease 
after an iteration of GEM, and that GEM converges if the like­
lihood function is bounded above. Though this approach to 
estimating maneuver time presents no great theoretical diffi­
culties, the EMAP algorithm is more than just a simple itera­
tively re-weighted linear least squares algorithm in this case, 
and is not pursued further in this paper. 

In the above examples, no attempt was made to speed up the 
EMAP algorithm convergence rate. The same "monotone" 
simulated annealing scheme suggested in Section 4 would 
speed up convergence at the beginning of the EM iterations, 
where initial estimates may be poor due to a bad initializa­
tion. Using non-equispaced sampling ranges and decreasing 
the number of ranges would also speed up convergence. In-
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creasing the spacing down-range is justified, as the down­
range standard deviation", increases in proportion to range. 

8. SUMMARY 

Two formulations of the bearings-only TMA problem have 
been presented. One formulation is based on maximum like­
lihood, and it is classical in that it is a post-detection tracking 
approach in which measurements are conditioned on the tar­
get state. The other formulation is novel in that it is based 
on an empirical MAP method in which measurements are un­
conditionally independent because they are pre-detection mea­
surements; that is, measurements are assumed unconditionally 
independent until proven conditionally independent by a de­
tection decision. Thc EMAP approach is analogous to a GLRT 
method for simultaneous detection and track estimation. 

An algorithm for solving the bearings-only TMA problem us­
ing the EMAP formulation is derived by the method of EM. 
The general EMAP algorithm is an iteratively re-weighted lin­
ear least squares algorithm, provided the target motion model 
is linear in the target motion parameters. Thus, the EMAP 
algorithm is a linear algorithm in most cases of practical inter­
est. In the most general case, however, the EMAP algorithm is 
a nonlinear penalized least squares algorithm whose potential 
value in the application remains unexplored. 

The empirical approach leads naturally to an integral repre­
sentation of the measurement density in which uncertainty in 
range is compensated by adjusting the down-range variance 
",2 of the geometric kernel of the integrand. In effect, the 
proposed compensation averages the mixture components in 
a weighted sense over a sliding Gaussian window whose size, 
both down-range and cross-range, increases linearly with the 
down-range direction. It is shown that in the limit, as the size 
of the averaging window goes to zero, the EMAP approach is 
equivalent to the standard ML approach. 

Triangulation and constant velocity target examples are pre­
sented to illustrate application of the EMAP algorithm. The 
EMAP algorithm estimates are nearly equivalent to the ML 
algorithm estimates for a reasonably sized value of the down­
range variance ",2. The EMAP algorithm is generalized to a 
maneuvering target by using the generalized EM method to 
estimate the mancuver time between EM iterations. 

Different sensor types lead to different expressions for the ge­
ometric kernel and, hence, to different integral representations. 
For example, for linear arrays the angular measurement is con­
ical angle, not azimuthal bearing; therefore, the geometric ker­
nel generalizes to a trivariate Gaussian in (x,y,z) with one 
fixed variance corresponding to the cone angle measurement 
and two free variances. In this case, for unbounded isoveloc­
ity ocean models, the integral of the representation is over the 
surface of a cone with vertex at the acoustic center of the ar­
ray, axis along thc array, and half angle equal to the measured 
conical angle, instead of a line integral over a ray as for sim-

pIe azimuthal bearings. For bounded non-isovelocity ocean 
models, the rays comprising the locus of the cone are distorted 
by internal refraction and boundary reflections into a manifold 
whose detailed structure is determined by the acoustic propa­
gation model. Generalizing the geometric density term used 
in the EMAP formulation to other sensors with limited ob­
servability (in the statistical sense) would seem to present few 
intrinsic conceptual difficulties. 

ApPENDIX: EMAP AUXILIARY FUNCTION 
DERIVATION AND MAXIMIZATION 

The EMAP auxiliary function is derived in this appendix. The 
derivation follows closely that of the EM based algorithm de­
rived in the appendix of [7]. The EM method has two steps, 
the expectation step, or E-step, and the maximization step, or 
M-step. The E-step includes the so called "missing" data (un­
observed range measurements in this application) in the like­
lihood function, and computes the expected value of the ex­
tended log-likelihood function with respect to this data to ob­
tain the auxiliary function \Ii'. The M-step maximizes \Ii' over 
the parameters to be estimated. Successive application of these 
two steps is shown in [2, 3] to converge to a local maximum of 
the original likelihood function. 

The end-point parameters A = {Xl,Yl,XN,YN} used in the 
constant velocity motion model (3.2) are the target parameters 
to be estimated. The likelihood function of interest is defined 
by 

(At) 

(ej Equation (4.9», the product of the (independent) posterior 
PDF's on empirical target location in (4.7) for each measure­
ment (Z",X�), where X(A) = {X(A),y(A)}. The quadratic 
form Q n == Q n (Tn; A) in the argument of the exponential term 
in the integrand of (AI) is defined by the target motion model 
(3.2) and is given by (4.10). 

Though not required for application of the EM method, for the 
purpose of implementation, the integral in (AI) is approxi­
mated in this appendix by a sum over discrete values of range. 
Discretizing the continuous mixtures in the product (A.I) us­
ing equispaced intervals for each mixture gives the following 
discrete mixture representation for the likelihood function, 

(A2) 

where Tn! == Tmin(Bn'X�) and TnKn == Tmax(Bn'X�) cor­
respond to the integration limits for the n-th integral. Thus, 
the likelihood function for this problem is defined by a prod­
uct of discrete mixtures of continuous PDF's. The number 
of components in each mixture need not be the same; there 



are Kn components for measurement (Zn' X�) in (A2). The 

quadratic term Qnk == Qnk(rnk;'\) in (A2) is given by 

Qnk = [ a:(tn)X1 + j3(tn)XN - X� - rnk C?S en ]' 
a:(tn)Y1 + j3(tr.)YN - Yn - rnk sme" 

x A(en, an, K,n) 

X [ a:(tn)xJ + j3(tn)XN - x� - rnk cos en (A.3) a:(tn)Yl + j3(tn)YN - y� - rnk sin en 

(cf Equation (4.10», which can be written more compactly in 

where WZn (rnkn;..\) are the Bayesian terms in the product 

of (A9) (cf Equation (5.3». The density (A9) defines a 
discrete probability space on the missing data K; that is, 
K(KIZ,XO,X("\)) is a probability mass function (PMF) on 

the integers {I, ... , Kn} for all n. Defining the summation 
over K by the N-fold sum 

(All) 

terms of the residual vector Vnk == Vnk (r nk; ..\), the following two identities are easily obtained from (A9), 

. (A4) 

where Vnk(rnk;"\) = v(tn;..\) - vnk(rnk), the mean vector 
Vnk(rnk) is given by 

LK(KIZ,XO,x(..\)) 
K 

L IC(KIZ,XO,X("\)) 
K\ki 

1, (A.12) 

_ ( ) _ [ x� + tnk cos en ]. Vnk rnk - 0 + r . e ' Yn nk SIn n (A5) where the sum over K\ki is equivalent to (All), with the sum 

over k; omitted. 

and the vector v(tn;..\) = (x(tn; ..\), y(tn; ..\)) is given by 
the target motion model (3.2), with the parameterization on 
..\ made explicit. 

The auxiliary function of the EM method is defined by the ex­
pectation of the log of the extended likelihood function with 
respect to the missing data, conditioned on the original data 
and parameterized by a given initial estimate for the parame­
ters to be estimated. For this problem, the auxiliary function 

Let kn E {I, . .. , Kn} be thc index of the (bivariate) compo­
nent of the n-th mixture in (A2) that generated measurement 

is Zn = en. The index kn represents the "missing" data in this 

problem; it specifies exactly thc mixture component that gave 
rise to the realization of empirical target position from which 
the exact measurement Zn = On was made. The "complete" 

data set for this problem is the union of the original data set, 

Z = {Bn}�=l' and the missing data set K = {kn}�=l' 

(A6) 

If kn is known for all n, the joint conditional PDF on empirical 

target location for the complete data set is defined by 

L:(Z,K,XOIX(,,\)) = IT exp [-Qn���nkn;..\)] !-. 
n=] nkn nkn 

(A7) 

From Bayes Theorem, the PDF of K is given by 

( I 0 ( )) £(Z, K, XOIX('\)) K K Z,X ,X,\ = L:(Z, xoIX('\») . (A8) 

Substituting CA.7) and CA2) in (A8) gives the ratio of the ex­
tended and original likelihood functions, 

N 
= II wz" (rnk,,; ,\), (AlO) 

n=l 

\I1(X('\)IX('\'» 
= EK{log L:(Z,K, XOIX (A) IZ, xo, X (A')}, (A. 14) 

where the expectation is taken with respect to the missing data 
K, and N is a given initial estimate of the target parameters ,\. 
By definition of expectation, 

w(X(A)IX(A'») = L[logL:(Z,K,XOIX('\))] 
K 

X K(KIZ,XO,XP,')). (A15) 

Substituting CA7) in (A15), interchanging the summations, 
and applying the identity (A.13) gives 

w (X ('\)IX (),')) 

_ "'�l { [-Qnkn (rnkn; A)] _1 } -��og exp 22 K n=1 r nkn rnk" 
xK(KIZ, Xu, XC),')) 

� � I { [-Qnkn (rnk,,; ,\)] I } 
= � � og exp 2 2 

--
n=l k,,=1 r nkn rnk" 

X L !C(KIZ,XO,X(N)) 
K\kn 

= ttlOg{exp [-Q
n;;;nk;'\

)
] f-} 

n=lk=l nk nk 
XWZn (rnk; ..\'). (AI6) 
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Taking the logarithm in (A16) gives the auxiliary function as 
two double sums, 

w(X(A) IX(A') )  = -� t � Qnk�:nk ; A) 
WZn (rnk i A') 

n=1 k=1 nk 
N Kn 

- L L log(rnli')WZn (rn,, ; A') . (Al7) 

n=1 k=1 

The first term in (A17) (ef Equation (5.2» is the weighted 

mean squared error term WMSE(A) in the generalized auxiliary 

function (5.1); it is the only term that is a function of A, and 

the only term rel�vant to the M-step of the EM method. 

The M-stcp maximizes the auxiliary function W with respect 

to the parameters to be estimated to obtain an updated esti­

mate. Each EM step guarantees an increase in the likelihood 

function, so successive applications of EM converge to a local 

maximum. This property suggests an iterative scheme for like­

lihood function maximization, where the monotonic increase 
in the likelihood function is used as a check against implemen­

tation error, and as a stopping criteria on the maximization. 

Defining the weighted mean squared error auxiliary function 

as 

N Kn 
WMSE (X(A) IX(A')) = L L wZn (rnki A') 

n=1 k=1 
1 

x Qnk (rnk; A) -2- ' (A18) 
rnk 

the M-step becomes 

A+ == arg ma:x W (>') == arg min WMSE(A) ,  
A A 

(A19) 

where >. + are the updated parameter estimates, W(A) == 
w(X(A) IX(X» , and WMSR(>') == - w (>.) . Substituting 
(A18) in (A.19) gives 

N Kn 1 arg min L L WZn (rnk i >" )  Qn" (rnk ; A) ? 
11=1 k=1 nk 

N Kn 
argmin L L v�k (rnk i >.) A (On , O'n , /\'n) 

n=1 k=1 
_ ( ' ) WZn (rnk ; >" )  XVnk rnk ; A 2 ' rnk 

(A20) 

where the quadratic term Q nk (r nk ; >.) is written in terms of its 
components. From (A .4)-(A5) and the target motion model 
(3.2), Vnk (rnk i A) is written 

(A2l) 

where 

(ef Equation (5.4» . Differentiating WMSE(A) with respect to 

A and setting the resulting partial derivatives equal to zero 
gives a necessary condition for the minimization in (A20). 

The partial derivatives of the double sum in (A20) with re­

spect to the parameters A are given by the chain rule for vector 
derivatives [12],  

OVnk (rnk ; A) OWMSE(A) 
OA 8vnk (rnk i A) , (A .23) 

where 

(A24) 

and 

(A .25) 

Note that (A23) satisfies the sufficient condition for A+ to 

be a minimum; that is, the (Hessian) matrix of second partial 
derivatives of (A 18) with respect to A is positive definite, since 

the product of (A24) and (A .25) yields a function of >. that is 

a sum of weighted quadratics, where the normalized down­
range weights wZn (rnk i N)/r!k are all positive (see (A9)­

(A . 10» , and the precision matrix A(On , CJ n, x;n) is positive def­
inite. Substituting (A24) and (A25) in (A.23), setting the re­
sult equal to zero, and using (A2l) gives 

N Kn 

L L H'(tn)A(Bn, Un, "'n) 
n=1 k=1 

which reduces to a system of 4 linear equations in the 4 un­

known parameters A + , 

(A27) 

where 

A (Z ) - H'( ) A (O ) H( 
) 
� WZn (rnk ; N) n n = tn n , 0' n ,  "'n tn L...J r2 

and 

k=1 nk 
(A28) 

b (Z ) - H' ( ) A(O ) � - ( ) WZn (rnk ; A') 
n n == tn n, CJn, X;n L...J Vnk rnk 2 ' 

10=1 rnk 
(A .29) 

(ef Equations (5.6)-(5.7» . The linear system (A27) is eas­

(A . 22) ily solved by appropriate numerical linear algebra techniques 
(e.g. LU and QR factorizations, etc.). 



Discretization of the likelihood function (A.1) is generalized 
for non-equispaced quadratUre by inserting the factor ank for 
the width of the k-th interval of the n-th sum in the product 
CA.2), such that 

Kn 
L ank = Tmax((Jn, X�) - Tmin((Jn , X�) .  (A.30) 
k=l 

This generalization effects the definition of the extended like­
lihood function (A. 7), which must include the factor ankn 
for component kn of mixture n. In terms of maximizing the 
weighted mean squared error auxiliary function (A. 1 8), these 
extra factors only effect the weights WZn (Tnk ; ..\') defined in 
the E-step, which become 

anI< exp { �Qnk (;nk ;..\') } _1_ 

WZn (Tn" ; A' )  = { 
2Tnk ,;r (A.31)  "'\'l!n a . exp -Qn; lrn ; ;>' ...L 

L.JJ=l nJ 2r;j rnj 
for this problem (cl Equation (A. 10) and (A. 1 6» . 
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