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Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation eigenständig und ohne
fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese
Dissertation wurde bisher in dieser oder ähnlicher Form noch bei keiner anderen
Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un-
ternommen.

Düsseldorf , den . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Johannes Dröge)

Statement of authorship

I hereby certify that this dissertation is the result of my own work. No other
person’s work has been used without due acknowledgement. This dissertation
has not been submitted in the same or similar form to other institutions. I have
not previously failed a doctoral examination procedure.





Summary

Microbial communities can be found in almost every place, from biogas reactors
over deep sea vents, the surface of plant leaves and roots, to the human body,
which hosts a plethora of foreign cells in its digestion system. These communities
may consist of thousands upon thousands of microorganisms, including bacteria,
archaea, algae and fungi, which coexist within their habitats but which cannot
simply be cultivated and studied due to their complex mutual dependencies and
environmental requirements. Metagenomics is a field dedicated to the genetic
analysis of such communities. The genes of their members enable their survival,
for instance by making nutrients accessible, by neutralizing toxic compounds
or by allowing symbiosis with other organisms. Through the use of nucleotide
sequencing technologies, this genetic diversity can be explored and rendered
usable, for instance in the form of new antibiotics or as enzymes in biotechnology.
Apart from its considerable economic potential, metagenomic approaches lead
to a fundamentally improved understanding of the microbial processes on earth.
With current technology, it is not directly possible to sequence contiguous
genomes from microbial communities. Instead, short sequences, called reads,
are produced, which need to be assembled into genes and longer genome se-
quences using computer programs. Depending on the size and complexity of the
metagenome, this task can be very difficult. This thesis describes two methods
for assigning metagenomic sequences to taxonomic groups or genomes. The
results can be used to analyze the genes, and the corresponding proteins and
functions, within their phylogenetic and genetic context to gain better insight
into the functioning of individual organisms and the microbial community.
Our first method, taxator-tk, assigns nucleotide sequences from metagenomes
to corresponding taxa and approaches two challenges: the precise prediction
of taxa and the application to datasets, which are constantly growing due to
the rapid progress in DNA sequencing. Since annotation methods such as
taxator-tk, which require similarity to known genomes, spend a considerable part
of their runtime for sequence comparison, our algorithm exploits the underlying
phylogenetic structure for similar gene sequences to efficiently calculate the
taxonomic assignment. The same phylogenetic principles are used to achieve a



high assignment precision.
The second method in this thesis helps researchers to reconstruct individual
genomes. It is a statistical classification model for metagenome data, for which
we outline several direct and follow-up applications. These include classification
of nucleotide sequences to individual genomes, de-novo calculation of genome
clusters in metagenomes, in-silico sample enrichment for genomes and quality
checking of reconstructed genomes. We published the method as a software
library named MGLEX for integration into other programs to enable the efficient
use of the data for reconstructing genomes in different scenarios.
Presumably, metagenomics will continue to play an important role in microbial
research, and may partially obviate the sequencing of cloned strain genomes.
This trend is supported by the rapid development of DNA sequencing tech-
nologies, which is progressing towards faster sequencing and longer reads. The
presented methods supplement the existing set of bioinformatics tools for ac-
quiring knowledge from metagenomes. By reducing metagenomes to individual
genomes, one can apply traditional algorithms from genomics, for instance to
reconstruct metabolic pathways, and one can link data from transcriptomic
and proteomic experiments. Therefore, there is much interest in genome
reconstruction methods, like the ones presented in this thesis.



Zusammenfassung

Mikrobielle Gemeinschaften existieren praktisch überall, in Biogas-Anlagen,
heißen Quellen am Meeresgrund, auf der Oberfläche von Pflanzenblättern und
-wurzeln und auch im menschlichen Körper, welcher z. B. im Verdauungstrakt an
genetisch fremden Zellen ein Vielfaches seiner selbst beherbergt. Sie können aus
Abertausenden von Mikroorganismen, wie Bakterien, Archäen, Algen und Pilzen,
bestehen, die innerhalb ihrer Umgebung koexistieren und auf Grund ihrer kom-
plexen wechselseitigen Abhängigkeiten und speziellen Umgebungsanforderungen
nicht ohne Weiteres isoliert, kultiviert und untersucht werden können. Das Feld
der Metagenomik widmet sich der genetischen Analyse dieser Gemeinschaften.
Die Gene ihrer Mitglieder sichern ihnen das Überleben, indem sie unter anderem
Nahrung verwertbar machen, Gifte neutralisieren oder Symbiosen mit anderen
Organismen ermöglichen. Durch die Technik der Gensequenzierung kann man
diesen genetischen Reichtum untersuchen und für Anwendungen nutzbar machen,
z. B. in Form von neuen Antibiotika oder als Enzyme in der Biotechnologie.
Abgesehen von dem großen ökonomischen Potential ermöglicht die Metagenomik
ein fundamental besseres Verständnis der mikrobiologischen Prozesse auf unserer
Erde.
Auf direktem Weg können nach heutigem technischen Stand noch keine zusam-
menhängenden Genome der mikrobiellen Gemeinschaften sequenziert werden.
Vielmehr ergeben sich viele kurze DNA-Abschnitte, sogenannte Reads, die durch
Computerprogramme zu Gen- und längeren Genom-Sequenzen zusammengesetzt
werden müssen, was sich je nach Größe und Komplexität des Metagenoms als
sehr schwierig erweisen kann. Diese Doktorarbeit beschreibt zwei Methoden,
die das Ziel verfolgen, metagenomische Sequenzen bestimmten taxonomischen
Gruppen oder Genomen zuzuordnen. Dadurch können die Gene bzw. ihre zugehö-
rigen Proteine und Funktionen im phylogenetischen und genetischen Kontextes
analysieren werden, um so ein besseres Verständnis der Funktionsweise der
Organismen und der mikrobiellen Gemeinschaft zu erlangen.
Das erste Methode, taxator-tk, weist Nukleotidsequenzen aus Metagenomen
bestimmten Taxa zu und begegnet dabei zwei Herausforderungen: zum einen
der präzisen Vorhersage und zum anderen der Anwendbarkeit auf Datensätzen,



deren Größe mit dem rapiden Fortschritt der DNA-Sequenzierung stetig ansteigt.
Annotationsmethoden wie taxator-tk, die auf Ähnlichkeit zu bereits bekannten
Genomen setzen, benötigen einen beträchtlichen Teil ihrer Laufzeit für die
Berechnung der Sequenzähnlichkeiten. Daher nutzt unser Algorithmus die zu-
grunde liegende phylogenetische Struktur ähnlicher Gensequenzen zur effizienten
Berechnung einer taxonomischen Vorhersage. Durch die Anwendung der gleichen
phylogenetischen Prinzipien erreicht er eine hohe Präzision der Vorhersagen.
Die zweite in dieser Arbeit vorgestellte Methode unterstützt Forscher bei
der Rekonstruktion einzelner Genome. Es handelt sich um ein statistisches
Klassifikationsmodell für Metagenomdaten, für das zahlreiche direkte und
weitergehende Anwendungsmöglichkeiten skizziert werden. Diese umfassen die
Klassifizierung von Nukleotidsequenzen nach Genomen, die de-novo-Berechnung
von Genom-Clustern, die in-silico Anreicherung von Genomsequenzdaten
und die Qualitätskontrolle rekonstruierter Genome. Die Methode wurde als
Software-Bibliothek namens MGLEX zur Verwendung in anderen Programmen
veröffentlicht und ermöglicht dadurch eine effiziente Datenverwertung bei der
Rekonstruktion von Genomen in unterschiedlichen Situationen.
Es ist zu erwarten, dass die Metagenomik eine wichtige Rolle in der mikrobiologi-
schen Forschung spielen und zunehmend in Konkurrenz zur Genomsequenzierung
geklonter Stämme treten wird. Diese Prognose wird auch durch die rasante
Entwicklung der DNA-Sequenziertechniken getragen, die eine immer schnel-
lere Sequenzierung immer längerer Reads ermöglichen. Die hier vorgestellten
Methoden ergänzen das Repertoire vorhandener Bioinformatik-Werkzeuge zur
Gewinnung von Erkenntnissen aus Metagenomen. Die Reduzierung von Meta-
genomen auf einzelne Genome ermöglicht sowohl die Anwendung klassischer
Algorithmen der Genomik, z. B. zur Rekonstruktion von Stoffwechselpfaden,
als auch die Verknüpfung mit experimentellen Daten der Transkriptomik und
Proteomik. Daher sind Verfahren zur Rekonstruktion einzelner Genome, wie sie
in dieser Arbeit vorgestellt werden, von großem generellem Interesse.
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Chapter 1

Synopsis

1.1 Metagenomics

Metagenomics is a more recent variant of genomics which pursues medical or
ecological questions at the scale of microbial communities using nucleotide se-
quencing. In contrast to microbial genomics, which is focused on single strains
traditionally grown in lab cultures before genome sequencing, the metagenomic
approach applies direct sampling from a natural ecosystem without cultivation.
Microbes form so-called communities in their micro-environment because they in-
teract, for instance by symbiosis (e.g. sharing metabolites) or competition (e.g. for
food). Such a community may consist of hundreds or thousands of different
species, which are connected by complex interactions (Berry & Widder, 2014;
Fuhrman, Cram & Needham, 2015). It is the principal interest of microbial ecol-
ogy to understand these interaction networks, which make it difficult to isolate
and grow the organisms on culture medium because the specific cultivation con-
ditions cannot be reproduced (Riesenfeld, Schloss & Handelsman, 2004; Stewart,
2012). However, by extracting and sequencing environmental DNA directly af-
ter sampling, one can capture the genomes of all community members, although
in a highly fractional and usually incomplete form. One could say that current
metagenomics trades the species-level resolution and the completeness of very few
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genomes for a higher level view on the genes in a community. The metagenome,
a term coined in the early 2000 (Rondon et al., 2000; Riesenfeld, Schloss &
Handelsman, 2004; Tyson et al., 2004), stands for all the genes in a microbial
community. These genes determine the ecological functions of the community
members through the proteins they encode. Metagenome sequencing can thus
collect new environmental genes and discover protein functions with potential
use in medicine and biotechnology, and provides a way to understand the mi-
crobial interactions within diverse ecosystems. It has been used to study many
different environments (Figure 1.1).
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Figure 1.1: Microbial environments extracted from 10,043 publication titles (2011-
2017) positioned by cooccurence in publication titles. The articles were selected
by topic and the corresponding metadata downloaded from Europe PMC (eu-
ropepmc.org). The titles were then reduced to environment-related words and
these were grouped by the number of cooccurences using Gephi (gephi.org) with a
force-directed layout and subsequent annotation of clusters. Three major clusters
emerge, relating to aquatic environments, soil and plant biomass degradation and
(human) host-related environments.
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Early metagenomic studies have impressively demonstrated the potential of this
new approach. For instance, new antibiotics and antibiotic resistance genes were
identified (Gillespie et al., 2002; Riesenfeld, Goodman & Handelsman, 2004).
An ocean survey (Venter et al., 2004) revealed hundreds of new rhodopsin-like
genes in seawater environments (rhodopsin is an essential protein to sensing
light) among over 1.2 million novel genes. In the following, numerous micro-
environments were explored to provide a census of genes and species, many of
them previously unknown. For the various sites in and on the human body,
which represent well-studied environments due to medical applications, the re-
sulting data provided new insight into the interactions between the human host
and its so-called microbiome. For instance abnormal microbial colonization of the
gut was observed with chronic inflammation (Qin et al., 2010). Although most
investigations have focused on the bacteria, the best known domain in the micro-
bial tree of life, metagenomics has also been used to study the genes of archaea,
microscopic eukaryotes, viruses and genetic elements like plasmids (Hugenholtz &
Tyson, 2008; Cuvelier et al., 2010; Garrett et al., 2010), which helped to broaden
the view on the global genetic repertoire of life and its evolution.

1.1.1 DNA sequencing

Past and present progress in the field of metagenomics is tightly coupled to the de-
velopment of next-generation sequencing technologies (NGS). While earlier stud-
ies were based on the Sanger sequencing technology (Wommack, Bhavsar & Ravel,
2008), the underlying chemistry has been subject to many improvements, such
as the engineering of highly parallel reaction and detection procedures. This has
led to an considerable drop in overall time and cost of nucleotide sequencing
(Dröge & McHardy, 2012). The first sequencing approaches in metagenomics
targeted well studied single genes, predominantly the bacterial and archaeal gene
of the ribosomal 16S subunit (Quince, Curtis & Sloan, 2008; Hamady & Knight,
2009), which is a good taxonmic marker because it contains both conserved and
divergent regions. In this context, sequences identity thresholds were applied to
define operational taxonomic units (OTUs) as an approximate species replace-
ment. The variable regions were amplified in a polymerase chain reaction (PCR)
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before sequencing and are therefore called amplicons. Using this selective ap-
proach reduced the amount of target DNA from millions of bases per genome to
a few hundreds while giving estimates of genetic species diversity. Amplicon se-
quencing is still in use and represents a cost-effective way to study the taxonomic
composition and taxon abundances. However, it cannot be used to discover the
functional potential unless the corresponding genome sequences are available for
consideration. To target novel community genomes, universal sequencing primers
initiate sequencing at random starting positions on the DNA strands. This ap-
proach is called shotgun sequencing due to the fact that the reads are more or less
randomly scattered over the entire genome sequence. With a sufficient number
of reads, metagenomic shotgun sequencing can cover most genes and continues
to evolve together with next-generation sequencing platforms, but also with re-
spect to experimental protocols and data analysis methods. A major limitation of
current sequencing technologies is the length of the primary sequencing products
(reads). In particular, the currently dominating Illumina sequencing platform pro-
duces reads which are still much shorter than typical genes (Dröge & McHardy,
2012) so that overlapping reads are typically assembled to form longer contigu-
ous sequences (contigs) (Miller, Koren & Sutton, 2010). New technologies such
as PacBio and Oxford Nanopore sequencing yield longer reads but have larger
error rates and higher costs compared to Illumina, which limits their current use
in metagenomics (Goodwin, McPherson & McCombie, 2016).

Metagenomic studies have highlighted the advantages of metagenomic over the
traditional sequencing approach using isolated and cultured strains. The genomes
of environmental microorganisms were found to be much more genetically diverse
than those of corresponding lab strains (Tyson et al., 2004; Handelsman, 2004),
which essentially represent clones of a single cell. Researchers also become more
aware of the fact that genetic data collections are strongly biased towards taxa
which are easily grown in lab cultures and which are of medical relevance, leav-
ing many black spots in the microbial tree of life (Tyson et al., 2004; Wu et al.,
2009). Using the exploratory metagenomics approach, there is no need to narrow
the focus on certain species and to hypothesize about the role of these organisms
in their environment beforehand. The bird’s eye view on the genes helps to iden-
tify mutual dependencies, such as pathways that are connected between different
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genomes (Ponomarova & Patil, 2015), and to associate new functions and new
species. Apart from this, direct sequencing also creates new problems. Some se-
quencing platforms introduce a bias related to the nucleotide composition (Dohm
et al., 2008), which may affect the analysis. In general, it is difficult to distinguish
sequencing errors from natural genetic variation, which, in some cases, could lead
to wrong conclusions such as inflated microbial diversity estimates (Quince et
al., 2009; Kunin et al., 2010). Another problem with this sequence heterogeneity
is that longer genome sequences often fail to assemble due to the natural and
artificial nucleotide variations in the reads (Melsted & Pritchard, 2011; Pell et
al., 2012). Typical metagenome data therefore contain many incomplete genes
whose origin and functional role needs to be determined.

1.1.2 The role of computer programs

Today’s genomic data are ubiquitous and abundant due to high-throughput nu-
cleotide sequencing. Consequently, the data generation marks a starting point of
knowledge discovery, making modern metagenomics in large part a data-driven
science in which algorithms have replaced lab techniques to sort and analyze
genetic material. Metagenome data are large (because they represent many
genomes) and require extensive processing to deal with the phylogenetic and
genetic diversity in the sample. It is convenient to divide the downstream pro-
cessing of raw sequencing data into three consecutive steps which are illustrated
in Figure 1.2: (a) sequence processing specific to the sequencing platform and
often performed by proprietary software; (b) metagenome analysis and reduction
to non-redundant draft genome sequences; (c) algorithms to study the individual
genomes and how they interact. Step (a) applies not only to metagenomics but
to all sciences using nucleotide sequencing and, from a practical perspective, de-
couples downstream algorithms from the specifics of sequencing technology and
its development. The work presented in this thesis contributes to step (b), to
prepare the data for use in downstream algorithms in step (c), which are tailored
to the biological questions.

An important step following nucleotide sequencing is the assembly of overlapping
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Figure 1.2: Major steps in metagenome data processing. Typical processing
consists of three consecutive levels: (a) read processing (b) contig analysis and
binning and (c) the analysis at the genome level.

reads into longer contigs. For this, many reads must be sequenced to cover the
corresponding genome positions. In current Illumina sequencing protocols, pairs
of reads are typically linked in the experimental library preparation (Goodwin,
McPherson & McCombie, 2016) to capture their relative orientation and approx-
imate distance (insert size). This information helps to construct longer contigs,
because otherwise repetitive regions or homologous genes which are longer than
the read length cannot be distinguished if they cause loops in the assembly graph
(Ghurye, Cepeda-Espinoza & Pop, 2016). When the read coverage drops for inter-
mediate regions, the corresponding genomes also break into multiple shorter con-
tigs. Existing assemblers for isolate genome assembly, which has been available
for a long time (Sutton et al., 1995; Huang & Madan, 1999), has been adjusted to
assemble metagenomes (Ghurye, Cepeda-Espinoza & Pop, 2016). Metagenome
assemblers must cope with the natural genetic variance of strains compared to
clonal DNA and must also take into account that, due to different abundances in
the sample, the number of genome copies varies considerably among the species
or strains, resulting in a large range of read coverages. The assembly of reads for
complex communities is considered an algorithmic challenge, but often reduces
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the amount of data considerably and produces a fraction of longer contigs which
represent full or partial genes. Assembly is therefore a reasonable first step to-
wards recovering the full genome sequence of environmental microbes. In the
workflow Figure 1.2, the assembly bridges steps (a) and (b) because the input
sequencing reads have a length and error profile which is specific to the sequenc-
ing platform but the output contigs represent generic sequences with most errors
removed.

Genomic methods frequently operate on complete genome sequences, for instance
inferring functional models for specific organisms (Price, Reed & Palsson, 2004).
Gene regions are identified, their corresponding protein sequences determined and
hypothetical pathways constructed. To do similar in metagenomics, contigs are
often grouped to form hypothetical draft genomes, called genome bins. The bin-
ning process tries to reconstruct the genomes and solves a problem which, at first,
appears very similar to that of metagenome assembly. However, contig binning
is usually independent of the sequencing platform (it makes no use of sequencing
quality) and considers information which assembly programs ignore (e.g. gene
annotations). Both steps can be iterated in a feedback cycle (Figure 1.3) to im-
prove the quality of the resulting genomes (Albertsen et al., 2013). Metagenome
binning connects step (b) and (c) in Figure 1.2 because it reduces the data to in-
dividual genomes. This thesis presents algorithms related to the binning problem
which I, in collaboration with my colleagues, developed and published during my
doctoral studies.

1.1.3 Community transcriptomics, proteomics and
metabolomics

Nucleotide gene sequences can only tell about potential functions of an organ-
ism but there may be much more to discover. For instance, we are interested
in seeing genes which are actively expressed and to understand how the gene
expression is regulated within the community. The proteins, for which the genes
code, are the acting agents in any organism, so it is most important to determine
the functional role of proteins, how they interact, and which metabolites they
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assembly binning

Figure 1.3: Assembly and binning cycle for genome reconstruction in
metagenomes. Longer contigs yield better preliminary genome bins and when col-
lecting the reads within a bin, these are more specific to the genome and lead to
better assembly.

target and mediate. Corresponding experimental techniques for transcriptome,
proteome and metabolome analysis are being adapted and applied to microbial
communities (Turnbaugh & Gordon, 2008; Aguiar-Pulido et al., 2016). Such data
representing cellular activity are most informative when they can be linked to the
corresponding gene sequences and genomes so that their regulation and coupling
can be studied in detail. The genomes bins derived by metagenome binning can
form the basis to build models which can integrate information from other ex-
periments, for instance measuring the current state of a community in terms of
genome activity, micro-evolution or population dynamics.

1.2 Metagenome binning

Functional screenings of metagenomes (Ufarté, Potocki-Veronese & Laville, 2015)
aim to identify novel enzymes with biotechnological and medical applications.
Though, when studying protein-coding genes and their regulation in more detail,
it is often beneficial to look at the corresponding genomes to understand the ge-
nomic context. One way to collect cells and to retrieve a full genome sequence is
by sampling from the environment followed by cultivation and sequencing, alter-
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natively using enrichment cultures (Dong et al., 2017) or single-cell sequencing
(Woyke et al., 2009, 2010). However, it can be difficult to extract specific organ-
isms if there are hundreds or thousands of distinct species, subspecies or OTUs in
a metagenomic sample (Woyke et al., 2009, 2010; Hess et al., 2011). Furthermore,
the cultivation conditions required to produce clone libraries may be unknown,
and environmental sequencing of extracted cells with small amounts of DNA is
still in its infancy (Mende et al., 2016; Yu et al., 2017). For these reasons, in-silico
metagenomic methods provide a solid alternative. Metagenome sequence binning
is the algorithmic equivalent for reconstructing individual genomes from shotgun
metagenome sequence data. Broadly speaking, a genome bin is a set of sequences,
usually assembled contigs, which together present the sequenced part of a spe-
cific community genome. Capturing these partial genomes allows studying taxa
on the level of genes and their associated functions. Genome binning aims to
recover full genomes whereas taxonomic binning refers to the assignment of con-
tigs to broader taxonomic groups. For an extensive introduction to metagenome
binning, see the review article (Dröge & McHardy, 2012) in appendix C.

1.2.1 Binning methodology

Binning represents a machine learning procedure in which class labels (genomes
or taxa) are assigned to data points (contigs) (see Hastie, Tibshirani & Friedman
(2001) chapter 1, for a comprehensive introduction to these concepts). Most of
the different algorithmic approaches to infer genome bins are either a form of data
clustering or classification, including combinations of both approaches. Clustering
is a so-called unsupervised method, which does not directly take into account
external information like available genome sequences. The strength of clustering is
that it can group any data to explore their intrinsic structure, being able to group
contigs of genomes which have never been seen before. In contrast, classification
algorithms utilize categorized (labeled) data, for instance large genome sequence
collections, to assign sequences to genome bins. They are said to operate in a
supervised manner. By the use of prior knowledge they can be very efficient
but a major drawback is the difficulty to handle novel genomes. Clustering and
classification methods give complementary results and it is common to combine
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them, for instance classifying genome bins after clustering or initializing clusters
using classification labels (Imelfort et al., 2014).

1.2.2 Sequence information for binning

Binning methods can also be categorized by the kind of information they use.
Both clustering or classification methods for binning operate on so-called features
derived from reads or contigs. These properties inform about genome member-
ship and discriminate contigs of different genomes. Microbial genomes sequences
expose characteristic frequencies of short nucleotide motifs (Karlin, Mrazek &
Campbell, 1997) which are often used in binning and refered to as the genome or
nucleotide composition. The combined relative frequency of guanine and cytosine
(GC-content) is a simple way to represent nucleotide composition, and an evolu-
tionary trait of genomes that has long been used to characterize different species.
For instance, many Actinobacteria expose a high GC-content. Most methods,
however, use short nucleotide motifs consisting of 4 to 7 bases called k-mers
(k stands for the number of bases). Alternative formulations may use Hidden
Markow Models (HMMs) to describe nucleotide composition (Brady & Salzberg,
2009). The second major feature type for binning is read coverage, the amount
of sequencing reads for each assembled contig. Since contigs are constructed by
stacking (aligning) overlapping reads, each nucleotide position of a resulting con-
tig must be covered by at least a single read, but typically many more. Following
random shotgun sequencing with universal primers, the expected number of reads
covering a single position is approximately proportional to the genome copy num-
ber in the sequenced sample (Lander & Waterman, 1988), with a constant factor
which depends on the total sequencing effort. Thus contig coverage helps to
discriminate genomes with distinct sample abundances, but cannot differentiate
between equally abundant genomes. It is therefore desirable to generate multiple
metagenome samples of a community for which the genome copy numbers vary
differently. This way, each genome has a unique set of genome abundances. Re-
cent studies have shown that genome abundances represent a very informative
feature type to obtain genome bins for complex metagenomes, if many varying
samples are available (Albertsen et al., 2013; Alneberg et al., 2014). Sometimes,
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binning programs may also employ assembly information such as associated con-
tigs or scaffolds linked by paired reads (Lu et al., 2016), but such information, if
available, is more frequently used to assess the binning quality (Patil et al., 2011)
or to refine genome bins (Alneberg et al., 2014).

There is a specific class of homology-based classifiers, and an example of such a
method is described in Section 1.3.1. These methods employ a two-step proce-
dure, first identifying potential homologs for a contig, for instance by alignment to
reference sequences, and second determining a corresponding evolutionary neigh-
borhood. This neighborhood is usually reported by taxonomy, so that each contig
is annotated with a taxonomic path. A grouping of contigs by taxa then provides
a form of binning but higher-level taxon bins mix contigs from several genomes, if
the sample contains more than a single member of this group. Hence, taxonomic
classification using sequence similarity can only provide a partial solution to the
binning problem. However, such annotation also informs about the taxonomic
sample composition and diversity, similar to a 16S gene analysis, and may fur-
thermore be used as secondary features for clustering, for instance to initialize
genome clusters (Imelfort et al., 2014) or to train a classification model with
sample data (Gregor et al., 2016; Dong et al., 2017). The probabilistic binning
framework presented in Section 1.3.2 makes full use of taxonomic annotations
similar to the use of nucleotide composition and contig coverage.

1.2.3 Overview of binning software

Binning programs emerged and evolved together with metagenome sequencing
and assembly protocols, so that their focus changed accordingly. Recent pro-
grams for complex communities target longer contigs (1 kb or more) but some
programs were also designed to bin raw sequencing reads (Vinh et al., 2015;
Ulyantsev et al., 2016), for instance by comparison to genome sequence collections
or nucleotide composition. Since the latter is unstable for short sequences due
to low number of counts (McHardy et al., 2007), these programs are inherently
limited to simple communities and community members with related genome
sequences to compare to. Most newer binning programs with applications to
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complex metagenomes, which are listed in Table 1.1, operate on co-assembled
contigs, which are constructed using multiple sequenced samples of a microbial
community.

Table 1.1: Contig binning programs with type (taxon or genome bins), method-
ology and release dates starting from the year 2011 up to the year 2016. This is a
non-exhaustive list with rough methodology descriptions. Some programs employ
additional sequence information in post-processing procedures which may be omit-
ted here. A recent overview of binning methods can be found in (Sedlar, Kupkova
& Provaznik, 2017).

Program Type Technique
Sequence
information

Published/
updated License

PhyloPythiaS taxon Structured
Support
Vector
Machine
(SVM)

5-mers (2011)/
(2012)

proprietary

MetaWatt 3.x genome Heuristic
thresholds

4-mers,
differential
coverage

(2012)/
(2015)

AFL

CONCOCT genome Gaussian
mixture
clustering

4-mers,
differential
coverage

(2014)/
(2015)

BSD

GroopM genome Biclustering 4-mers,
differential
coverage

(2014)/
(2016)

GPL

MaxBin 2.0 genome Expectation-
Maximization
(EM)
clustering

4-mers,
differential
coverage

(2014)/
(2016)

BSD

MetaBAT genome Distance-
based
clustering

4-mers,
differential
coverage

(2015)/
(2016)

proprietary
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Program Type Technique
Sequence
information

Published/
updated License

PhyloPythiaS+ taxon Structured
Support
Vector
Machine
(SVM)

5-mers (2016)/
(2014)

proprietary

MyCC genome Stochastic
neighbor
embedding

4-mers,
differential
coverage

(2016)/
(2015)

proprietary

COCACOLA genome Gaussian
mixture
clustering

4-mers,
differential
coverage,
genome co-
alignment,
paired reads

(2016)/
(2016)

GPL

1.2.4 Binning performance considerations

Binning methods are best judged in the context of their use cases. Clearly, an
optimal binning would mean to obtain a single bin for each genome in the com-
munity. Suboptimal solutions contain either multiple smaller bins for a genome
or bins with mixed contigs of different genomes. While the objective is clear,
it is impossible to obtain perfect genomes for real metagenome data if there is
not enough information to discriminate the contigs, especially shorter ones. All
of the increasing number of binning methods typically produce suboptimal bins,
and there is no consensus in the metagenomics community on the performance
metrics for assessing the bins obtained by different methods and with different
benchmark datasets. Initiatives such as the Critical Assessment of Metagenome
Interpretation (CAMI) (Sczyrba et al., 2017) work towards establishing a com-
mon understanding to judge metagenome binning. Different views on the binning
quality are valid as this depends on downstream processing and on the specific

http://cami-challenge.org/
http://cami-challenge.org/
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research questions. For instance, the estimation of community structure might
only require the construction of precise small-sized bins whereas a hypothetical
pathway reconstruction for certain genomes might tolerate excess genes in the
corresponding genome bins and discard all of the remaining bins.

Multiple factors, such as the number and abundance of taxa, their phylogenetic
structure, availability of reference genome sequences and computing resources
have an impact on binning performance. Binning algorithms are sensitive to
the type of community, for example, taxonomic sequence classification methods
rely on external genome sequences and, as a direct consequence, suffer from the
uneven coverage of the tree of life by the reference genomes. Thus, poorly studied
environments such as a deep sea vent community are likely too exotic for classifiers
which only use public genome sequences. In contrast, communities such as the
human gut microbiota are well suited to the classification approach because there
are abundant genome data for these microbes. Another reason why binning
methods perform differently may be rigid assumptions, for instance standard
algorithm parameters which are optimized to give good results in specific scenarios
tested and intended by the authors.

The broad range of applications involving many different microbial habitats, cus-
tom experimental techniques and heterogeneous sequencing platforms makes it
difficult to define a state of the art for binning. Nonetheless, general trends can be
observed. Recent works which have presented genome bins derived from complex
metagenomes often applied clustering in concatenated and transformed feature
spaces (Imelfort et al., 2014; Alneberg et al., 2014; Kang et al., 2015; Lin & Liao,
2016), which integrate several types of features including nucleotide composition
and contig coverage for multiple samples. Nevertheless, deriving high-quality
draft genomes today still relies on manual analysis and processing of genome bins
(Albertsen et al., 2013; Eren et al., 2015).
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1.3 Methods in this thesis

1.3.1 Taxonomic annotation of metagenomes (taxator-tk)

The method article in Section 3 describes a high-performance tool for taxonomic
annotation of metagenomes using phylogenetic principles. The procedure splits
the input sequences (contigs) into smaller separate homology regions (segments),
to which it applies a newly developed realignment placement algorithm (RPA)
for taxonomic classification of these regions. This algorithm calculates pairwise
alignment scores to estimate the phylogenetic distances and simultaneously ap-
proximates a corresponding tree structure. The alignments are non-exhaustive
and are stopped once a good taxon estimate has been determined or if no phylo-
genetic signal can be found in the input. In a final merging step, the subregion
predictions are combined for the full sequence to minimize the error of the pre-
dicted taxon. The corresponding computer program taxatork-tk is implemented
in C++ and utilizes parallel computation.

Introduction

In metagenomics, we study microbial communities from natural environments
without obtaining cultures. Using sequencing followed by computational anal-
yses, we can estimate the abundances of taxa, known as taxonomic profiling,
and characterize their metabolic potentials by sorting nucleotide sequences into
genome bins (binning) and predicting proteins therein. Taxonomic profiling is
conceptually different from taxonomic binning because it only requires (partial)
genes, which are taxonomically informative, and which can be obtained using
amplicon sequencing whereas binning needs to deal with all parts of a genome.
Universal marker genes used for profiling are usually classified by phylogenetic
placement, which considers a gene reference tree of the corresponding gene as a
proxy for the species phylogeny. Random genome regions, as obtained by shot-
gun sequencing, typically lack such reference trees. Therefore, a taxonomy is
used instead and query sequences are compared to reference genomes, which are
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annotated with corresponding taxa. Such comparison can be done based on di-
rect sequence matching or based on nucleotide sequence composition, for instance
k-mers, which also allows recovering draft genomes from deep-branching lineages.
However, sequence matching by alignment is more accurate, in particular for se-
quences shorter than 1 kb. Corresponding algorithms use alignment scores and
threshold parameters to quickly determine an evolutionary neighborhood of a
query but lack a well-motivated evolutionary framework. Calculating de-novo
gene trees for every query in the metagenome is computationally too demanding
for large metagenome samples. The software taxator-tk extends the traditional
score-based approach by approximating phylogenetic gene trees using a linear
number of pairwise alignments and thereby provides more accurate taxonomic
assignments without requiring conservation threshold parameters.

Methods

The workflow for the taxonomic assignment of a query sequence consists of three
parts (Figure 1.4): (a) a local alignment search for homologs, (b) the core assign-
ment algorithm and (c) a post-processing step to merge subregion annotations.
The initial search can be run by different aligners and using different reference se-
quence collections. Based on the resulting local alignments, each query sequence
is split into distinct subregions (segments), omitting parts which have no sim-
ilarity to any reference. This step reduces the overall number of positions for
further alignments and accounts for genome arrangements. Each segment, along
with its homologous reference sequences, is processed by the core algorithm to
predict a taxon. The final merging step considers all segment predictions of a
query sequence and determines the final taxon for assignment.

The core realignment placement algorithm (RPA) (Figure 1.5) assigns a taxon Q
to a query segment q using a limited number of pairwise alignments among q and
its homologous segments obtained by local alignment to reference sequences. It
aims to identify a set of segments which form a monophyletic group or subtree
in the corresponding phylogeny. First, the most similar segment s is aligned to
the query q and all other segments in the set (pass 1). An outgroup segment o
is determined as the first sequence with distance larger than distance(s, q). The
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Figure 1.4: Workflow diagram for the taxonomic assignment of a nucleotide query
sequence with : (a) Homology search for query sequence in reference collection using
local alignment; (b) program taxator splits the query into distinct segments and
determines a taxon ID for each; (c) program binner determines a consensus taxon
ID for the entire query from the segment predictions.

taxa of all segments with distance smaller or equal to distance(s, o) are added to
the neighborhood set M. Then, all segments are aligned to the outgroup segment
o (pass 2), again adding taxa with distances smaller than distance(o, q) to M.
We assign the least common ancestor (LCA) of all taxa in M to segment q. The
segments in M form a subtree among all available segment taxa. Sometimes, if
no outgroup can be found or if the taxa in M are very diverse, the algorithm ter-
minates and the predicted taxon is the taxonomy root, meaning unassigned. The
RPA requires approximately 2n alignments, where n is the number of reference
segments.
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Results

We evaluated the performance of taxonomic assignment with taxator-tk for differ-
ent datasets: (a) 7176 16S rRNA genes, (b) simulated short sequences of length
100, 500 and 1000 bp, (c) simulated contigs for a synthetic microbial community
and two public benchmark datasets and (d) contigs of a microbial community
from cow rumen. When possible, we applied cross-validation and evaluated dif-
ferent taxonomic distances between sample and reference taxa. In all cases, the
reference data were a diverse collection of full and partial genome sequences with
taxonomic annotation. As expected, performance for 16S marker genes was best
because it contained a clear phylogenetic signal. In practice, such sequences are
best classified using phylogenetic placement because it makes use of reference phy-
logenies. The second evaluation with nucleotide sequences resembling individual
reads, which were sampled from 1729 different species, showed that precision
was high even for short sequences, but about 10% lower on average than for 16S
data. The recall increased with the length of the sequences. Therefore, it is
recommended to assemble reads prior to assignment with taxator-tk. For the val-
idation with assembled contigs, we compared our results to other state-of-the-art
assignment methods: CARMA, MEGAN, Kraken (all similarity-based) and Phy-
loPythiaS (composition-based). For the newly simulated community consisting
of 49 different species and the two benchmark datasets, taxator-tk misassigned
substantially fewer contigs at species and genus levels, resulting in a much bet-
ter precision but a reduced recall. PhyloPythiaS, a classifier based on nucleotide
composition (k-mers), had the best recall in a specific usage scenario. For the
319 Mb cow rumen dataset, taxator-tk was most consistent in assigning 2 kb sub-
sequences to taxonomic bins, which confirmed the previous results on simulated
contigs. In summary, taxator-tk also predicted the most realistic number of taxa
in the samples compared to the other programs. Considering the runtime, it
was slower than Kraken and MEGAN, due to additional computations, but faster
than CARMA due to the efficient and parallel implementation: we processed ∼
6 Gb per day using 10 CPU cores, including the initial local alignment step. The
segmentation procedure of taxator-tk accounted for a 30 % decrease of the overall
runtime and the program scaled approximately linearly with the input data size.
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Discussion

For all compared methods, the bin precision decreased with the bin size. Through-
out all validation experiments, we could show that taxator-tk was the most pre-
cise method in assigning metagenome nucleotide sequences to corresponding taxa
among the compared methods (an example shown in Figure 1.6), which also re-
sulted in the most realistic number of taxa. However, it assigned fewer data over-
all than other methods. This trade-off is a direct implication of the algorithm
design, which is tailored towards minimization of errors. Therefore, it can confi-
dently assign a core of sequences, for instance to train a model using nucleotide
composition or to estimate taxon abundances. The use of unstructured reference
data allows assigning across all domains of life, in contrast to most methods us-
ing specific gene families. From a methodological point of view, we presented an
alternative phylogenetic inference algorithm which runs in linear time with re-
spect to the number of homologs, and which applies to any nucleotide sequences
with no need to select algorithm parameters. Besides taxonomic annotation of
metagenomes, it can be applied to any DNA or RNA sequence, for instance to
detect contamination in isolate sequencing data.
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Figure 1.5: Realignment placement algorithm (RPA) for labeling a query segment
q with a taxon ID. (a) Underlying taxonomy with query taxon Q and reference
taxa A, B, C, D, O and S which is approximated by the query segment alignment.
(b) Approximate graph representing pairwise distances between the taxa. The
subgraph for clade X is highlighted. (c, d) The two alignment passes which add
segment taxa to an empty set M. Segment s is the segment with the smallest
local alignment score (distance) to q in the initial similarity search. (c) First,
all segments are aligned to segment s. The resulting distances are ordered and
the taxa with equal or smaller distances than distance(s,q) are added to M. The
outgroup segment o is the next most similar segment to s after q, with distance(o,s)
distance(s,q). (d) All segments are aligned to o. From the ranked distances, taxa
with distances smaller than distance(o,q) are also added to M. Thus, M includes all
the nearest evolutionary neighbors for the query segment q (the taxa corresponding
to segments a, b, c, d, o and s). The taxon ID assigned to q is the lowest common
ancestor of taxa in M. (e) Partially resolved segment subtree at node R, which
is implied by distances obtained in (c) and (d), where the exact position of some
segments (a, b, c and d with dashed branches) is left unresolved by the RPA
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Figure 1.6: Family-level bin precision for the simulated metagenome sample with
49 species (simArt49e). (a-c) Each family bin’s assignment precision related to
logarithmic bin size for seven cross-validation experiments with simArt49e. The
results of the single experiments were added to assess the taxonomic assignment
performance across a range of evolutionary distances between the query and the ref-
erence sequences, excluding the least abundant bins (1% of total bp). We calculated
the precision values for (a) CARMA3, (b) MEGAN4 and (c) taxator-tk, counting
assignments to lower-ranking taxa at the family level, and added a smoothed k-
nearest-neighbor estimate of the mean precision in R using wapply (width=0.3)
followed by smooth.spline (df=10). CARMA3 and MEGAN4 incorrectly identi-
fied many small taxonomic bins, substantially more than taxator-tk. (d) gives the
amount of correct, false and undetermined family-level assignments for the different
classifiers with simArt49e.
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1.3.2 A probabilistic model for genome recovery
(MGLEX)

The corresponding article in Section 4 describes a probabilistic model for use in
metagenome binning. Such likelihood models are at the core of many popular
algorithms, including sequence classification and clustering. While some models
exist as fixed parts of contig clustering programs, we developed a new modu-
lar, stand-alone and reusable model using a large set of input features. This
model is based on parameterized submodels for which maximum likelihood (ML)
parameter estimates can be inferred. Besides classification and clustering, we
demonstrate alternative applications such as sample size reduction and visualiza-
tion. The method is available as an open-source Python library and command
line program called MGLEX.

Introduction

Shotgun sequencing of a microbial community bypasses the need to obtain pure
cultures and thus enables novel insights into ecosystems, in particular for those
genomes that are inaccessible by cultivation. Since current metagenome assem-
blies are oftentimes highly fragmented, a process called binning sorts assembled
sequences (contigs) according to the underlying genomes. Various programs were
written to bin metagenomes, using different methodologies and sequence features.
These comprise classification and clustering by consideration of k-mer distribu-
tions (nucleotide composition), sequence similarity (homology) and assembly read
coverage (genome copy number). Coverage information can be very powerful for
separating genomes, if multiple samples with varying genome copies are sequenced
and co-assembled. However, with a limited number of samples, it remains diffi-
cult to reconstuct high-quality bins down to the strain level. Here, we propose
a model for metagenome binning, using probabilities to represent natural uncer-
tainty. The model aggregates explicit submodels for read coverage, nucleotide
composition and contig similarity to reference sequences (via taxonomic annota-
tion). This design incorporates knowledge about the feature generation process
in each submodel, which leads to a robust fit when few data are available. In
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contrast, other methods frequently apply a data-driven transform before clus-
tering with a single, e.g. Gaussian, model. Our implementation MGLEX does
not represent an automatic binning solution but a flexible framework for genome
recovery.

Methods

A classification model is trained to distinguish data of different classes. In prob-
abilistic modeling, training means to determine the model parameters (θ) from
example data for a set of different classes. Here, classes correspond to different
genomes which make part of a metagenome and the data to be classified are con-
tigs. Hence, we need to provide training sequences for each genome before we
can classify unknown contigs.

Let 1 ≤ i ≤ D be an index referring to D contigs resulting from a shotgun
metagenomic experiment. For the ith contig, we define a joint likelihood for
genome bin g (Equation 1.1), which is a weighted product over M independent
submodels likelihoods for the different feature types. For the kth submodel, Θk

is the corresponding parameter vector, Fi,k the feature vector of the ith contig
and αk defines the contribution of the respective submodel or feature type. β

is a free scaling parameter to adjust the smoothness of the aggregate likelihood
distribution over the genome bins (bin posterior).

L(Θg | Fi) =
(

M∏
k=1

L(Θgk | Fik)αk

)β

(1.1)

The model assumes statistical independence of the submodel features. All model
parameters are determined from training data, Θ using submodel ML estimation,
α using the inverse standard deviations of the class log-likelihood distributions
(Figure 1.7) and β by mean squared error (MSE) minimization (Figure 1.8).

We integrate different submodels L(Θk | Fi,k) according to distinct input feature
types:

• a Poisson model for absolute read coverage considering multiple samples
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Figure 1.7: Procedure for determination of αk for each submodel. The figure
shows a schematic for a single genome and two submodels. The genome’s contig
log-likelihood distribution is scaled to a standard deviation of one before adding
the term in the aggregate model.

• a Binomial model for relative read coverage considering multiple samples
• a frequency model for k-mers
• a set of layered frequency models for taxonomic annotation of contigs

The layered frequency model is an adjustment of the standard frequency model
for hierarchical labels because the taxonomy represents a tree-like structure (Fig-
ure 1.9). The listed submodels are kept simple and make feature independence
assumptions to simplify calculations.

We simulated a metagenome (400 genomes with strain heterogeneity) and created
short contigs (1 kb) to validate and demonstrate the aggregate model. Differential
abundances were produced by simulating Illumina reads (150 bp) for a primary
lognormal and three secondary abundance distributions and by mapping the re-
sulting reads to the contigs, introducing typical biases but omitting the actual
read assembly. For each genome, we obtained 300 kb of contig data and calcu-
lated the read coverage, 5-mer frequencies and taxonomic annotations as features
for the model.



1.3 Methods in this thesis 25

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

β

M
e

a
n
 s

q
u

a
re

d
 e

rr
o
r 

(e
rr

/E
rr

)
Beta parameter fitting

Training error (err)

Test error (Err)

Figure 1.8: Model training (err) and test error (Err) as a function of β for the
complete aggregate model including all submodels and feature types. The solid
curve shows the average and the colored shading the standard deviation of the
three partitions in cross-validation. The corresponding optimal values for β are
marked by black dots and vertical lines. The minimum average training error is
0.238 (β = 2.85) and test error is 0.279 at β = 1.65.

Results

Using the simulated metagenome, we applied three-fold cross-validation and
checked how well the model classified contigs to the most likely genome (ML)
with different combinations of input features. Genome abundance turned out to
be the weakest single feature type while taxonomic annotation from local align-
ment to reference genome sequences was the strongest. However, the aggregation
of submodels according to Equation 1.1 yielded better performance in all cases.
In summary, about 68% of contig pairs, which were not used for model training,
were classified to the same genome using the full set of available submodels.
Considering species-level bins, this value increased to 79%, which showed that
the model had difficulties to distinguish strains of the same species using the
differential abundance values stemming from only four samples in our simulation.
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Figure 1.9: Taxonomy stucture simplified to four levels and eight nodes. A full
taxonomy may consist of thousands of nodes. Each taxonomy level uses a frequency
model which is assumed independent of the remaining levels.

The error decreased further when applying soft (not ML) classification, fitting
the parameter β (Figure 1.8), because each contig could then belong to several
genomes with varying class posterior probability. When the model was used
to refine the genome bins from two popular automatic binning programs, the
quality (adjusted Rand index) improved for both of these programs.

We demonstrated alternative model applications besides classification. Using
the likelihood distributions in the training data, we calculated p-values, which
indicates how extreme a particular contig likelihood is with respect to the training
data. With sufficient training data (100 kb in our example), we used the p-value
to enrich a metagenome sample in-silico for a specific genome, so that irrelevant
contigs were removed and the overall sample size was reduced. On average, a
critical p-value of 2.5% led to a sample size reduction of 95%. Such a filtering
step may be useful for a more focused analysis or to apply a method with otherwise
prohibitive runtime. As a second application example, we derived a probabilistic
measure to quantify the similarity between any two genomes or genome bins. The
quantity is based on a relative mixture likelihood and may be used to cluster bins
hierarchically and to analyze the similarity structure of genome bins (Figure 1.10).
In particular, the method indicates whether the resolution of individual bins is
justified with respect to the model and contig data.
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Figure 1.10: Average linkage clustering of a random subset of 50 out of 400
genomes using probabilistic distances to analyze bin resolution. This example com-
pares the left (blue) tree, which was constructed only with nucleotide composition
and taxonomic annotations, with the right (red) tree, which uses all available fea-
tures. The tip labels were shortened to fit into the figure. The similarity axis is
scaled logarithmically to focus on values close to one. Bins which are more than
50% similar branch in the outermost ring whereas highly dissimilar bins branch
close to the center.
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Discussion

We described an aggregate likelihood model with applications in metagenome bin-
ning, for instance classification, genome enrichment and visualization. It builds
on specific submodels, each responsible for different feature types. The modular
design helps to improve the model and to compute and interpret the results. In
comparison to previous methods, we added two new submodels. The first is a
binomial model for relative differential read coverage over multiple samples to
account for systematic read mapping biases and the second is a layered frequency
model for taxonomic annotation, which allows considering external knowledge
from reference sequences for sequence binning. We also proposed a new weighting
scheme to combine the information of several submodels. The reference imple-
mentation called MGLEX in its current state lacks support for parallel computa-
tions, which will be added later. As the runtime for all submodel ML parameter
estimations and sequence classification is linear in the number of contigs, embed-
ding it into clustering algorithms such as the Expectation Maximization (EM)
or Markov Chain Monte Carlo (MCMC) algorithms is also feasible. We hope to
continue developing the open-source package MGLEX as a flexible framework for
metagenome analysis and binning, to be integrated into programs and workflows.
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1.3.3 Further works

The published methods in this thesis were validated using data simulations and
sampling from reference genome sequences. Nevertheless, their use must be shown
when applied to a variety of real metagenomes. The program taxator-tk was sub-
sequently applied in two metagenome studies in completely different settings.
For the publication by Bulgarelli et al. (2015), taxonomic profiles were gener-
ated for metagenome contigs to study complex microbial communities associated
with plant roots (rhizosphere). The taxonomic profiles where shown to be con-
sistent with profiles based on independent 16S amplicon sequencing for the same
communities. Furthermore, taxator-tk was able to discover members of clades,
for instance Archaea and Cyanobacteria, which the 16S primers seemed to have
missed in the amplification step. Such biases for the primers used to amplify
regions of the 16S gene were also independently confirmed (Eloe-Fadrosh et al.,
2016). The taxonomic profiles based on shotgun metagenome data were also not
influenced by 16S copy number variations in the corresponding genomes, unlike
the amplicon profiles. In a second study of a benzene-degrading enrichment com-
munity (Dong et al., 2017), taxator-tk was applied to derive bin-specific sequence
data to train a full model for the composition-based classifier PhyloPythiaS (Patil
et al., 2011), so that the genomes of four species could be recovered, two of them
with over 97% completeness. Thereby, we used the same logic to define the model
and to seed the genome bins with training data as in the program PhyloPythiaS+
(Gregor et al., 2016), but we replaced the homology search based on marker genes
with taxator-tk, which offered a better coverage of genomic reference for this task.
The completeness and potential contamination levels of the derived genomes were
checked independently, based on single-copy marker genes and the near-complete
genomes were then used to study benzene degradation pathways by linkage to
metabolomic experiments and to propose a benzene oxidation pathway with di-
rect sulfate reduction.

Working with metagenomic data and comparing the results of different binning
programs, for instance in (Dröge, Gregor & McHardy, 2014), we observed that
the current metagenome analysis toolbox features many programs for similar
problems giving different results. One possible explanation is that metagenomics
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is an interdisciplinary field with contributions from biotechnology, ecology and
medicine, each with a different focus on ecosystems and data (see Figure 1.1). As
a result, metagenomics lacks a systematic and cross-discipline view on software for
data processing and analysis. To improve the situation, the Critical Assessment of
Metagenomic Interpretation (CAMI) challenge (http://cami-challenge.org) com-
pared computer programs for metagenome analysis, such as metagenome assem-
bly, taxonomic profiling and genome binning. As part of my thesis work, I con-
tributed both by taking part in the conception and implementation of the binning
evaluation framework as well as by submitting taxator-tk for comparison (Sczyrba
et al., 2017).

http://cami-challenge.org/
http://cami-challenge.org/
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1.4 Summary of results

The taxonomic annotation program taxator-tk was shown to obtain very high pre-
cision on a number of synthetic and real metagenomes by applying phylogenetic
principles. It requires similar reference genome sequences to calculate a phylo-
genetic neighborhood for annotation. In its initial stage, the provided example
workflow has the option to use two different search programs, but the local aligner
is exchangeable in order to adapt to sequence data which stem from different ex-
perimental procedures. Within the core algorithm (RPA), which is based on pair-
wise alignment of partial sequences (segments), taxator-tk neither relies on exact
scores from the local aligner nor on a complete set of retrieved homologs and there
are no related parameters to be set. The RPA was recently adapted to amino acid
sequences, so that direct protein alignment can be used for the similarity search
without the need to back-translate similarity matches to the nucleotide level. For
example, some alternative local alignment programs for identification of similar
sequences have been presented lately, which claim to improve the search time by
fast protein alignment with a reduced alphabet (Zhao, Tang & Ye, 2011; Huson
& Xie, 2014; Hauswedell, Singer & Reinert, 2014; Buchfink, Xie & Huson, 2014).
Another advantage of taxator-tk is its independence of curated reference data, in
contrast to the standard procedures in phylogenetic analysis using precomputed
HMMs or gene families. This comes at the cost of an increased computation time
for de-novo phylogenetic structure detection but enables taxator-tk to be applied
in less frequent, non-standard situations, for example to analyze communities
with eukaryotic content, like algae or fungi.

The probabilistic model for metagenome binning and its software implementa-
tion MGLEX make use of many available sequence features to classify contigs
to genomes or genomes bins, and we exemplified alternative applications such as
genome enrichment and bin analysis. We could also show on benchmark data that
the application of the model improved on the results from recent automatic bin-
ning procedures, which confirmed our initial incentive to make better use of the
available data to recover individual genomes. The model itself is very generic so
that it can, in theory, also be applied to non-metagenomic datasets. We designed
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MGLEX as a subroutine for use in other software to maximize the benefits result-
ing from future improvements. It should be integrated into more user-friendly
applications for genome recovery.

In the conception stage of both methods, we considered that the algorithms scale
with large datasets and that they solve well-defined problems. As a commitment
to open science, we released the program source codes to the public and used
simple and well specified data formats wherever possible. The software ought to
be flexible enough to keep pace with the future progress both in experimental
protocols and sequencing technologies.

The two methods in this thesis extend available software for analyzing
metagenomes. From a methodological perspective, these methods cover several
algorithmic fields including sequence alignment, phylogenetics and probabilistic
modeling. Each of the articles published in the course of the thesis follows
the track to improve on the understanding of metagenomic data. While the
binning review (Dröge & McHardy, 2012), see Appendix C, gave an extensive
introduction to the different metagenome binning and analysis approaches, the
first method article in Section 3, (Dröge, Gregor & McHardy, 2014) presented
the program taxator-tk, which enables precise taxonomic annotation of entire
metagenomes by fast calculation of phylogenetic neighborhoods. The second
method article in Section 4, (Dröge, Schönhuth & McHardy, 2017) proposed a
statistical classification framework to recover genomes from shotgun-sequenced
metagenomes. Applied studies used taxator-tk and demonstrated its utility to
inform about taxonomic composition (Bulgarelli et al., 2015) and to reconstruct
near-complete genomes for a simple community (Dong et al., 2017). Finally, a
comprehensive comparison of metagenome processing software was conducted
as a challenge (Sczyrba et al., 2017) to improve on the overall interpretation of
metagenome studies.
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1.5 Conclusions and outlook

Metagenomics as a discipline has matured in the course of this thesis, with re-
gard to nucleotide sequencing, metagenome assembly and computational anal-
ysis. For instance, paired read insert libraries and long-read technologies al-
low assembling larger fractions of metagenomes. The subsequent assembly of
metagenomes, which differs from isolate genome assembly, is considered an im-
portant task and led to the development of dedicated algorithms. The inter-
est in medical applications has been continuously increasing in metagenomics
so that analyzing the human gut microbiome and its impact on human health
has become a common procedure. Several large-scale projects reflect an in-
creased interest in different areas, for instance the Human Microbiome Project
(http://hmpdacc.org), MetaHIT (http://www.metahit.eu) or the Earth Micro-
biome Project (http://www.earthmicrobiome.org), which all seek to collect data
using standardized protocols and analysis methods.

For the analysis of metagenomics data, the impact of algorithms on the overall
conclusions may not be underestimated, as most of the data is directly or indi-
rectly produced by computer programs. Each specific procedure may be sensitive
to the applied software pipeline and the results may, for example, differ in the
number and abundance of OTUs, the quality of assembled genome sequences
and the robustness to particular experimental details such as sequencing errors.
For the multitude of methods which have been developed over the past years, in-
cluding the methods presented in this thesis, it is still to determine under which
conditions they should, or should not, be applied and how they compare to other
methods which claim to solve similar problems. Therefore, in addition to de-
veloping new methods, rigorous testing is required to provide a more complete
picture of the metagenomic software landscape for the scientific community. In
the course of the CAMI initiative, we noted that software accessibility represents
an important factor, among others like code quality and program (re-)usability,
in order to enable systematic testing and reproducibility of results. Future com-
pliance of academic software with these criteria will therefore be an important
factor for a better assessment of programs and their results.

http://hmpdacc.org/
http://hmpdacc.org/
http://www.metahit.eu/
http://www.earthmicrobiome.org/
http://www.earthmicrobiome.org/
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This thesis and the methods presented here contribute to the field by providing
some base-level metagenome analysis tools. They implement new theoretical ap-
proaches and are accessible for evaluation and application as open-source. Both
taxator-tk and MGLEX are also suitable to assess the quality of metagenome as-
semblies and binning from various environments. In the near future, the aim will
be to recover high-quality genomes in an automatic way. This target may soon
be reached, not only by algorithmic improvements in metagenomics but also by
combination with new experimental techniques and further progress in sequenc-
ing technology. For instance, single-molecule sequencing can eliminate problems
in metagenome processing, which are associated with the short read length. Sin-
gle cell sequencing is another complementary technique which allows assembling
genomes from very limited numbers of microbial cells (Lasken & McLean, 2014;
Gawad, Koh & Quake, 2016), which need to be isolated but not grown in medium.
The combination of data from single-cell and metagenome sequencing can improve
genome reconstructions (Mende et al., 2016; Bremges et al., 2016).
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This chapter lists the publications to which I contributed in the course of this
thesis. My attribution to the individual works is reported as percentage estimates
(5% ranges) and a short description of the contributions.

2.1 Central publications

These are the publications of the developed methods on which this cumulative
thesis is based.

Title Taxator-tk: Precise Taxonomic Assignment of Metagenomes
by Fast Approximation of Evolutionary Neighborhoods

Journal Bioinformatics
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Authors Johannes Dröge, Ivan Gregor, Alice C. McHardy
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experiments, conducted experiments, wrote manuscript
Attribution 71% to 75%
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Authors Johannes Dröge, Alexander Schönhuth, Alice C. McHardy
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Contributions Designed method, developed software, designed

experiments, conducted experiments, wrote manuscript
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Authors Johannes Dröge, Alice C. McHardy
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Contributions Collected information, wrote manuscript
Attribution 50%

Title Structure and Function of the Bacterial Root Microbiota in
Wild and Domesticated Barley

Journal Cell Host & Microbe
Published 11 March 2015
Authors Davide Bulgarelli, Ruben Garrido-Oter, Philipp C. Münch,

Aaron Weimann, Johannes Dröge, Yao Pan, Alice C.
McHardy, Paul Schulze-Lefert
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https://doi.org/10.1093/bib/bbs031


2.2 Related publications 37

DOI 10.1016/j.chom.2015.01.011
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Attribution 1% to 5%
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Journal PeerJ
Published 8 February 2016
Authors Ivan Gregor, Johannes Dröge, Melanie Schirmer,

Christopher Quince, Alice C. McHardy
DOI 10.7717/peerj.1603
Contributions Contributed to method design, reviewed manuscript
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3.1 Abstract

3.1.1 Motivation

Metagenomics characterizes microbial communities by random shotgun sequenc-
ing of DNA isolated directly from an environment of interest. An essential step
in computational metagenome analysis is taxonomic sequence assignment, which
allows identifying the sequenced community members and reconstructing taxo-
nomic bins with sequence data for the individual taxa. For the massive datasets
generated by next-generation sequencing technologies, this cannot be performed
with de-novo phylogenetic inference methods. We describe an algorithm and the
accompanying software, taxator-tk, which performs taxonomic sequence assign-
ment by fast approximate determination of evolutionary neighbors from sequence
similarities.

3.1.2 Results

Taxator-tk was precise in its taxonomic assignment across all ranks and taxa for
a range of evolutionary distances and for short as well as for long sequences. In
addition to the taxonomic binning of metagenomes, it is well suited for profiling
microbial communities from metagenome samples because it identifies bacterial,
archaeal and eukaryotic community members without being affected by vary-
ing primer binding strengths, as in marker gene amplification, or copy number
variations of marker genes across different taxa. Taxator-tk has an efficient, par-
allelized implementation that allows the assignment of 6 Gbp of sequence data
per day on a standard multiprocessor system with ten CPU cores and microbial
RefSeq as the genomic reference data.

https://doi.org/10.1093/bioinformatics/btu745
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3.1.3 Availability

Taxator-tk source and binary program files are publicly available at http://algbio.
cs.uni-duesseldorf.de/software/.

3.2 Introduction

Metagenomics allows us to study microbial communities from natural environ-
ments without the need to obtain pure cultures of the individual member species
(Hugenholtz, 2002; Riesenfeld, Schloss & Handelsman, 2004). The shotgun se-
quencing of microbial community DNA with current techniques generates reads
that range from less than 100 to several thousand nucleotides (Dröge & McHardy,
2012; Klumpp, Fouts & Sozhamannan, 2012). By computational analyses of
metagenome sequence samples, we can estimate the abundances of different taxa
for the sampled communities, known as taxonomic profiling, characterize their
functional and metabolic potential based on the predicted proteins and resolve
the contributions of individual taxa to the latter by reconstructing “bins” of
unassembled or assembled sequences that originate from the same taxon.

A taxonomic profile of a microbial community can be inferred by either targeted
amplification and sequencing of taxonomic marker genes or from metagenome
shotgun datasets (Lindner & Renard, 2013; Sunagawa et al., 2013; Silva et
al., 2014). Most metagenome profiling methods classify reads based on prede-
fined taxon-specific (Segata et al., 2012) or “universal” marker genes (Darling
et al., 2014), or directly estimate a taxonomic profile for the underlying micro-
bial community from their k-mer composition (Koslicki, Foucart & Rosen, 2013).
Frequently used phylogenetic placement programs within such frameworks are
pplacer (Matsen, Kodner & Armbrust, 2010) or EPA/RAxML (Berger, Krompass
& Stamatakis, 2011), which both operate in a probabilistic framework to place
a query gene sequence in a pre-computed reference phylogeny of a particular
gene family. If this gene tree is an approximate representation of the respective
species tree – or reference taxonomy – this can be used to assign a taxon iden-
tifier (ID) to the query sequence (Matsen, Kodner & Armbrust, 2010; Stark et

http://algbio.cs.uni-duesseldorf.de/software/
http://algbio.cs.uni-duesseldorf.de/software/
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al., 2010). Taxon abundances are then derived from the individual read counts
or gene frequencies within each taxonomic group.

Binning methods place the sequences of a shotgun metagenome sample into bins
representing the different taxa of the sampled microbial community. If a bin rep-
resents a low-ranking taxon, such as species, then the set of reads or contigs of an
individual taxonomic bin serves as a draft-genome reconstruction for a commu-
nity member (Pope et al., 2011). Binning methods are either based on clustering
or classification. Clustering methods group sequences into bins without consider-
ation of external reference sequences or taxonomic information. Instead, bins are
inferred based on similarities in GC content, oligomer frequencies, the abundance
of genes or contig coverage within one or multiple samples (Baran & Halperin,
2012; Carr, Shen-Orr & Borenstein, 2013; Albertsen et al., 2013; Alneberg et
al., 2014), or by using a combination of these (Iverson et al., 2012). This al-
lows draft genome recovery from deep lineages for sequences of sufficient length.
Taxonomic binning, like profiling, uses the resemblance of a sequence to known
taxa in either global sequence composition or local sequence similarity to assign
a taxon ID. For the human gut microbiome, extensive genome sequencing of iso-
late cultures allowed species-level taxonomic binning for a substantial portion
(approx. 40%) of a metagenome sample (Schloissnig et al., 2013) by mapping the
reads to isolate genome sequences, which exist for many abundant species [Suna-
gawa et al. (2013). However, this procedure is not suitable for environments
in which most species are from deep-branching lineages without available refer-
ence genome sequences. Taxonomic binning of these requires more sophisticated
similarity-based or composition-based taxonomic assignment methods (McHardy
et al., 2007; Brady & Salzberg, 2011; Huson et al., 2011). Taxonomic binning
by sequence composition also allows draft genome recovery from deep-branching
lineages, based on limited amounts of sequences for the individual taxa (McHardy
et al., 2007). Composition-based programs achieve linear classification times re-
garding metagenome sample size, while similarity-based binning methods require
considerably more computational resources for sequence similarity searches in
large reference sequence collections. Programs with a focus on processing large
amounts of raw sequencing reads, such as Kraken (Wood & Salzberg, 2014), imple-
ment the fastest search strategies. Similarity-based programs are more accurate
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for the assignment of sequences shorter than 1 kbp (Patil et al., 2011).

A common aim in taxonomic profiling and taxonomic binning is the identification
of known taxa from a sample. A taxonomic profiler estimates a taxonomic abun-
dance profile for the entire sample, which can be inferred by analyzing a smaller
number of marker genes, though one needs to account for variations in gene copy
numbers for taxon-specific markers (Lindner & Renard, 2013). Taxonomic bin-
ning assigns taxon IDs to a large portion of the sample sequences for subsequent
functional and metabolic analyses of individual taxon bins. In addition, one can
generate a taxonomic profile by quantifying the assigned reads, based on read
counts or coverage for each individual bin.

From a methodological standpoint, the differences between the phylogenetic-
placement-based methods for profiling and alignment-score-based methods for
taxonomic binning and profiling, such as MEGAN (Huson et al., 2011), CARMA3
(Gerlach & Stoye, 2011) or SOrT-ITEMS (Monzoorul Haque et al., 2009) are that
the latter lack a well-motivated evolutionary framework. However, they have
the advantages of being computationally lightweight and applicable to arbitrary
genes, which is a necessity for taxonomic binning. Phylogenetic-placement-based
methods cannot currently be used for binning, because the de-novo inference of
trees for gene families on a metagenome-wide scale is computationally too de-
manding, particularly for next-generation sequencing (NGS) data.

Our taxator toolkit (taxator-tk) is a software package for the taxonomic sequence
assignment in shotgun metagenomics with applications to both profiling and bin-
ning. Conceptually, it lies between sequence similarity based programs which use
local sequence alignment scores and those using trees. Taxator-tk extends the
alignment score based approach by approximating phylogenetic gene trees and
thereby provides more accurate taxonomic assignments, without assuming uni-
versal, rank or clade-specific gene conservation levels as parameters. We improve
in terms of applicability to large data sets compared to phylogenetic methods
by assigning genomic sequences without the computationally demanding steps of
de-novo multiple sequence alignment (MSA) and tree inference. Taxator-tk deter-
mines a subset of homologs, which represent the approximate evolutionary neigh-
bors for a query sequence, by a linear number of pairwise sequence comparisons
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with regard to the number of considered homologs and then assigns a taxon ID us-
ing a reference taxonomy based on the taxonomic IDs of these neighbors. We have
furthermore reduced the run-time by limiting the analysis to distinct homology-
supported regions of the query sequence, which we termed query segmentation.
Our open-source (GPLv3) software can be applied to arbitrary nucleotide se-
quences, such as reads, contigs, scaffolds and complete genomes sequences. It
can be downloaded from http://algbio.cs.uni-duesseldorf.de/software/.

3.3 Methods

3.3.1 Taxator-tk’s workflow for taxonomic assignment

The workflow for the taxonomic assignment of a nucleotide query sequence com-
prises three stages (Figure 3.1 a–c). The first stage uses a local sequence aligner
to identify similar regions from a reference sequence collection, such as microbial
RefSeq (mRefSeq) (Sayers et al., 2009). The implemented workflows currently
use BLAST+ (Camacho et al., 2009) version 2.2.28+ using any of the blastn,
megablast or tblastx algorithms and nucleotide LAST (Frith, Hamada & Horton,
2010) version 320. Other aligners can be used via conversion to a TAB-separated
format, if found to be more appropriate. We discuss our choice of the aligner in
the Supplementary Methods (“IX. Sequence Homology Search via Local Align-
ment”). At the beginning of the taxator algorithm in stage two, overlapping
regions on the query, each defined by local alignment to a nucleotide reference
sequence, are merged into larger subsequences called segments (Supplementary
Fig. 1). These query segments are flanked by regions without similarity to any
reference data (Supplementary Fig. 2) and are not considered further. This step
reduces the overall number of positions in the following alignment computations
and improves the taxonomic assignment of queries that have undergone genome
rearrangements, resulting in a different order of these segments. The reference
sequence regions corresponding to the local alignments are extended at both sides
by the missing number of nucleotides to match to the corresponding query seg-
ment with respect to its length and we refer to these as reference segments. Each
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independent set of homologous segments is the input to the core algorithm in the
program taxator in stage two (Figure 3.1 b), which calculates independent taxon
IDs for every corresponding query segment.

(a) BLAST or LAST:
nucleotide local alignment

output: taxonomic IDs

input: query FASTA

ta
x
a
to

r-
tk

(b) taxator:
determine similarity segments

taxonomic placement

(c) binner:
binning of complete sequences

input:
query FASTA

input:
reference FASTA

input: reference
search index

Figure 3.1: Workflow diagram for the taxonomic assignment of a nucleotide query
sequence with taxator-tk. Taxonomic assignment with taxator-tk includes three
steps. (a) Homology search for query sequence in reference collection using a nu-
cleotide local alignment program. (b) Program taxator splits the query into distinct
segments and determines a taxon ID for each using the corresponding homologs. (c)
Program binner determines a taxon ID for the entire query based on the taxonomic
assignments of the individual segments.

In the third stage (Figure 3.1 c), multiple segments belonging to the same query
are considered and their IDs are combined in the program binner, to derive a con-
sensus taxon ID. The corresponding algorithm weights the individual segment
assignments by the number of identical bases to the closest reference sequence
and assigns to the entire query the taxon ID supported by the majority (default
= 70% identical bases) of weighted assignments with a minimum number of iden-
tical bases (default = 50 bp) (Supplementary Methods, “II. Consensus Binning
Algorithm”). Binner has the optional parameters minimum sequence identity
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and minimum sample abundance, but these were not applied in our analysis. If
the taxonomic information is limited or contradictory, taxator and binner assign
identifiers to higher ranking taxa in a conservative fashion to obtain the most
reliable taxonomic assignments.

3.3.2 The taxonomic assignment algorithm (taxator)

The input to the algorithm is a segment q of the original query sequence from
an (unknown) taxon Q and a set of homologous segments with known taxon
IDs. The term “segment” refers to a gap-less subsequence of either the query
or a reference sequence. Given that for the set of homologs we know the correct
underlying species tree of taxa (Figure 3.2 a), we can see that for our query taxon
Q, the closest evolutionary neighbors would be A, B and S. If we simply assign X,
the parental taxon of A, B and S, as a taxon identifier, this would be inaccurate,
as A, B and S are more closely related to each other than to Q. Instead, the
correct taxonomic assignment would be a parent of X and Q, and of at least one
additional outgroup taxon (O) in the reference tree, such that Q also becomes a
descendant of the identified parent (R in Figure 3.2 a). If we therefore identify
the taxa A, B, S and O in the reference tree, we can determine the taxon ID of R
as the lowest common ancestor (LCA) of these taxa and assign it to Q (and q).

Assuming that the underlying segment tree for a set of homologs is similar to
the species tree, a natural procedure to identify the segments corresponding to
the leaf taxa within R among the homologs would be to construct a MSA for the
segment and a phylogenetic tree with a corresponding subtree as in Figure 3.2 a.
However, the computational effort for this approach is superlinear with respect
to the number of homologs being compared and substantial for all the query seg-
ments in a large sample, even using fast techniques for MSA construction and
tree inference. The taxator algorithm attempts to identify these segments with
a linear number of pairwise segment comparisons. Let us consider an undirected
graph in which nodes represent the segments (tree leaves) and edge lengths the
evolutionary distances between pairs of segments within the underlying tree (Fig-
ure 3.2 b). In this graph, a monophyletic group in the species tree is a subgraph.
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For all pairs of subgraph nodes, the following inequality is true, given that the
segments have evolved with a constant rate of evolution (i.e. the segment tree is
ultrametric): The distance between any two subgraph nodes is smaller than that
to any other node outside the subgraph. The relationship becomes clearer when
thinking of the evolutionary distance between two nodes as the divergence time
from their most recent ancestor. Members of a monophyletic group derive from
a single common ancestor and thus there is a maximum distance for all possible
pairs. If one member’s distance to an outside node is smaller than this maximum,
both must share a more recent common ancestor and the corresponding group is
not monophyletic by definition. The stated inequality can be used to augment
an incomplete group or corresponding subgraph iteratively by taking an internal
distance, ideally close to the maximum, as a threshold and adding outside nodes
to the group which have a smaller distance to some internal node.

In this manner, taxator-tk searches for the leaf node taxa of clade R among all
segments based on a linear number of sequence comparisons between the input
segments and adds them to an empty working set M:

0. A ranking by alignment scores from the input local alignments is used at
the beginning to identify the reference segment s that is most similar to the
query q. The working set M is then augmented in two passes:

1. In the first pass, all segments are aligned to s using fast nucleotide alignment
and the edit distance. These scores in the following serve to approximate the
evolutionary distances in the underlying segment phylogeny. All segment
taxa with a distance less than or equal to the threshold distance(s,q) are
added to M (Figure 3.2 c).

2. The outgroup segment o is determined as the first segment for which dis-
tance(s,o) is larger than distance(s,q). In the second pass, all segments are
then aligned to o and segment taxa with distances smaller than or equal to
distance(o,q) are added to M as well (Figure 3.2 d).

This procedure requires approximately 2n alignments, where n is the number of
reference segments.
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3. The resulting set M of taxa (implicit in the partially resolved tree in Fig-
ure 3.2 e) is used to determine the taxon ID for q, corresponding to the
LCA of these taxa in a reference taxonomy, such as the NCBI taxonomy.

If no outgroup could be determined or if M is so diverse that the LCA corresponds
to the taxonomy root, q is left unassigned. The algorithm requires at least two
homologous segments (s and o) to determine a meaningful taxon ID. The taxa in
M become more diverse if the alignment scores are inaccurate ultrametric distance
estimates, if the species subtree’s topology deviates from the respective part of the
taxonomy or if the gene tree’s topology deviates from the species tree, for instance
due to varying rates of evolution or the inclusion of non-homologous segments in
the analysis. The robustness of the algorithm in avoiding incorrect assignments
under these circumstances relies on the number of taxa in M and the subsequent
LCA operation. Further details relating to the robustness of the implementation
are given in the Supplementary Methods, “I. Taxonomic Assignment of Sequence
Segments”.

3.3.3 Evaluation procedures

Before evaluating any method, we removed the smallest predicted bins (1%) as
likely errors. We used the macro-precision and macro-recall as measures of as-
signment performance (Supplementary Methods, “Performance measures”). The
macro-precision specifies the fraction of correct assignments per predicted bin
(precision), averaged over all such bins, while the macro-recall measures the frac-
tion of correctly recovered sequence data per truly existing bin (recall), averaged
over all such bins. To account for strong differences in bin size, we also pooled
the species, genus and family assignments, and reported the overall precision for
these ranks as the total fraction of correct assignments. We tested the assign-
ment performance of different methods using three simulated short read datasets,
simulated 16S rRNA data, three simulated metagenome contig datasets and us-
ing assembled cow rumen metagenome contigs. For every simulated dataset,
we performed seven cross-validation experiments (Supplementary Methods, “VII.
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Cross-validation”). In each experiment, we simulated a specific minimum taxo-
nomic distance between a query sequence and the reference sequences. For the
first experiment, all reference data, including the species genome data from which
the query had been sampled, were made available to the method for assigning
a single query sequence as an idealized test case. In the other six scenarios, all
reference data belonging to the species, genus, family, order, class or phylum
of the query sequence, respectively, were made inaccessible for the method in
leave-one-taxon-out cross-validation experiments. We summarized the sequence
assignments from these experiments to characterize a method’s assignment per-
formance across the entire range of taxonomic distances. For evaluation with the
cow rumen metagenome sample, for which no true taxonomic labels were known,
we divided the assembled contigs into multiple sequence “chunks” and character-
ized the consistency of taxonomic assignments for chunks originating from same
contig (Supplementary Methods, “VIII. Consistency Analysis”).

3.4 Results

3.4.1 Evaluation with unassembled data

We first evaluated the performance of taxator-tk for classification of the most
widely used taxonomic marker in bacterial diversity studies – the 16S rRNA gene
(Supplementary Material, Supplementary Fig. 3). This served as a proof of
concept, as taxator-tk classifies arbitrary sequence regions including taxonomic
marker genes. We did not expect it to perform better than sophisticated phyloge-
netic models for this task, but wanted to confirm a satisfactory performance. The
macro-precision for the taxonomic assignment of 7176 16S rRNA genes (Supple-
mentary Fig. 4) was constantly above 92% (Supplementary Fig. 3a) in the com-
bined cross-validation (Methods), using the whole-genome reference sequences in
mRefSeq47 (Supplementary Fig. 5), not just the 16S genes. More precisely, the
average error rate per bin (one minus precision) was 7.4% at the species level and
4.6% at the order level.

Next, we simulated 100,000 reads at 100, 500 and 1000 bp by subsampling ran-
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domly from 1729 species in mRefSeq47 and evaluated taxator-tk with these three
datasets using the (combined) cross-validation experiments. The performance
was very similar for the different fragment sizes (Supplementary Fig. 6-8a). Over-
all, taxator-tk showed high precision in simulated read assignment: The macro-
precision for all short read lengths remained above 74% and was 82–99% for the
genus to kingdom ranks, about 10% lower on average than for the 16S data. This
was still good for the assignment of short sequence fragments from arbitrary ge-
nomic regions compared to a marker gene. At genus level, the macro-recall was
19–23% (~33% genera recovered) if genome sequences of the same species as the
query sequence were provided in the reference (Supplementary Fig. 6-8b) and as
low as 5–7% (~16% genera recovered) otherwise (Supplementary Fig. 6-8c). The
macro-recall depends on the availability of related reference data at the respective
ranks. It decreases when removing reference data for cross-validation. For exam-
ple, if all reference data at genus level are removed, then no correct assignments
to the genus rank are possible. For lower taxonomic ranks, the macro-recall was
also low due to the large number of sample taxa and their uneven representa-
tion caused by the taxonomic bias towards a few abundant phyla in mRefSeq47.
The longer reads had a slightly higher macro-recall than the shorter ones. Since
longer sequences yield better recall and because overlapping reads contain re-
dundant information, leading to more alignment computations, we recommend
applying taxator-tk to (partially) assembled data. For longer query sequences, we
were more likely to find segments for processing and therefore to assign a larger
portion of the sample.

3.4.2 Evaluation with simulated metagenome contigs

For our tests on three simulated contig samples, we compared taxator-tk to
CARMA3 and MEGAN4/5 using the same taxonomy and the same nucleotide
alignments against mRefSeq54 (Supplementary Fig. 9). Additionally, we ap-
plied these three methods to two datasets using protein-level alignments which
we inferred using BLAST+/tblastx. When doing so, we used the programs rec-
ommended parameter settings (Supplementary Methods, “X. Program Parame-
ters and Versions”) and cross-validation, as before (Supplementary Methods, “V.
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Cross-validation”).

We created a simulated NGS metagenome dataset (simArt49e, composition in
Supplementary Fig. 10) for our evaluation. This sample includes 49 equally
abundant species (51 strains) and was created by Illumina paired read simula-
tion with pIRS (Hu et al., 2012), followed by SOAPdenovo version 1.05 (Luo
et al., 2012) assembly. Around 160 Mbp or 267,178 contigs remained after re-
moval of 0.03% chimeric sequences. In the combined cross-validation with this
dataset (Supplementary Fig. 11–13a), taxator-tk produced substantially fewer
errors: Sequence assignments to species, genus and family were 91% correct for
taxator-tk, compared to 52% for CARMA3 and 59% for MEGAN4. Accordingly,
taxator-tk showed the highest macro-precision of all methods, e.g. 61% at the
species level, compared to 3% (CARMA3) and 5% (MEGAN4). The low macro-
precision observed for CARMA3 and MEGAN4 is largely due to the prediction
of many small bins with many false assignments (Supplementary Methods, “V.
Performance Measures”). The majority of assignments were to Bacteria, Archaea,
or undetermined in the case of CARMA3, because we restricted the availability
of similar reference sequences in each of the individual cross-validations, which
we then jointly assessed.

When only the sequences from the corresponding species and genus were removed
from the reference (new genus scenario, Supplementary Fig. 11–13d), taxator-tk
was also the most precise, though it had a lower recall than the other meth-
ods (taxator-tk: 56% family macro-precision, 60% overall precision for species
to family, 10% family macro-recall; CARMA3: 13%, 27% and 20%; MEGAN4:
22%, 27% and 31%). Differences in assignment precision were also evident in
the number of predicted taxon bins: For instance, when simulating novel fam-
ilies (Supplementary Fig. 11–13e), many more species bins were predicted by
CARMA3 (1672) and MEGAN4 (824) than by taxator-tk (65), with 49 species
being present in the sample. Similarly, MEGAN4 predicted 69 orders, CARMA3
81 and taxator-tk 27, compared to the existing 32 orders in simArt49e (Figure 3.3).
Overall, taxonomic assignments of taxator-tk were more rarely to false taxa at low
ranks than with the other methods, and instead were to higher-ranking correct
taxa. The other two methods assigned a substantial amount of sequence data in-
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correctly to bins at the family level or below. This can be seriously misleading if
the results were to be used to estimate species diversity or to reconstruct genomes.
Therefore, taxator-tk is better suited for taxonomic profiling in addition to its
primary task – the recovery of individual taxonomic sequence bins from shotgun
datasets.

To investigate the reason for the observed differences between overall and macro-
precision, which reflect variations in assignment precision for bins of different
sizes, we plotted the per-bin precision at the family level in the combined cross-
validation, as a function of predicted bin size with a k-nearest-neighbor (kNN)
estimate of macro-precision (Figure 3.4; see Supplementary Fig. 14 for all ranks).
Overall, the bins predicted by taxator-tk were smaller, more precise and much
more likely to represent truly existing taxa than those predicted by the other pro-
grams although larger bins tended to be more accurate for all methods. CARMA3
and MEGAN4 predicted a substantial number of mostly smaller-sized incorrect
bins. Although the size-dependent kNN precision curves at large bin sizes is
unaffected by these small bins, the curves remained below 70% (CARMA3) or
80% (MEGAN4), whereas the taxator-tk curve reached almost 100%. For the
smallest bins, taxator-tk’s kNN precision was ~20% whereas bins below 500 kbp
for CARMA3 and MEGAN4 were practically indistinguishable from noise. This
shows that the high macro-precision with taxator-tk is not only due to a lower
frequency of falsely predicted bins, but also due to a substantially higher precision
for the large bins.

Next, we performed cross-validation on the FAMeS (Mavromatis et al., 2007)
SimMC/AMD (~17 Mbp/7307 contigs) and SimHC/soil (~17 Mbp/7307 contigs)
simulated metagenome datasets. These contigs were assembled from simulated
Sanger (not NGS) reads and represent considerably smaller samples than those
which are generated with the current NGS technologies (Dröge & McHardy, 2012).
We also measured the methods’ performance on these data for a direct comparison
to previous works. As before, taxator-tk had the highest macro-precision and
the most realistic number of predicted taxon bins (Supplementary Fig. 15, 16;
Supplementary Methods “XII. FAMeS Cross-validation”).

For the contig assignments of the composition-based program PhyloPythiaS



3.4 Results 55

(Patil et al., 2011), we could not apply cross-validation, due to the computational
effort of training many models. Therefore we adopted the published evaluation
scenario from (Patil et al., 2011), in which all genome sequences of the SimMC
genera were removed from the reference genome sequence before classifying the
contigs. All programs were provided with the remaining sequenced genomes
and an additional 100 kbp of reference data for each of the three dominant
strains. The latter could be used by PhyloPythiaS to infer a corresponding
species model, but were less helpful for the similarity-based classifiers. We
generated assignments with taxator-tk, CARMA3 and MEGAN4/5 under
equivalent conditions, once with nucleotide and once separately with protein
local alignments, and compared them to both Kraken and the published Phy-
loPythiaS assignments (Supplementary Fig. 21). The performance and error
distributions for the similarity-based programs (Supplementary Fig. 21c-d) were
consistent with our previous evaluations with SimMC. MEGAN4 and MEGAN5
produced almost identical results. Using protein local alignments, we observed
a moderate increase in overall species to family precision for MEGAN5 and
CARMA3, while taxator-tk improved in macro-recall. Notably, taxator-tk
showed the best macro-precision of all similarity-based programs and all ranks,
regardless of which alignment kind was used. Kraken produced most errors and
the lowest macro-precision, because it assigned almost exclusively at species
level. This would make it generally unsuitable in situations where sequences of
closely related genomes are unavailable. However, it had a comparatively high
macro-recall up to the order level.

Assignment with PhyloPythiaS showed that composition-based classification,
when supplied with limited amounts of additional training data from the relevant
species, correctly assigned most data at the genus and family levels (species as-
signments were not assessed in the original publication), which were either rarely
assigned by taxator-tk or mostly incorrectly assigned by CARMA3, MEGAN
and Kraken. However, PhyloPythiaS predicted only 6 families compared to 29
underlying families, versus 43 (Kraken), 14/18 (taxator-tk), 50/32 (CARMA3)
and 17/18 (MEGAN5) with nucleotide or protein alignments, respectively. Phy-
loPythiaS had the highest macro-recall. The macro-precision (~50% for genus,
family and order level) was also higher than for Kraken (~4-13%), MEGAN (~7–
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31%) or CARMA3 (~7–48%) but less than for taxator-tk (~32–68%). However,
unlike for the other programs, the modeled taxa for PhyloPythiaS should be
specified a priori to achieve optimal performance. It is therefore best applied
when the taxonomic composition of a microbial community has already been
determined and sufficient training data are available for the identified taxa.

3.4.3 Evaluation with real metagenome contigs

For microbial communities in many environments, only distantly related reference
genome sequences are available. We analyzed a medium complex metagenome
sample of such a microbial community from cow rumen (Hess et al., 2011) with
taxator-tk, CARMA3, MEGAN4/5 and PhyloPythiaS (the general model with
the 100 most abundant species among sequenced prokaryotes). We considered
scaffolds to be less reliable than contigs, which we reconstructed by splitting the
available scaffolds at gaps of more than 200 positions (A. Sczyrba, personal com-
munication). We subsequently divided contigs longer than 10 kbp into sequence
“chunks” of 2 kbp, resulting in a 319 Mbp dataset, which we used to assess the
assignment consistency for chunks originating from the same contig. The chunk
sequences were assigned with taxator-tk, CARMA3, MEGAN (given identical nu-
cleotide/protein alignments), Kraken and PhyloPythiaS. As the standard of truth
for each contig, we determined the taxon minimizing the inconsistency between
all corresponding chunk assignments (Gregor et al., 2014, unpublished) for each
method independently. A chunk assignment was considered consistent, if it was
to the same taxon as the one for entire contig, and inconsistent otherwise. The
consistency of a taxonomic bin is the fraction of chunk sequences with matching
contig assignments and the macro-consistency is the consistency averaged over
all predicted taxa, similar to the macro-precision.

In agreement with the results for the simulated metagenome datasets, the taxator-
tk results were the most consistent among all tested methods, regardless of the
alignment type (Supplementary Fig. 22): 76–89% macro-consistency at species to
order level, in comparison to MEGAN (34–40%), CARMA (0-55%), Kraken (32–
35%) and PhyloPythiaS (56–65%). The overall consistency (analogous to overall
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precision) for species to family levels was 97/97% with taxator-tk, 39/48% with
CARMA3, 62/64% with MEGAN (nucleotide/protein-level), 42% with Kraken
and 82% with PhyloPythiaS. Likewise, taxator-tk assigned less data at species to
family level, with a total of 13/12 Mbp being consistent compared to CARMA3
(8/26 Mbp), MEGAN (42/47 Mbp), Kraken (19 Mbp) or PhyloPythiaS (14 Mbp).
The different methods again determined different numbers of taxa: CARMA3 pre-
dicted 572/611 genera with a macro-consistency of 53/31%, MEGAN 264/203 gen-
era (34/37%), Kraken 661 (32%), PhyloPythiaS 33 (63%) and taxator-tk found
110/27 genera (76/81%). The high consistency values observed for taxator-tk
indicate that it is a precise taxonomic classifier for real metagenomic contigs.

3.4.4 Run-time analyses

The run-time for the taxonomic metagenome assignment was measured as the
time to find homologs and to assign taxon IDs to all sequences. We evaluated
the run-times of all methods using the same set of alignments generated with
either BLAST or LAST. Thus the run-time for the initial similarity search was
identical for all methods. We determined the time for the taxonomic assignment
of simArt49e for all methods when performing a cross-validation with families
present in the test dataset removed from the reference data (Figure 3.3). This
took two minutes with Kraken (single CPU core and ~100 GiB RAM), one hour
for MEGAN4 (interactive mode), 6 hours for taxator-tk (~10 CPU cores) and
almost a week for CARMA3 (~20 CPU cores). The parallelization of taxator-tk
led to a linear decrease in time with the number of CPU cores for up to 15 cores,
which became sublinear for 20 cores or more (Supplementary Fig. 23). To provide
a more specific estimate of the throughput of taxator-tk, we aligned ~1 Gbp of
cow rumen sequence data with BLAST against mRefSeq54 and assigned the data
with taxator-tk on 10 CPU cores (AMD Opteron 6386 SE). We measured an
average throughput of 5.9 Gbp per day for the combined alignment and taxonomic
assignment steps with this dataset. We also determined how our implementation
scaled for increasing input sequence lengths and reference exclusion scenarios
(Supplementary Fig. 24a). The run-time scaled approximately linearly except
when the same or very similar species were among the reference genome sequences.



58 CHAPTER 3. TAXATOR-TK : PRECISE TAXONOMIC
ASSIGNMENT OF METAGENOMES BY FAST APPROXIMATION OF
EVOLUTIONARY NEIGHBORHOODS

In general, the greater the number of similar sequences in the reference data, the
longer taxator-tk’s run-time was for the alignment of longer sequence stretches
with more homologs. Simultaneously, we investigated the impact of the query
segmentation on taxator-tk’s run-time (Supplementary Fig. 24b) and found that
it reduced the total run-time by up to 30%.

3.5 Discussion

Taxator-tk is a taxonomic assignment software package which generates very pre-
cise taxonomic assignments with few errors for metagenome shotgun sequences.
To provide a fair comparison, we invested extensive effort into ensuring that
we evaluated all methods under identical conditions with the same reference se-
quences, test datasets and background taxonomies, using their recommended set-
tings. We evaluated taxator-tk on 16S gene sequences, on simulated short reads,
with simulated assembled contigs and with 2 kbp contig fragments from a real
cow rumen metagenome. For each simulated sample, we evaluated a wide range of
evolutionary distances between the query and reference sequences using leave-one-
taxon-out cross-validation. Taxator-tk was the most precise of all tested methods
with the most realistic number of identified taxa overall. This property was very
pronounced for lower taxonomic ranks from species to family level. However,
taxator-tk assigned fewer data overall than other methods from species to fam-
ily. For the small assembled SimMC dataset, it assigned fewer data, particularly
in comparison to the composition-based classifier PhyloPythiaS, when 100 kbp
of data were provided for individual community members to train species-level
models. For the real cow rumen dataset, taxator-tk was the most consistent in
terms of classifying multiple pieces of one contig. Our results consistently indicate
that taxator-tk’s strength is its high precision of assignments, which allows us to
confidently assign a core of sample sequences and thereby to infer the taxonomic
composition of the community. In comparison to assignments based on marker
genes, it has the advantages that it makes assignments across all domains of life
and that corresponding abundance estimates from shotgun sequences are less af-
fected by copy number variations of individual genes. Such shotgun estimates are
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also unaffected by PCR primer amplification biases, unlike marker gene sequenc-
ing techniques, and do not require high-quality reference gene phylogenies for
marker genes. We confirmed this by in depth analysis of six 15 Gbp shotgun sam-
ples from the barley rhizosphere, where we applied taxator-tk to characterize the
taxonomic composition of Bacteria, Archaea and Eukaryotes, which correlated
with results from 16S rRNA profiling and showed the most notable deviations for
taxa known to be affected by primer biases or having multiple copies of the 16S
rRNA gene (Bulgarelli et al., unpublished). To target draft genome reconstruc-
tions, the data assigned to individual taxonomic bins by taxator-tk can be used as
training data for complementary approaches, such as composition-based methods,
or as independent information in combination with recently proposed clustering
methods using the abundance of genes or contigs across multiple samples.

From a methodological point of view, we have introduced a method for the fast
approximation of the evolutionary neighborhood of a query sequence with a run-
time that increases linearly with the number of homologs. In de-novo phylogenetic
inference methods, the run-time increases at least log-linearly with the number
of homologs or they rely on time-consuming optimizations of parameter-rich phy-
logenetic models, which generates excessive computational requirements for the
analysis of Gbp-sized NGS samples. Our software provides an easy to use and
scalable alternative to taxonomic classification of marker genes that is applicable
to any nucleotide fragment. Unlike other similarity-based taxonomic classifiers
for shotgun data, our algorithm handles different degrees of sequence conserva-
tion without preset or user-specified parameters such as alignment scores (overall
or per gene family) and without being restricted to the analysis of a number of
high-quality homologs with a minimal length. At the same time, the inferred evo-
lutionary neighborhood is extended by the identification of an outgroup, leading
to more precise taxonomic assignments, while regions without detectable taxo-
nomic signal are instantly discarded. We post-process independent taxonomic
assignments of query segments to infer an assignment for the entire query and do
this using a majority vote algorithm with a few robust default parameters. This
computationally lightweight step can be quickly repeated with other values for the
majority and minimum support parameters, if required. In addition to the algo-
rithmic considerations and other run-time optimizations, we implemented query
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sequence segmentation and program parallelization, which allow large-scale data
analysis with a throughput of several Gbs per day on a standard multiprocessor
system.

The program’s scope is also not limited to the taxonomic assignment of
metagenomes: It can be applied to any DNA or RNA sequence. For instance,
another successful in-house application is the detection of contaminations in
isolate sequencing data. Furthermore, the program taxator within taxator-tk
provides taxonomic information for individual query segments (Supplementary
Fig. 2, 25), which could be used to identify assembly errors or regions acquired
by lateral gene transfer.
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Figure 3.2: Algorithm for taxonomic labeling of query segments (realignment
placement algorithm/RPA). The RPA assigns a taxon ID to a query segment q. (a)
Species reference tree with query taxon Q and reference taxa A, B, C, D, O and S.
This will be approximated by the segment phylogenetic tree for the query segment
and homologous segments of reference taxa. (b) Approximate graph representing
pairwise distances between the taxa. The subgraph for clade X is highlighted.
(c,d) Show the two alignment passes which add segment taxa to an (empty) set
M. Segment s is the segment with the smallest local alignment score (distance) to
q in the initial similarity search. (c) First, all segments are aligned to segment s.
The resulting distances are ordered and the taxa with equal or smaller distances
than distance(s,q) are added to M. The outgroup segment, here o, is the next most
similar segment to s after q, with distance(o,s) > distance(s,q). (d) All segments
are aligned to o. From the ranked distances, taxa with distances smaller than
distance(o,q) are also added to M. Thus, M includes all the nearest evolutionary
neighbors for the query segment q (the taxa corresponding to segments a, b, c, d, o,
s). The taxon ID then assigned to q is the lowest common ancestor in the reference
species tree (reference taxonomy) of these taxa in M. (e) Partially resolved segment
subtree at node R that is implied by distances obtained in (c) and (d), where the
exact position of some segments (a, b, c, d; dashed branches) is left unresolved by
the RPA.
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Figure 3.3: Comparison of three classifiers for a novel-family simulation using a
simulated metagenome sample (simArt49e) with 49 species. CARMA3, MEGAN4
and taxator-tk: The outer ring with red background shading shows family-level
assignments for all orders included in the simulated data set. These are all false
in the chosen evaluation scenario, as no data from the families of the query se-
quences were included in the reference collection in the leave-one-taxon-out cross-
validation experiments. Clearly, taxator-tk had the fewest assignments at family
level, demonstrating its high precision in assignments. Assignments at inner rings,
grey background shading, can be correct in principle, demonstrating at which taxo-
nomic ranks the different methods tend to make their assignments, with taxator-tk
tending towards producing higher-ranking assignments, as a trade-off for the high
precision.
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Figure 3.4: Family-level bin precision for the simulated metagenome sample with
49 species (simArt49e). (a-c) Each family bin’s assignment precision related to
logarithmic bin size for seven cross-validation experiments with simArt49e. The
results of the single experiments were added to assess the taxonomic assignment
performance across a range of evolutionary distances between the query and the ref-
erence sequences, excluding the least abundant bins (1% of total bp). We calculated
the precision values for (a) CARMA3, (b) MEGAN4 and (c) taxator-tk, counting
assignments to lower-ranking taxa at the family level, and added a smoothed k-
nearest-neighbor estimate of the mean precision in R using wapply (width=0.3)
followed by smooth.spline (df=10). CARMA3 and MEGAN4 incorrectly identi-
fied many small taxonomic bins, substantially more than taxator-tk. (d) gives the
amount of correct, false and undetermined family-level assignments for the different
classifiers with simArt49e.
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Recovering their genomes is a crucial, but very challenging step, due to the
complexity of the underlying biological system and technical factors. Microbial
communities are heterogeneous, with oftentimes hundreds of present genomes
deriving from different species or strains, all at varying abundances and with
different degrees of similarity to each other and reference data. We present a
versatile probabilistic model for genome recovery and analysis, which aggregates
three types of information that are commonly used for genome recovery from
metagenomes. As potential applications we showcase metagenome contig
classification, genome sample enrichment and genome bin comparisons. The
open source implementation MGLEX is available via the Python Package Index
and on GitHub and can be embedded into metagenome analysis workflows and
programs.

4.2 Introduction

Shotgun sequencing of DNA extracted from a microbial community recovers ge-
nomic data from different community members while bypassing the need to obtain
pure isolate cultures. It thus enables novel insights into ecosystems, especially
for those genomes which are inaccessible by cultivation techniques and isolate
sequencing. However, current metagenome assemblies are oftentimes highly frag-
mented, including unassembled reads, and require further processing to separate
data according to the underlying genomes. Assembled sequences, called contigs,
that originate from the same genome are placed together in this process, which is
known as metagenome binning (Tyson et al., 2004; Dröge & McHardy, 2012) and
for which many programs have been developed. Some are trained on reference
sequences, using contig k-mer frequencies or sequence similarities as sources of
information (McHardy et al., 2007; Dröge, Gregor & McHardy, 2014; Wood &
Salzberg, 2014; Gregor et al., 2016), which can be adapted to specific ecosystems.
Others cluster the contigs into genome bins, using contig k-mer frequencies and
read coverage (Chatterji et al., 2008; Kislyuk et al., 2009; Wu et al., 2014; Nielsen
et al., 2014; Imelfort et al., 2014; Alneberg et al., 2014; Kang et al., 2015; Lu et
al., 2016).

https://pypi.python.org/pypi/mglex/
https://github.com/hzi-bifo/mglex/
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Recently, oftentimes multiple biological or technical samples of the same envi-
ronment are sequenced to produce distinct genome copy numbers across samples,
sometimes using different sequencing protocols and technologies, such as Illumina
and PacBio sequencing (Hagen et al., 2016). Genome copies are reflected by corre-
sponding read coverage variation in the assemblies which allows to resolve samples
with many genomes. The combination of experimental techniques helps to over-
come platform-specific shortcomings such as short reads or high error rates in
the data analysis. However, reconstructing high-quality bins of individual strains
remains difficult without very high numbers of replicates. Often, genome recon-
struction may improve by manual intervention and iterative analysis (Figure 4.1)
or additional sequencing experiments.

Contigs

Read Libraries

Reference Genome Sequences

(b) enrich

(c) select

(d) re ne

Reduced Contigs

Genome Bins

(a) (re-)cluster or (re-)classify

Reduced Genome Bins

Figure 4.1: Genome reconstruction workflow. To recover genomes from envi-
ronmental sequencing data, the illustrated processes can be iterated. Different
programs can be run for each process and iteration. MGLEX can be applied in all
steps: (a) to classify contigs or to cluster by embedding the probabilistic model
into an iterative procedure; (b) to enrich a metagenome for a target genome to
reduce its size and to filter out irrelevant sequence data; (c) to select contigs of
existing bins based on likelihoods and p-values and to repeat the binning process
with a reduced dataset; (d) to refine existing bins, for instance to merge bins as
suggested by bin analysis.

Genome bins can be constructed by consideration of genome-wide sequence prop-
erties. Currently, oftentimes the following types of information are considered:
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• Read contig coverage: sequencing read coverage of assembled contigs, which
reflects the genome copy number (organismal abundance) in the community.
Abundances can vary across biological or technical replicates, and co-vary
for contigs from the same genome, supplying more information to resolve
individual genomes (Baran & Halperin, 2012; Albertsen et al., 2013).

• Nucleotide sequence composition: the frequencies of short nucleotide subse-
quences of length k called k-mers. The genomes of different species have a
characteristic k-mer spectrum (Karlin, Mrazek & Campbell, 1997; McHardy
et al., 2007).

• Sequence similarity to reference sequences: a proxy for the phylogenetic
relationship to species which have already been sequenced. The similarity is
usually inferred by alignment to a reference collection and can be expressed
using taxonomy (McHardy et al., 2007).

Probabilities represent a convenient and efficient way to represent and combine
information that is uncertain by nature. Here, we

• propose a probabilistic aggregate model for binning based on three com-
monly used information sources, which can easily be extended to include
new features.

• outline the features and submodels for each information type. As the feature
types listed above derive from distinct processes, we define for each of them
independently a suitable probabilistic submodel.

• showcase several applications related to the binning problem

A model with data-specific structure poses an advantage for genome recovery in
metagenomes because it uses data more efficiently for fragmented assemblies with
short contigs or a low number of samples for differential coverage binning. Being
probabilistic, it generates probabilities instead of hard labels so that a contig
can be assigned to several, related genome bins and the uncertainty can easily
be assessed. The models can be applied in different ways, not just classification,
which we show in our application examples. Most importantly, there is a rich
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repertoire of higher-level procedures based on probabilistic models, including Ex-
pectation Maximization (EM) and Markov Chain Monte Carlo (MCMC) methods
for clustering without or with few prior knowledge of the modeled genomes.

We focus on defining explicit probabilistic models for each feature type and their
combination into an aggregate model. In contrast, binning methods often concate-
nate and transform features (Chatterji et al., 2008; Imelfort et al., 2014; Alneberg
et al., 2014) before clustering. Specific models for the individual data types can
be better tailored to the data generation process and will therefore generally en-
able a better use of information and a more robust fit of the aggregate model
while requiring fewer data. We propose a flexible model with regard to both the
included features and the feature extraction methods. There already exist para-
metric likelihood models in the context of clustering, for a limited set of features.
For instance, Kislyuk et al. (2009) use a model for nucleotide composition and
Wu et al. (2014) integrated distance-based probabilities for 4-mers and absolute
contig coverage using a Poisson model. We extend and generalize this work so
that the model can be used in different contexts such as classification, clustering,
genome enrichment and binning analysis. Importantly, we are not providing an
automatic solution to binning but present a flexible framework to target problems
associated with binning. This functionality can be used in custom workflows or
programs for the steps illustrated in Figure 4.1. As input, the model incorporates
genome abundance, nucleotide composition and additionally sequence similarity
(via taxonomic annotation). The latter is common as taxonomic binning output
(Dröge, Gregor & McHardy, 2014; Wood & Salzberg, 2014; Gregor et al., 2016)
and for quality assessment but has rarely been systematically used as features
in binning (Chatterji et al., 2008; Lu et al., 2016). We show that taxonomic
annotation is valuable information that can improve binning considerably.
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4.3 Methods

4.3.1 Classification models

Classification is a common concept in machine learning. Usually, such algorithms
use training data for different classes to construct a model which then contains
the condensed information about the important properties that distinguish the
data of the classes. In probabilistic modeling, we describe these properties as pa-
rameters of likelihood functions, often written as θ. After θ has been determined
by training, the model can be applied to assign novel data to the modeled classes.
In our application, classes are genomes, or bins, and the data are nucleotide se-
quences like contigs. Thus, contigs can be assigned to genomes bins but we need
to provide training sequences for the genomes. Such data can be selected by
different means, depending on the experimental and algorithmic context. One
can screen metagenomes for genes which are unique to clades, or which can be
annotated by phylogenetic approaches, and use the corresponding sequence data
for training (Gregor et al., 2016). Independent assemblies or reference genomes
can also serve as training data for genome bins (Brady & Salzberg, 2009; Patil et
al., 2011; Gregor et al., 2016). Another direct application is to learn from existing
genome bins, which were derived by any means, and then to (re)assign contigs to
these bins. This is useful for short contigs which are often excluded from binning
and analysis due to their high variability. Finally, probabilistic models can be
embedded into iterative clustering algorithms with random initialization.

4.3.2 Aggregate model

Let 1 ≤ i ≤ D be an index referring to D contigs resulting from a shotgun
metagenomic experiment. In the following we will present a generative proba-
bilistic aggregate model that consists of components, indexed by 1 ≤ k ≤ M ,
which are generative probabilistic models in their own right, yielding probabili-
ties Pk(contigi | genome) that contigi belongs to a particular genome. Each of
the components k reflects a particular feature such as
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• a weight wi (contig length)
• sample abundance feature vectors ai and ri, one entry per sample
• a compositional feature vector ci, one entry per compositional feature (e.g. a

k-mer)
• a taxonomic feature vector ti, one entry per taxon

We define the individual feature vectors in the corresponding sections. As men-
tioned before, each of the M features gives rise to a probability Pk(contigi |
genome) that contigi belongs to a specific genome by means of its component
model. Those probabilities are then collected into an aggregate model that trans-
forms those feature specific probabilities Pk(i | genome) into an overall probability
P (i | genome) that contig i is associated with the genome. In the following, we
describe how we construct this model with respect to the individual submodels
Pk(i | genome), the feature representation of the contigs and how we determine
the optimal set of parameters from training sequences.

For the ith contig, we define a joint likelihood for genome bin g (Equation 4.1, the
probabilities written as a function of the genome parameters), which is a weighted
product over M independent component likelihood functions, or submodels, for
the different feature types. For the kth submodel, Θk is the corresponding param-
eter vector, Fi,k the feature vector of the ith contig and αk defines the contribution
of the respective submodel or feature type. β is a free scaling parameter to adjust
the smoothness of the aggregate likelihood distribution over the genome bins (bin
posterior).

L(Θg | Fi) =
(

M∏
k=1

L(Θgk | Fik)αk

)β

(4.1)

We assume statistical independence of the feature subtypes and multiply likeli-
hood values from the corresponding submodels. This is a simplified but reason-
able assumption: e.g., the species abundance in a community can be altered by
external factors without impacting the nucleotide composition of the genome or
its taxonomic position. Also, there is no direct relation between a genome’s k-mer
distribution and taxonomic annotation via reference sequences.
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All model parameters, Θg, α and β, are learned from training sequences. We will
explain later, how the weight parameters α and β are chosen and begin with a
description of the four component likelihood functions, one for each feature type.

In the following, we denote the jth position in a vector xi with xi,j. To simplify
notation, we also define the sum or fraction of two vectors of the same dimension
as the positional sum or fraction and write the length of vector x as len(x).

4.3.3 Absolute abundance

We derive the average number of reads covering each contig position from assem-
bler output or by mapping the reads back onto contigs. This mean coverage is
a proxy for the genome abundance in the sample because it is roughly propor-
tional to the genome copy number. A careful library preparation causes the copy
numbers of genomes to vary differently over samples, so that each genome has
a distinct relative read distribution. Depending on the amount of reads in each
sample being associated with every genome, we obtain for every contig a coverage
vector ai where len(ai) is the number of samples. Therefore, if more sample repli-
cates are provided, contigs from different genomes are generally better separable
since every additional replicate adds an entry to the feature vectors.

Random sequencing followed by perfect read assembly theoretically produces po-
sitional read counts which are Poisson distributed, as described in Lander &
Waterman (1988). In Equation 4.2, we derived a similar likelihood using mean
coverage values (see Supplementary Methods for details). The likelihood function
is a normalized product over the independent Poisson functions Pθj

(ai,j) for each
sample. The expectation parameter θj represents the genome copy number in the
jth sample.

L(θ | ai) = len(ai)

√√√√√len(ai)∏
j=1

Pθj
(ai,j) = len(ai)

√√√√√len(ai)∏
j=1

θ
ai,j

j

ai,j!
e−θj (4.2)

The Poisson explicitly accounts for low and zero counts, unlike a Gaussian model.
Low counts are often observed for undersequenced and rare taxa. Note that ai,j
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is independent of θ. We derived the model likelihood function from the joint
Poisson over all contig positions by approximating the first data-term with mean
coverage values (Supplementary Methods).

The maximum likelihood estimate (MLE) for θ on training data is the weighted
average of mean coverage values for each sample in the training data (Supplemen-
tary Methods).

θ̂ =

N∑
i=1

wi ai

N∑
i=1

wi

(4.3)

4.3.4 Relative abundance

In particular for shorter contigs, the absolute read coverage is often overestimated.
Basically, the Lander-Waterman assumptions (Lander & Waterman, 1988) are
violated if reads do not map to their original locations due to sequencing errors
or if they “stack” on certain genome regions because they are ambiguous (i.e. for
repeats or conserved genes), rendering the Poisson model less appropriate. The
Poisson, when constrained on the total sum of coverages in all samples, leads to a
binomial distribution as shown by (Przyborowski & Wilenski, 1940). Therefore,
we model differential abundance over different samples using a binomial in which
the parameters represent a relative distribution of genome reads over the samples.
For instance, if a particular genome had the same copy number in a total of two
samples, the genome’s parameter vector θ would simply be [0.5, 0.5]. As for
absolute abundance, the model becomes more powerful with a higher number
of samples. Using relative frequencies as model parameters instead of absolute
coverages, however, has the advantage that any constant coverage factor cancels
in the division term. For example, if a genome has two similar gene copies which
are collapsed during assembly, twice as many reads will map onto the assembled
gene in every sample but the relative read frequencies over samples will stay
unaffected. This makes the binomial less sensitive to read mapping artifacts but
requires two or more samples because one degree of freedom (DF) is lost by the
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division.

The contig features ri are the mean coverages in each sample, which is identical
to ai in the absolute abundance model, and the model’s parameter vector θ holds
the relative read frequencies in the samples, as explained before. In Equation 4.4
we ask: how likely is the observed mean contig coverage ri,j in sample j given the
genome’s relative read frequency θj of the sample and the contig’s total coverage
Ri for all samples. The corresponding likelihood is calculated as a normalized
product over the binomials BRi,θj

(ri,j) for every sample.

L(θ | ri) = len(ri)

√√√√√len(ri)∏
j=1

BRi,θj
(ri,j) = len(ri)

√√√√√len(ri)∏
j=1

(
Ri

ri,j

)
θ

ri,j

j (1 − θj)(Ri−ri,j) (4.4)

Ri is the sum of the abundance vector ri. Because both Ri and ri can contain real
numbers, we need to generalize the binomial coefficient to positive real numbers
via the gamma function Γ.

(
n

k

)
= Γ(n + 1)Γ(k + 1)

Γ(n − k + 1)
(4.5)

Because the binomial coefficient is a constant factor and independent of θ, it can
be omitted in ML classification (when comparing between different genomes) or
be retained upon parameter updates. As for the Poisson, the model accounts
for low and zero counts (by the binomial coefficient). We derived the likelihood
function from the joint distribution over all contig positions by approximating the
binomial data-term with mean coverage values (see Supplementary Methods).

The MLE θ̂ for the model parameters on training sequence data corresponds to
the amount of read data (base pairs) in each sample divided by the total number
of base pairs in all samples. We express this as a weighted sum of contig mean
coverage values (see Supplementary Methods).
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θ̂ =

N∑
i=1

wi ri

N∑
i=1

wi Ri

(4.6)

It is obvious that absolute and relative abundance models are not independent
when the identical input vectors (here ai = ri) are used. However, we can
instead apply the Poisson model to the total coverage Ri (summed over all sam-
ples) because this sum also follows a Poisson distribution. To illustrate the total
abundance, this compares to mixing the samples before sequencing so that the
resolution of individual samples is lost. The binomial, in contrast, only captures
the relative distribution of reads over the samples (one DF is lost in the ratio
transform). This way, we can combine both absolute and relative abundance
submodels in the aggregate model.

4.3.5 Nucleotide composition

Microbial genomes have a distinct “genomic fingerprint” (Karlin, Mrazek &
Campbell, 1997) which is typically determined by means of k-mers. Each
contig has a relative frequency vector ci for all possible k-mers of size k. The
nature of shotgun sequencing demands that each k-mer is counted equally to its
reverse complement because the orientation of the sequenced strand is typically
unknown. With increasing k, the feature space grows exponentially and becomes
sparse. Thus, it is common to select k from 4 to 6 (Teeling et al., 2004; McHardy
et al., 2007; Kislyuk et al., 2009). Here, we simply use 5-mers (len(ci) = 45

2 =
512) but other choices can be made.

For its simplicity and effectiveness, we chose a likelihood model assuming sta-
tistical independence of features so that the likelihood function in Equation 4.7
becomes a simple product over observation probabilities (or a linear model when
transforming into a log-likelihood). Though k-mers are not independent due
to their overlaps and reverse complementarity (Kislyuk et al., 2009), the model
has been successfully applied to k-mers (Wang et al., 2007), and we can replace
k-mers in our model with better-suited compositional features, i.e. using locality-
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sensitive hashing (Luo et al., 2016). A genome’s background distribution θ is a
vector which holds the probabilities to observe each k-mer and the vector ci does
the same for the ith contig. The composition likelihood for a contig is a weighted
and normalized product over the background frequencies.

L(θ | ci) =
len(ci)∏

i=1
θci

i (4.7)

The genome parameter vector θ̂ that maximizes the likelihood on training se-
quence data can be estimated by a weighted average of feature counts (Supple-
mentary Methods).

θ̂ =

N∑
i=1

wi ci

N∑
i=1

wi

(4.8)

4.3.6 Similarity to reference

We can compare contigs to reference sequences, for instance by local alignment.
Two contigs that align to closely related taxa are more likely to derive from
the same genome than sequences which align to distant clades. We convert this
indirect relationship to explicit taxonomic features which we can compare without
direct consideration of reference sequences. A taxon is a hierarchy of nested
classes which can be written as a tree path, for example, the species E. coli could
be written as [Bacteria, Gammaproteobacteria, Enterobacteriaceae, E. coli].

We assume that distinct regions of a contig, such as genes, can be annotated with
different taxa. Each taxon has a corresponding weight which in our examples is a
positive alignment score. The weighted taxa define a spectrum over the taxonomy
for every contig and genome. It is not necessary that the alignment reference be
complete or include the respective species genome but all spectra must be equally
biased. Since each contig is represented by a hierarchy of L numeric weights, we
incorporated these features into our multi-layer model. First, each contig’s taxon
weights are transformed to a set of sparse feature vectors ti = {ti,l | 1 ≤ l ≤ L},



4.3 Methods 77

one for each taxonomic level, by inheriting and accumulating scores for higher-
level taxa (see Table 4.1 and Figure 4.2).

Table 4.1: Calculating the contig features ti for a simplified taxonomy. There are
five original integer alignment scores for nodes (c), (e), (f), (g) and (h) which are
summed up at higher levels to calculate the feature vectors ti,l. The corresponding
tree structure is shown in Figure 4.2.

Node Taxon Level l Index j Score ti,l,j

a Bacteria 1 1 0 7
b Gammaproteobacteria 2 1 0 6
c Betaproteobacteria 2 2 1 1
d Enterobacteriaceae 3 1 0 5
e Yersiniaceae 3 2 1 1
f E. vulneris 4 1 1 1
g E. coli 4 2 3 3
h Yersinia sp. 4 3 1 1

hf g

d e

b c

a Domain (level 1)

Class (level 2)

Family (level 3)

Species (level 4)

Figure 4.2: Taxonomy for which is simplified to four levels and eight nodes. A
full taxonomy may consist of thousands of nodes.

Each vector ti,l contains the scores for all Tl possible taxa at level l. A genome
is represented by a similar set of vectors θ = {θl | 1 ≤ l ≤ L} with identical
dimensions, but here, entries represent relative frequencies on the particular level
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l, for instance a distribution over all family taxa. The corresponding likelihood
model corresponds to a set of simple frequency models, one for each layer. The
full likelihood is a product of the level likelihoods.

L(θ | ti) =
L∏

l=1

Tl∏
j=1

θ
ti,l,j

l,j (4.9)

For simplicity, we assume that layer likelihoods are independent which is not quite
true but effective. The MLE for each θl is then derived from training sequences
similar to the simple frequency model (Supplementary Methods).

θ̂l =

N∑
i=1

ti,l

Tl∑
j=1

N∑
i=1

ti,l

(4.10)

4.3.7 Inference of weight parameters

The aggregate likelihood for a contig in Equation 4.1 is a weighted product of
submodel likelihoods. The weights in vector α balance the contributions, assum-
ing that they must not be equal. When we write the likelihood in logarithmic
form (Equation 4.11), we see that each weight αk sets the variance or width of the
contigs’ submodel log-likelihood distribution. We want to estimate αk in a way
which is not affected by the original submodel variance because the correspond-
ing normalization exponent is somewhat arbitrary. For example, we normalized
the nucleotide composition likelihood as a single feature and the abundance like-
lihoods as a single sample to limit the range of the likelihood values, because we
simply cannot say how much each feature type counts.

l(Θ | Fi) = β
M∑

k=1
αk l(Θk | Fi,k) (4.11)

For any modeled genome, each of the M submodels produces a distinct log-
likelihood distribution of contig data. Based on the origin of the contigs, which
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is known for model training, the distribution can be split into two parts, the ac-
tual genome (positive class) and all other genomes (negative class), as illustrated
in Figure 4.3. The positive distribution is roughly unimodal and close to zero
whereas the negative distribution, which represents many genomes at once, is
diverse and yields strongly negative values. Intuitively, we want to select α such
that the positive class is well separated from the negative class in the aggregate
log-likelihood function in Equation 4.11.

Because α cannot be determined by likelihood maximization, the contributions
are balanced in a robust way by setting α to the inverse standard deviation of the
genome (positive class) log-likelihood distributions. More precisely, we calculate
the average standard deviation over all genomes weighted by the amount of contig
data (bp) for each genome and calculate αk as the inverse of this value. This
scales down submodels with a high average variance. When we normalize the
standard deviation of genome log-likelihood distributions in all submodels before
summation, we assume that a high variance means uncertainty. This form of
weight estimation requires that for at least some of the genomes, a sufficient
number of sequences must be available to estimate the standard deviation. In
some instances, it might be necessary to split long contigs into smaller sequences
to generate a sufficient number of data points for estimation.

Parameter β in Equation 4.11 is only relevant for soft classification but not in the
context of ML classification or p-values. It can best be viewed as a sharpening
or smoothing parameter of the bin posterior distribution (the probability of a
genome or bin given the contig). β is estimated by minimization of the training
or test error, as in our simulation.

4.3.8 Data simulation

We simulated reads of a complex microbial community from 400 publicly avail-
able genomes (Supplementary Methods and Supplementary Table 1). These com-
prised 295 unique and 44 species with each two or three strain genomes to mimic
strain heterogeneity. Our aim was to create a difficult benchmark dataset under
controlled settings, minimizing potential biases introduced by specific software.



80 CHAPTER 4. A PROBABILISTIC MODEL TO RECOVER
GENOMES IN SHOTGUN METAGENOMICS

 

original log-likelihood weighted log-likelihood

l(Θ2 | Fi,2)

l(Θ1 | Fi,1) α1l(Θ1 | Fi,1)

α2l(Θ2 | Fi,2)

s
u
b
m

o
d
e
l 
1

s
u
b
m

o
d
e
l 
2

-∞ -∞

-∞-∞

= aggregate log-likelihoodgenome (positive class)

other genomes (negative class)

positive class standard deviation

0

0

0

0  

A

B

C

D

Figure 4.3: Procedure for determination of for each submodel. The figure shows
a schematic for a single genome and two submodels. The genome’s contig log-
likelihood distribution (A and B) is scaled to a standard deviation of one (C and
D) before adding the term in the aggregate model in .

We sampled abundances from a lognormal distribution because it has been de-
scribed as a realistic model (Schloss & Handelsman, 2006). We then simulated
a primary community which was then subject to environmental changes result-
ing in exponential growth of 25% of the community members at growth rates
which where chosen uniformly at random between one and ten whereas the other
genome abundances remained unchanged. We applied this procedure three times
to the primary community which resulted in one primary and three secondary
artificial community abundances profiles. With these, we generated 150 bp long
Illumina HiSeq reads using the ART simulator (Huang et al., 2012) and chose a
yield of 15 Gb per sample. The exact amount of read data for all four samples
after simulation was 59.47 Gb. To avoid any bias caused by specific metagenome
assembly software and to assure a constant contig length, we divided the original
genome sequences into non-overlapping artificial contigs of 1 kb length and se-
lected a random 500 kb of each genome to which we mapped the simulated reads
using Bowtie2 (Langmead & Salzberg, 2012). By the exclusion of some genome
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reference, we imitated incomplete genome assemblies when mapping reads, which
affects the coverage values. Finally, we subsampled 300 kb contigs per genome
with non-zero read coverage in at least one of the samples to form the demonstra-
tion dataset (120 Mb), which has 400 genomes (including related strains), four
samples and contigs of size 1 kb. Due to the short contigs and few samples, this
is a challenging dataset for complete genome recovery (Nielsen et al., 2014) but
suitable to demonstrate the functioning of our model with limited data. For each
contig we derived 5-mer frequencies, taxonomic annotation (removing species-
level genomes from the reference sequence data) and average read coverage per
sample, as described in the Supplementary Methods.

4.4 Results

4.4.1 Maximum likelihood classification

We evaluated the performance of the model when classifying contigs to the genome
with the highest likelihood, a procedure called Maximum Likelihood (ML) classi-
fication. We applied a form of three-fold cross-validation, dividing the simulated
data set into three equally-sized parts with 100 kb from every genome. We used
only 100 kb (training data) of every genome to infer the model parameters and
the other 200 kb (test data) to measure the classification error. 100 kb was
used for training because it is often difficult to identify sufficient training data
in metagenome analysis. For each combination of submodels, we calculated the
mean squared error (MSE) and mean pairwise coclustering (MPC) probability
for the predicted (ML) probability matrices (Suppl. Methods), averaged over the
three test data partitions. We included the MPC as it can easily be interpreted:
for instance, a value of 0.5 indicates that on average 50% of all contig pairs of
a genome end up in the same bin after classification. Table 4.2 shows that the
model integrates information from each data source such that the inclusion of
additional submodels resulted in a better MPC and also MSE, with a single ex-
ception when combining absolute and relative abdundance models which resulted
in a marginal increase of the MSE. We also found that taxonomic annotation rep-
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resents the most powerful information type in our simulation. For comparson,
we added scores for NBC (Rosen, Reichenberger & Rosenfeld, 2011), a classifier
based on nucleotide composition with in-sample training using 5-mers and 15-
mers, and Centrifuge (Kim et al., 2016), a similarity-based classifier both with
in-sample and reference data. These programs were given the same information
as the corresponding submodels and they rank close to these. In a further step,
we investigated how the presence of very similar genomes impacted the perfor-
mance of the model. We first collapsed strains from the same species by merging
the corresponding columns in the classification likelihood matrix, retaining the
entry with the highest likelihood, and then computed the resulting coclustering
performance increase ∆MPCML. Considering assignment on species instead of
strain level showed a larger ∆MPCML for nucleotide composition and taxonomic
annotation than for absolute and relative abundance. This is expected, because
both do not distinguish among strains, whereas genome abundance does in some,
but not all cases.

Table 4.2: Cross-validation performance of ML classification for all possible com-
binations of submodels. We calculated the mean pairwise coclustering (MPC),
the strain to species MPC improvement (∆MPCML) and the mean squared error
(MSE). AbAb = absolute total abundance; ReAb = relative abundance; NuCo
= nucleotide composition; TaAn = taxonomic annotation. NBC (v1.1) and Cen-
trifuge (v.1.0.3b) are external classifiers added for comparison. Best values are in
bold and worst in italic.

Submodels MPCML ∆MPCML MSEML

Centrifuge (in-sample) 0.01 +0.01 0.51
NBC (15-mers) 0.02 +0.00 0.66
AbAb 0.03 +0.00 0.58
ReAb 0.08 +0.02 0.61
Centrifuge (reference) 0.13 +0.03 0.45
AbAb + ReAb 0.21 +0.04 0.59
NuCo 0.30 +0.06 0.52
NBC (5-mers) 0.34 +0.06 0.48
ReAb + NuCo 0.41 +0.07 0.48
AbAb + NuCo 0.43 +0.08 0.50
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Submodels MPCML ∆MPCML MSEML

TaAn 0.46 +0.09 0.41
AbAb + ReAb + NuCo 0.52 +0.09 0.44
NuCo + TaAn 0.52 +0.09 0.40
AbAb + TaAn 0.54 +0.09 0.39
AbAb + NuCo + TaAn 0.60 +0.10 0.37
ReAb + TaAn 0.60 +0.10 0.36
ReAb + NuCo + TaAn 0.64 +0.11 0.34
AbAb + ReAb + TaAn 0.65 +0.10 0.35
AbAb + ReAb + NuCo + TaAn 0.68 +0.11 0.33

4.4.2 Soft assignment

The contig length of 1 kb in our simulation is considerably shorter, and therefore
harder to classify, than sequences which can be produced by current assembly
methods or by some cutting-edge sequencing platforms (Goodwin, McPherson &
McCombie, 2016). In practice, longer contigs can be classified with higher accu-
racy than short ones, as more information is provided as a basis for assignment.
For instance, a more robust coverage mean, a k-mer spectrum derived from more
counts or more local alignments to reference genomes can be inferred from longer
sequences. However, as short contigs remain frequent in current metagenome as-
semblies, 1 kb is sometimes considered a minimum useful contig length (Alneberg
et al., 2014). To account for the natural uncertainty when assigning short contigs,
one can calculate the posterior probabilities over the genomes (see Suppl. Meth-
ods), which results in partial assignments of each contig to the genomes. This can
reflect situations in which a particular contig is associated with multiple genomes,
for instance in case of misassemblies or the presence of homologous regions across
genomes.

The free model parameter β in Equation 4.1, which is identical in all genome mod-
els, smoothens or sharpens the posterior distribution: β = 0 produces a uniform
posterior and with very high β, the posterior approaches the sharp ML solution.
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We determined β by optimizing the MSE on both training and test data, shown
in Figure 4.4. As expected, the classification training error was smaller than the
test error because the submodel parameters were optimized with respect to the
training data. Because the minima are close to each other, the full aggregate
model seems robust to overfitting of β on training data. The comparison of soft
vs. hard assignment shows that the former has a smaller average test classification
MSE of ∼ 0.28 (the illustrated minimum in Figure 4.4) compared to the latter
(ML) assignment MSE of ∼ 0.33 in Table 4.2. Thus, soft assignment seems more
suitable to classify 1 kb contigs, which tend to produce similar likelihoods under
more than one genome model.
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Figure 4.4: Model training (err) and test error (Err) as a function of β for the
complete aggregate model including all submodels and feature types. The solid
curve shows the average and the colored shading the standard deviation of the
three partitions in cross-validation. The corresponding optimal values for β are
marked by black dots and vertical lines. The minimum average training error is
0.238 (β = 2.85) and test error is 0.279 at β = 1.65.
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4.4.3 Genome enrichment

Enrichment is commonly known as an experimental technique to increase the con-
centration of a target substance relative to others in a probe. Thus, an enriched
metagenome still contains a mixture of different genomes, but the target genome
will be present at much higher frequency than before. This allows a more focused
analysis of the contigs or an application of methods which seem prohibitive for
the full data by runtime or memory considerations. In the following, we demon-
strate how to filter metagenome contigs by p-value to enrich in-silico for specific
genomes. Often, classifiers model an exhaustive list of alternative genomes but
in practice it is difficult to recognize all species or strains in a metagenome with
appropriate training data. When we only look at individual likelihoods, for in-
stance the maximum among the genomes, this can be misleading if the contig
comes from a missing genome. For better judgment, a p-value tells us how fre-
quent or extreme the actual likelihood is for each genome. Many if not all binning
methods lack explicit significance calculations. We can take advantage of the fact
that the classification model compresses all features into a genome likelihood and
generate a null (log-)likelihood distribution on training data for each genome.
Therefore, we can associate empirical p-values with each newly classified contig
and can, for sufficiently small p-values, reject the null hypothesis that the contig
belongs to the respective genome. Since this is a form of binary classification,
there is the risk to reject a good contig which we measure as sensitivity.

We enriched a metagenome by first training a genome model and then calculating
the p-values of remaining contigs using this model. Contigs with higher p-values
than the chosen critical value were discarded. The higher this cutoff is, the smaller
the enriched sample becomes, but also the target genome will be less complete.
We calculated the reduced sample size as a function of the p-value cutoff for our
simulation (Figure 4.5). Selecting a p-value threshold of 2.5% shrinks the test
data on average down to 5% of the original size. Instead of an empirical p-value,
we could also use a parametrized distribution or select a critical log-likelihood
value by manual inspection of the log-likelihood distribution (see Figure 4.3 for
an example of such a distribution). This example shows that generally a large
part of a metagenome dataset can be discarded while retaining most of the target
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genome sequence data.

0.01%

0.1%

1.0%

5.0%
10.0%
20.0%

50.0%
100.0%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p−value cutoff

S
a

m
p
le

 s
iz

e

Genome enrichment

10-90 percentile

15-85 percentile

1-99 percentile

5-95 percentile

Figure 4.5: Genome enrichment for 400 genomes with three-fold cross-validation.
For each genome, we measured the test sample size relative to the full dataset after
filtering by a p-value cutoff and summing over the three data partitions. The solid
line shows the resulting average sample size over all 400 genomes. The variability
between genomes is shown as quantiles in red. Both axes are logarithmic to show
the relevant details for lower p-values cutoffs. The corresponding sensitivity, shown
in Suppl. Figure 1, is approximately a linear function of the p-value.

4.4.4 Bin analysis

The model can be used to analyze bins of metagenome contigs, regardless of
the method that was used to infer these bins. Specifically, one can measure the
similarity of two bins in terms of the contig likelihood instead of, for instance, an
average euklidean distance based on the contig or genome k-mer and abundance
vectors. We compare bins to investigate the relation between the given data,
represented by the features in the model, and their grouping into genome bins.
For instance, one could ask whether the creation of two genome bins is sufficiently
backed up by the contig data or whether they should be merged into a single bin.
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For readability, we write the likelihood of a contig in bin A to:

L(θA | contig i) = Li(θA) = L(θA) = LA

To compare two specific bins, we select the corresponding pair of columns in the
classification likelihood matrix and calculate two mixture likelihoods for each con-
tig (rows), L̂, using the MLE of the parameters for both bins and Lswap under the
hypothesis that we swap the model parameters of both bins. The partial assign-
ment weights π̂A and π̂B, called responsibilities, are estimated by normalization
of the two bin likelihoods.

L̂ = π̂A LA + π̂B LB =
(

LA

LA+LB

)
LA +

(
LB

LA+LB

)
LB = L2

A + L2
B

LA + LB

(4.12)

Lswap = π̂A LB + π̂B LA =
(

LA

LA+LB

)
LB +

(
LB

LA+LB

)
LA = 2LALB

LA + LB

(4.13)

For example, if π̂A and π̂B assign one third of a contig to the first, less likely bin
and two thirds to the second, more likely bin using the optimal parameters, then
Lswap would simply exchange the contributions in the mixture likelihood so that
one third are assigned to the more likely and two thirds to the less likely bin. The
ratio Lswap/L̂ ranges from zero to one and can be seen as a percentage similarity.
We form a joint relative likelihood for all N contigs, weighting each contig by its
optimal mixture likelihood L̂ and normalizing over these likelihood values.

S(A, B) =
Z

√√√√√√ N∏
i=1

(
2 Li(θA) Li(θB)

L2
i (θA) + L2

i (θB)

)L2
i (θA)+L2

i (θB)
Li(θA)+Li(θB)

(4.14)

normalized by the total joint mixture likelihood

Z =
N∑

i=1

L2
i (θA) + L2

i (θB)
Li(θA) + Li(θB)

(4.15)
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The quantity in Equation 4.14 ranges from zero to one, reaching one when the
two bin models produce identical likelihood values. We can therefore interpret
the ratio as a percentage similarity between any two bins. A connection to the
Kullback-Leibler divergence can be constructed (Supplementary Methods).

To demonstrate the application, we trained the model on our simulated genomes,
assuming they were bins, and created trees (Figure 4.6) for a randomly drawn
subset of 50 of the 400 genomes using the probabilistic bin distances −log(S)
(Equation 4.14). We computed the distances twice, first with only nucleotide
composition and taxonomic annotation submodels and second with the full fea-
ture set to compare the bin resolution. The submodel parameters were inferred
using the full dataset and β using three-fold crossvalidation. We then applied
average linkage clustering to build balanced and rooted trees with equal distance
from leave to root for visual inspection. The first tree loosely reflects phylogenetic
structure corresponding to the input features. However, many similarities over
50% (outermost ring) show that model and data lack the support for separating
these bins. In contrast, the fully informed tree, which additionally includes infor-
mation about contig coverages, separates the genomes bins, such that only closely
related strains remain ambiguous. This analysis shows again that the use of ad-
ditional features improves the resolution of individual genomes and, specifically,
that abundance separates similar genomes. Most importantly, we show that our
model provides a measure of support for a genome binning. We know the taxa of
the genome bins in this example but for real metagenomes, such an analysis can
reveal binning problems and help to refine the bins as in Figure 4.1d.

4.4.5 Genome bin refinement

We applied the model to show one of its current use cases on more realistic data.
We downloaded the medium complexity dataset from www.cami-challenge.org.
This dataset is quite complex (232 genomes, two sample replicates). We also
retrieved the results of two highest-performing automatic binning programs,
MaxBin and Metawatt, in the CAMI challenge evaluation (Sczyrba et al., 2017).
We took the simplest possible approach: we trained MLGEX on the genome bins
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Figure 4.6: Average linkage clustering of a random subset of 50 out of 400 genomes
using probabilistic distances −log(S) to demonstrate the ability of the model to
measure bin resolution. This example compares the left (blue) tree, which was
constructed only with nucleotide composition and taxonomic annotations, with
the right (red) tree, which uses all available features. The tip labels were shortened
to fit into the figure. The similarity axis is scaled as log(1-log(S)) to focus on
values near one. Bins which are more than 50% similar branch in the outermost
ring whereas highly dissimilar bins branch close to the center. We created the trees
by applying the R function hclust(method=”average”) to MGLEX output.

derived by these methods and classified the contigs to the bins with the highest
likelihood, thus ignoring all details of contig splitting, β or p-value calculation
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and changes in the number of genome bins. When contigs were assigned to
multiple bins with equal probability, we attributed them to the first bin in the
list because the evaluation framework does not allow sharing contigs between
bins. We only used information provided to the contestants by the time of the
challenge in the process. We report the results for two settings for each method
using the recall, the fraction of overall assigned contigs (bp), and the Adjusted
Rand index (ARI) as defined in the CAMI evaluation paper. In the first, we
swapped contigs which were originially assigned between bins. In the second, all
available contigs were assigned to the bins, thus maximizing the recall. Table 4.3
shows that MGLEX bin refinement improved the genome bins in terms of the
ARI for both sets of genome bins and increased the recall for Metawatt but not
MaxBin. This is likely due to the fact that MaxBin has fewer but relatively
complete bins to which the other contigs cannot correctly be recruited. Further
improvement would involve disection and merging of bins within and among
methods, for which MGLEX likelihoods can be considered.

Table 4.3: Genome bin refinement for CAMI medium complexity dataset with
232 genomes and two samples. The recall is the fraction of overall assigned contigs
(bp). The Adjusted Rand index (ARI) is a measure of binning precision. The
unmodified genome bins are the submissions to the CAMI challenge using the
corresponding unsupervised binning methods Metawatt and MaxBin. MGLEX
swapped contigs: contigs in original genome bins reassigned to the bin with highest
MGLEX likelihood. MGLEX all contigs: all contigs (with originally uncontained)
assigned to the bin with highest MGLEX likelihood. The lowest scores are written
in italic and highest in bold.

Binner Variant Bin count Recall (bp) ARI

Metawatt unmodified 285 0.94 0.75
Metawatt MGLEX swapped contigs 285 0.94 0.82
Metawatt MGLEX all contigs 285 1.00 0.77
MaxBin unmodified 125 0.82 0.90
MaxBin MGLEX swapped contigs 125 0.82 0.92
MaxBin MGLEX all contigs 125 1.00 0.76

https://www.cami-challenge.org
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4.4.6 Implementation

We provide a Python package called MGLEX, which includes the described model.
Simple text input facilitates the integration of external programs for feature ex-
traction like k-mer counting or read mapping, which are not included. MGLEX
can process millions of sequences with vectorized arithmetics using NumPy (Walt,
Colbert & Varoquaux, 2011) and includes a command line interface to the main
functionality, such as model training, classification, p-value and error calculations.
It is open source (GPLv3) and freely available via the Python Package Index1

and on GitHub2.

4.5 Discussion

We describe an aggregate likelihood model for the reconstruction of genome bins
from metagenome data sets and show its value for several applications. The
model can learn from and classify nucleotide sequences from metagenomes. It
provides likelihoods and posterior bin probabilities for existing genome bins, as
well as p-values, which can be used to enrich a metagenome dataset with a tar-
get genome. The model can also be used to quantify bin similarity. It builds on
four different submodels that make use of different information sources in metage-
nomics, namely contig coverage, nucleotide composition and previous taxonomic
assignments. By its modular design, the model can easily be extended to include
additional information sources. This modularity also helps in interpretation and
computations. The former, because different features can be analyzed separately
and the latter, because submodels can be trained independently and in parallel.

In comparison to previously described parametric binning methods, our model
incorporates two new types of features. The first is relative differential coverage,
for which, to our knowledge, this is the first attempt to use binomials to account
for systematic bias in the read mapping for different genome regions. As such, the
binomial submodel represents the parametric equivalent of covariance distance

1https://pypi.python.org/pypi/mglex/
2https://www.github.com/hzi-bifo/mglex/

https://pypi.python.org/pypi/mglex/
https://www.github.com/hzi-bifo/mglex/
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clustering. The second new type is taxonomic annotation, which substantially
improved the classification results in our simulation. Taxonomic annotations,
as used in the model and in our simulation, were not correct up to the species
level and need not be, as seen in the classification results. We only require the
same annotation method be applied to all sequences. In comparison to previous
methods, our aggregate model has weight parameters to combine the different
feature types and allows tuning the bin posterior distribution by selection of an
optimal smoothing parameter β.

We showed that probabilistic models represent a good choice to handle
metagenomes with short contigs or few sample replicates, because they make
soft, not hard decisions, and because they can be applied in numerous ways.
When the individual submodels are trained, genome bin properties are com-
pressed into fewer model parameters, such as mean values, which are mostly
robust to outliers and therefore tolerate a certain fraction of bin pollution.
This property allows to reassign contigs to bins, which we demonstrated in
the “Genome bin refinement” section. Measuring the performance of the indi-
vidual submodels and their corresponding features on short simulated contigs
(Table 4.2), we find that they discriminate genomes or species pan-genomes by
varying degrees. Genome abundance represents, in our simulation with four
samples, the weakest single feature type, which will likely become more powerful
with increasing sample numbers. Notably, genomes of individual strains are more
difficult to distinguish than species level pangenomes using any of the features.
In practice, if not using idealized assemblies as in our current evaluation, strain
resolution poses a problem to metagenome assembly, which is currently not
resolved in a satisfactory manner (Sczyrba et al., 2017).

The current MGLEX model is somewhat crude because it makes many simplify-
ing assumptions in the submodel definitions. For instance, the multi-layer model
for taxonomic annotation assumes that the probabilities in different layers are
independent, the series of binomials for relative abundance should be replaced by
a multinomial to accout for the parameter dependencies or the absolute abdun-
dance Poisson model should incorporate overdispersion to model the data more
appropriately. Exploiting this room for improvement can lead to further im-
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provement in the performance while the overall framework and usage of MGLEX
stays unchanged. When we devised our model, we had an embedding into more
complex routines in mind. In the future, the model can be used in inference pro-
cedures such as EM or MCMC to infer or improve an existing genome binning.
Thus, MGLEX provides a software package for use in other programs. However,
it also represents a powerful stand-alone tool for the adept user in its current
form.

Currently, MGLEX does not yet have support for multiple processors and only
provides the basic functionality presented here. However, training and classifi-
cation can easily be implemented in parallel because they are expressed as ma-
trix multiplications. The model requires sufficient training data to robustly es-
timate the submodel weights α using the standard deviation of the empirical
log-likelihood distributions and requires linked sequences to estimate β using er-
ror minimization. In situations with a limited number of contigs per genome bin,
we therefore advise to generate linked training sequences of a certain length, as in
our simulation, for instance by splitting assembled contigs. The optimal length
for splitting may depend on the overall fragmentation of the metagenome.

Our open-source Python package MGLEX provides a flexible framework for
metagenome analysis and binning which we intent to develop further together
with the metagenomics research community. It can be used as a library to write
new binning applications or to implement custom workflows, for example to sup-
plement existing binning strategies. It can build upon a present metagenome
binning by taking assignments to bins as input and deriving likelihoods and p-
values that allow for critical inspection of the contig assignments. Based on the
likelihood, MGLEX can calculate bin similarities to provide insight into the struc-
ture of data and community. Finally, genome enrichment of metagenomes can
improve the recovery of particular genomes in large datasets.
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Supplementary Material
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Supplementary Methods for
Taxator-tk: Precise Taxonomic Assignment of Metagenomes by 

Fast Approximation of Evolutionary Neighborhoods

I. Taxonomic Assignment of Sequence Segments

Here we describe in detail the individual steps and the run-time properties of 

the algorithm which is implemented in the program taxator, the second stage of the 

overall  binning  workflow  using  taxator-tk  (Fig.  2b).  We  propose  the  realignment 

placement  algorithm (RPA) for  the  taxonomic  assignment  of  a  query segment  q, 

which can be any subsequence of the full query sequence (i.e. the query can be a 

read, contig, scaffold or a complete genome sequence). The algorithm constitutes 

two pairwise alignment passes and in each, q is aligned to segments of nucleotide 

reference sequences. It aims at identifying as many as possible taxa of the prediction 

clade (node R in Fig. 2a) without explicitly resolving its phylogenetic structure.

1. Among the given set of homologous segments constructed from overlapping 

alignments before application of the RPA, we define s to be the most similar seg-

ment to  q,  i.e. the one with the best local alignment score of all reference seg-

ments. In the first pass, all segments are aligned against s (  alignments). The re-

sulting pairwise scores, our implementation uses the edit distance (mismatches + 

gaps), define an ordering among all  segments or their corresponding taxa. The 

distinction between segments and associated taxa will be neglected in the follow-

ing for better readability. All taxa which are less distant to s than q, including s it-

self, are added to an empty set M which holds all identified taxa of the prediction 

clade. The first more distant taxon than q is defined to be the outgroup segment o 

(Fig. 2c) and used as the alignment target in the following second and last pass in  

which similar taxa to o are added M.

2. We align all segments, including  q, against  o and rank the resulting scores. 

Then we add all taxa to M which have a lower score than q. With some fine-tuning, 

we chose to also add taxa with a higher score than  q, within a small range ac-

counting for erroneous scores, because o and q can be very distant homologs with 

noisy alignment. The width of this error band is determined on a per-segment ba-

sis as a linear score function of the taxonomic disorder in the alignment scores 

and not a universal or configurable run-time parameter. We interpret a rank disor-

der (e.g. a known family member of o being more similar to o than a corresponding 
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species member segment) as a discordance between gene tree and taxonomy 

and proportionally scale the effective score of  q to enlarge  M by taxa which are 

slightly more distant to o than q. This second pass requires  new alignments, 

or less if some segments are identical to either q or s.

If multiple best references (s) or outgroup segments (o) were present in these 

two passes with identical alignment scores, the calculations are repeated for every 

such segment in order to produce stable output. We reduced the additional computa-

tional effort in our implementation by detecting frequent identical segments and unin-

formative homologs. The final assignment taxon ID of q is the lowest common ances-

tor (LCA) of the taxa in  M, or none if no outgroup had been found. The theoretical 

run-time in the segment assignment algorithm measured in units “number of pairwise 

alignments” is in   and about  , where   denotes the number of homologous 

segments.  The  run-time  complexity  for  a  single  pairwise  alignment  is   and 

scales quadratically with the segment length . Therefore the total run-time complex-

ity per segment is   and the total worst-case run-time for the entire query se-

quence can be bounded above by  where  denotes the maximum number  of 

segment homologs among all query segments and  is the total length of the query 

sequence. Thus, the run-time for the entire sample in the worst case scales linearly 

with the amount of sequence data (bp) and linearly with the number of homologs but 

quadratically with the length of the individual segments. Segments with an excessive 

number of homologs, most often short segments of abundant and uninformative re-

gions, have a negative impact on the program run-time. We currently limit the num-

ber of homologs per query to the  top-scoring 50 by default in our pipeline scripts 

(configurable run-time parameter in program alignments-filter or directly in the local 

alignment  search program),  before  passing  them to  taxator.  Other  tested  values 

gave similar results and the parameter, if changed, should be chosen based on 

hardware limitations. If this parameter is set lower, then the number of reference seg-

ments drops below a critical value such that no outgroup can be determined for some 

q and which therefore remain unassigned (but without impacting the taxon ID of other 

segments).

II. Consensus Binning Algorithm

Due to sparse segments and taxonomic assignment thereof with  taxator in 

stage two of the workflow (Fig. 1b), a final processing step (Fig. 1c) is required to de-
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termine a taxon ID for the entire query sequence. Therefore we have implemented a 

simplistic, weighted consensus assignment scheme in the program binner, which op-

tionally permits to apply custom constraints, e.g. the minimum percentage identity 

(PID) for classification at the species level or the removal of taxa with low counts in 

the whole sample. However, there are currently only  two mandatory run-time pa-

rameters to control the actual post-processing consensus algorithm. First we define 

the support of a query segment to be the number of total identical positions to the 

best reference segment. The first run-time parameter specifies the minimum com-

bined support at any rank (50 positions by default) and serves to ignore false pre-

dictions caused by short and often noisy segments. The other parameter specifies 

the minimum percentage of the summed support (70% by default) to allow a ma-

jority taxon to outvote a contradicting minority. Inconsistent taxa below this support 

value are resolved by the LCA operation until the threshold is reached. Probably due 

to the conservative nature of the RPA, we found those two parameters to have mini-

mal impact on the binning results in practice. The output of taxator additionally in-

cludes the taxa in the evolutionary neighborhood, a score reflecting the agreement 

between the segment tree and the taxonomy, as well as a score for interpolation of  

the query-branch location between the R and X nodes of Fig. 2. We provide Python 

language bindings for processing with other applications.

III. Taxonomy and Phylogeny

Taxator-tk assumes that the NCBI taxonomy used for the assignment correctly 

captures the evolutionary process of speciation, although we know that the catego-

rization of some taxa might be inconsistent with their evolution. If the phylogenetic in-

formation inferred from similarity scores disagrees with the taxonomic structure, as-

signments are made to a consistent higher rank. For instance horizontal gene trans-

fer and upstream sequence misassembly can cause multiple similar copies of a se-

quence to be distributed across unrelated taxa. In case a query sequence cannot be 

traced by the algorithm to have evolved with either copy, it is usually assigned to the 

LCA of these clades. However, if the donor clade is unknown, the query may also be 

assigned to the recipient clade and the horizontal transfer or misassembly can go un-

detected. Thus assignment errors caused by the evolution of genes, upstream tech-

nical errors or taxonomy cannot always be eliminated in this framework. It  remains to 

be  assessed  whether  the  use  of  an  alternative  microbial  taxonomy such  as  the 
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GreenGenes1 or the SILVA2 taxonomy would improve on the taxonomic assignment.

IV. Comparison and Innovations

Taxator-tk shares some ideas with previous programs: Starting with MEGAN3, 

which uses local alignments scores to define a "neighborhood of related sequences" 

and then makes a taxonomic estimate which is the LCA of the corresponding taxa.  

This neighborhood threshold is a percentage of the local alignment score and can be 

interpreted to reflect the rate of evolution within a taxonomic group. Its value is empir -

ical and lacks stronger justification. The neighborhood definition has been improved 

in taxator-tk and other programs. To our knowledge, SOrt-ITEMS4 was the first algo-

rithm to use the logic of realignment to the best reference (termed reciprocal similar-

ity)  for  read assignment but  is  restricted to  protein  level  alignment  and is  imple-

mented as a wrapper around (the legacy C version of) BLAST+3. Protein-level align-

ment in general triples the run-time of the local alignment step (translation into three 

frame shifts) and cannot make use of faster nucleotide aligners.  SOrt-ITEMS also 

uses fixed similarity thresholds in terms of percentage identity to define universal lev-

els of conservation within taxonomic groups assuming the same rate of evolution for 

different  genetic  regions  and  clades.  Furthermore  SOrt-ITEMS was  primarily  de-

signed for reads and if it performs well for longer sequences, its run-time is expected 

to increase proportionally with input sequence lengths. Both follow-up programs taxa-

tor-tk and  CARMA36 adopted the logic of reciprocal alignment, extended it and re-

moved the assumption of universal conservation levels. CARMA3 accounts for a het-

erogeneous rate of evolution for different genetic regions. The initial identification of 

similar sequences in the reference can be based on nucleotide or protein  BLAST 

search or profile Hidden Markov Models with HMMER7. In BLAST mode, CARMA3, 

like SOrt-ITEMS, uses a single reciprocal alignment search and then extra or interpo-

lates alignment scores to select a taxonomic rank for prediction. It therefore assumes 

a parameterized model for the conservation level at a taxonomic rank: a linear func-

tion which is fitted to the observed local alignment scores.

With  taxator-tk,  we use a non-parametric  score  ranking  algorithm,  instead. 

Also, to our knowledge, we provide the first algorithm to determine a proper outgroup 

and to sparsify the input data being able to assign distinct regions on the query se-

quence to possibly different taxonomic groups. Also, we at most assume segment-

wise constant rates of evolution (equally long branches from a common ancestor). 
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This makes the major algorithmic component parameter-less and robust in itself, in-

dependent of the individual segment sizes. Through the sparsification procedure it in-

corporates structural rearrangements among distant relatives and scales better with 

the length of the input sequences. The individual segment assignments allow for a 

robust consensus voting scheme for the assignment of entire sequence fragments. 

The segment-specific classifications could also be used to detect the inconsistent 

taxonomic composition of  an input  sequence which  can be caused by  horizontal 

gene transfers events (HGTs) and assembly errors. Different from most previous ap-

proaches, taxator-tk was developed for and tested using fast nucleotide sequence lo-

cal alignments instead of protein sequence alignments, although for the local align-

ments in stage 1 of the workflow both can be used. Our comparisons, however, sug-

gest that the additional computations which are required for protein-level homology 

search do not considerably improve the results with taxator-tk. Thus, taxonomic bin-

ning of a metagenome sample with taxator-tk requires no more than specification of 

reference sequences, their taxonomic affiliations and an aligner like BLAST or LAST8. 

On the implementation side, all workflow steps for taxonomic assignment with taxa-

tor-tk are designed in a modular way making it easy to save, compress, reuse or re-

compute results. The computation-intensive classification of segments in  taxator is 

run in parallel on many CPU cores while at the same time using the open source C++ 

algorithm library SeqAn9 for fast pairwise alignment.

V. Performance Measures

As metagenome datasets can have varying taxonomic composition in terms of 

which taxa are present and their relative abundances, this needs to be taken into  

consideration in evaluating taxonomic assignment methods. If an algorithm performs 

better for some clades than for others at a given rank we call it taxonomically biased. 

Oftentimes a classifier is biased, if it uses parameters that fit one clade better than 

another. This can be the case if the parameters were chosen to give good overall as-

signment accuracy (low total number of false predictions) on training data with biased 

taxonomic composition. Such a method is optimized to perform well for the abundant 

taxa of these particular training data and will not generalize well when applied to a 

sample of different taxonomic structure and abundances. To account for uneven tax-

onomic composition in evaluation datasets and to obtain comparable performance 

estimates across datasets of different taxonomic composition, we used as the pri -
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mary evaluation measure the bin-averaged precision (or positive predictive value), 

also known as macro-precision.

(Equation V.1)

where  is number of all predicted bins and

(Equation V.2)

True positives  are the correct assignments to the  bin and false positives  

the incorrect assignments to the same bin.

The macro-precision is the fraction of correct sequence assignments over all 

assignments to a given taxonomic bin, averaged over all predicted bins for a given 

rank. For falsely predicted bins which do not occur in the data, the precision is there-

fore zero. This value reflects how trustworthy the bin assignments are on average 

from a user’s perspective, as it is averaged overall predicted bins.

In addition to the macro-precision, we report the raw numbers of true and false 

predictions for every cross-validation, as well as a quick overall precision for pooled 

ranks. This overall  precision is most informative for species+genus+family and re-

ports the fraction of true classifications among the predictions for all these ranks in a 

single pooled bin.

(Equation V.3)

We measure the taxonomic bias of a method in terms of the standard devia-

tion over all individual bin precisions.

(Equation V.4)

where

(Equation V.5)

The standard deviation is small if all predicted bins have a similar precision. A 

universally good method should have a high macro-precision with a low taxonomic 
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bias.

The  recall (or  sensitivity) is a measure of completeness of a predicted bin 

and, analogously, the macro-recall is the fraction of correctly assigned sequences of 

all sequences belonging to a certain bin, averaged over all existing bins in the test  

data10.

(Equation V.6)

where  is the number of all existing bins in the test data and

(Equation V.7)

False negatives ( ) are the assignments belonging to the th bin but which where 

classified to another bin or left unassigned.

The macro-recall  reflects how well  the classifier  works more from a devel-

oper’s perspective than from the user's perspective, as it is usually not known which 

predicted bins correspond to existing ones and which do not.

VI. Low-abundance Filtering

The number of predicted bins at each rank can be quite large, at most the 

number of known taxa in the taxonomy and reference sequence data. When noise is 

considered to occur evenly distributed across this large output space, bins with few 

assigned sequences are more likely to be falsely  identified,  than larger bins (the 

chance to independently classify the same bin by chance n times is , where  is 

the number of possible bins). Since the macro precision is an average over all pre-

dicted bins, it is heavily affected by bins with few sequences assigned. As a result,  

classifiers that predict clades present at low frequencies in the sample score badly 

under this measure. To correct for this effect, we define a truncated average preci -

sion ignoring the least abundant predicted bins and consider only the  largest pre-

dicted bins constituting a minimum fraction  of the total assignments (equal 

size bins are also included). This modification acts as a noise filter and accounts for 

different behavior of classifiers without explicitly considering the size of the model 

space or the number of existing species in the actual sample. We set  to 0.99 for 

our evaluations.
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VII. Cross-validation

Despite the limitations of simulated metagenomes, which incorporate assump-

tions about sequencing error rates or species abundance distributions, it is very infor-

mative to evaluate taxonomic assignment methods on simulated sequence data as 

real metagenome samples lack taxon IDs for evaluation. Our canonical way of evalu-

ating a method on simulated data is a version of  leave-one-out cross-validation: 

Each query sequence is classified by removing all identical or related sequences up 

to a given rank from the reference collection: For example, to assess the perfor-

mance in assigning query sequences from a new species, all sequences belonging to 

this species are removed from the reference sequence collection for the classifier. 

Performance measures (macro-recall,  macro-precision),  along with  other  statistics 

(true/false/unassigned data, overall precision, bin counts) which are available in the 

coupled tables, were normally calculated in units of the number of assigned base-

pairs or the number of assigned sequences, if these had comparable lengths. These 

values were calculated for all ranks (species, genus, family, order, class, phylum, do-

main/superkingdom) for seven simulations:  either all reference data was used (per 

query) or all data from the query species, genus, family, order, class or phylum was 

removed from the reference data prior to classification. The assignments of these 

seven  cross-validation  experiments  were  averaged  for  a  combined  performance 

summary with standard measures.

VIII. Consistency Analysis

In order to evaluate the predictions for real metagenome samples where no 

underlying correct taxon IDs are known for the sequences, we assigned sequences 

linked by assembly and calculated an assignment consistency value. We split long 

contigs into multiple pieces and classified each piece independently. Assuming that 

the sequence assembly was correct in the first place, contradicting assignments of 

pieces that originate from the same contig represent false assignments. This unveils 

part of the errors made by a particular method but some, if not the majority, will go 

undetected because the actual  ID stays unknown and the assignments for a contig 

can be consistently wrong. Hence these results are generally more difficult to inter-

pret than those from simulated data.

IX. Sequence Homology Search via Local Alignment

In the course of evaluation we created many local alignments as input to the 
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taxonomic assignment programs  CARMA3,  MEGAN4/5 and  taxator-tk. The nucleo-

tide alignments were mostly generated using the alignment program LAST (version 

320) because it  ran faster without noticeable differences in the output alignments 

than BLAST+/blastn (version 2.2.28+). The protein-level alignments which we used in 

our evaluations were generated with  BLAST+/tblastx (version 2.2.28+) because we 

wanted to compare with identical nucleotide reference sequences. We support and 

tested with different alignment programs for the fact that BLAST is standard and easy 

to parallelize whereas LAST has a faster algorithm but high memory requirements. It 

ran with comparable speed to the BLAST+/megablast algorithm which has a limited 

sensitivity and in practice resulted in a two to four times reduced amount of query se-

quences being aligned and classified. For a detailed comparison of alignment pro-

grams and how LAST compares to other programs such as  RAPSEARCH211 and 

BLAT12,  consider  Niu  et  al.13 and  Darling  et  al.14.  In  our  evaluations,  LAST was 

roughly  50  to  200  times  faster  than  BLAST+/blastn and  about  as  fast  as 

BLAST+/megablast (which has much reduced sensitivity).  LAST is also tunable for 

better sensitivity with protein-coding nucleotide sequences using a special form of 

seeding. If  other alignment programs are found to be better-suited for a particular 

data type, these can easily be incorporated into the provided workflows. For instance, 

local protein sequence alignments can be performed in the homology search step, 

e.g.  by  using  BLAST+/tblastx.  There  are  fast  aligners  such  as  RAPSEARCH2, 

PAUDA15 and DIAMOND16 that allow searching for homologs in large reference col-

lections of amino acid sequences. To produce compatible input for taxator-tk,  the 

amino acid alignment positions must be converted into nucleotide positions.

For our short sequence length evaluation (Supplementary Fig. S6-S8), evalua-

tion of a published SimMC scenario (Supplementary Fig. S21) and evaluation of a 

simulated metagenome sample with 49 species (Fig.  3,  Supplementary Fig.  S11-

S13),  we  used  a  standard  BLAST+/blastn  (version  2.2.28+) and  BLAST+/tblastx 

search. We chose the default alignment parameters and scoring schemes with each 

aligner. The generated alignments were then provided in BLAST tabular format to be 

usable with CARMA3 and MEGAN4/MEGAN5. Taxator-tk reads a simplistic tab-sep-

arated alignment format that can be generated directly with BLAST+ or with conver-

sion scripts which we provide for the MAF alignment format of LAST. This arrange-

ment ensures that  taxator-tk can be easily adapted to profit from advancements in 

the field of local alignment in future. Users can also employ amino acid level align-
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ment if the final output is mapped back to positions on the nucleotide reference and 

query sequences. The easiest way to achieve this is to use BLAST+/tblastx although 

this is computationally more demanding than directly searching a collection of protein 

sequences for which also nucleotide sequences are available.

X. Program Parameters and Versions

For  taxonomic  assignment  with  MEGAN4 (version  4.70.4)  we  used 

minscore=20,  toppercent=20,  minsupport=5  and  mincomplexity=0.44  parameters. 

With  MEGAN5 (version  5.4.3),  we  used  the  default  options  minsupport=10, 

minscore=50,  max_expected=0.01,  minimal_coverage_heuristic=on  and  top_per-

cent=20, as with  MEGAN4.  In  CARMA3, we used the standard parameters in the 

contained configuration file. Kraken (version 0.10.4b) was also applied with the stan-

dard commands and without shrinking the database (shrink_db.sh).  Taxator-tk (ver-

sion 1.1.1-extended) was run with standard settings, being restricted to the 50 best 

scoring local alignments to avoid long run-times for some of the query sequences. 

This is purely a convenience filter at the current state of development and is meant to  

be replaced by an adaptive per-segment heuristic.

XI. 16S Cross-validation

We evaluated the  performance of  taxator-tk in  classifying  the  most  widely 

used taxonomic marker gene in studies of microbial diversity, the 16S rRNA gene, as 

a proof  of  concept.  For  our  evaluation,  we extracted 7,175 annotated 16S rRNA 

genes (Suppl. Fig. 5) each with a minimum length of 1 kb from mRefSeq47 (Suppl. 

Fig. 9). The sequences were assigned with  taxator-tk using the entire mRefSeq as 

reference, not just 16S genes. The cross-validation assesses the performance of 16S 

gene assignment in a wide range of situations. The performance statistics were cal-

culated based on the number of assigned sequences, as all have comparable length. 

When using the complete reference sequences, 87% of sequences were assigned to 

the ranks of species, genus and family  with  100% accuracy (Supplementary Fig. 

S3b), the remaining 13% were correctly assigned at higher ranks. This is an ideal sit -

uation showing the baseline on our dataset (in terms of the assigned rank depth). In 

more realistic simulations, when we tested assignment of genes from novel species 

or novel higher-level clades, assignments were accordingly made to higher ranks in 

most cases. For instance, when simulation novels species, 2,678 contigs were as-

signed to the correct genera, while 491 erroneous species and genus assignments 
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were made. The macro-precision in the combined cross-validation (Fig. 2) was al-

ways above 92%, with standard deviations from 10 to 25%, which demonstrates a 

good and even performance of taxator-tk for all clades in the case of 16S rRNA data.

XII. FAMeS Cross-validation

On the FAMeS contig datasets, taxator-tk produced fewer errors for all taxo-

nomic ranks than  MEGAN4,  which was accompanied by a moderate reduction in 

macro-recall throughout all individual experiments and in the combined cross-valida-

tion experiments: For SimMC, the macro-precision was three to four times as large 

as  MEGAN4's  for  species  to  order,  with  higher  macro-recall  (Supplementary Fig. 

S17-S18). The species to family overall precision was ~91% for taxator-tk (~59% for 

MEGAN4) and taxator-tk estimated 54 species bins (MEGAN4 188) for the 47 actual 

species in SimMC. Similarly, for SimHC, taxator-tk achieved a higher macro-precision 

for all ranks, which was most pronounced for class and phylum (Supplementary Fig. 

S19-S20). By contrast, the macro-recall was slightly reduced and both methods un-

derestimated the 96 existing species in SimHC.

XIII. Supplementary Files

The PDF attachment includes informative interactive charts and files which are 

necessary to reproduce the results which are shown in the article. Larger benchmark 

data can be downloaded from http://algbio.cs.uni-duesseldorf.de/software/.
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Supplementary Figure S1: Query sequence segmentation and segment splicing

Query and corresponding reference segments from local alignment region extension and splicing. 
Blue bars correspond to original local alignment regions on reference nucleotide sequences which 
are positionally aligned to the query nucleotide sequence in red. These alignments are generated by 
a local (nucleotide) sequence aligner such as BLAST or LAST before running taxator. If alignments 
overlap on the query, they are joined into query segments which are flanked by regions without 
detected similarity to any known reference sequence. Reference segments are constructed from the 
original alignment reference regions (blue) by extension (gray bars) with the same number of 
nucleotides which are missing to match the length of the query segment. The corresponding sets of 
homologs are the input to the core taxonomic assignment algorithm in taxator.
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Supplementary Figure S4: Taxonomic composition of microbial RefSeq 47

Taxonomic composition down to family level of the microbial (bacteria, archaea and viruses) 
portion of the RefSeq47 sequence data collection using Krona (Ondov et al., 2011). An interactive 
version can be found in the supplementary files (RefSeq47.krona.html). Abundance is measured in 
terms of accumulated sequence lengths per clade.
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Supplementary Figure S5: Taxonomic composition of 16S genes extracted from RefSeq47

Taxonomic composition down to genus level of the 16S benchmark dataset using Krona (Ondov et 
al., 2011). The dataset was simulated by extracting every annotated 16S gene in RefSeq47 which 
was at least 1000 bp long. An interactive version can be found in the supplementary files (refseq-
16S.krona.html). Abundance is measured as the number of 16S genes.
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Supplementary Figure S9: Taxonomic composition of microbial RefSeq54

Taxonomic composition down to family level of the microbial (bacteria, archaea and viruses) 
portion of the RefSeq54 sequence data collection using Krona (Ondov et al., 2011). An interactive 
version can be found in the supplementary files (RefSeq54.krona.html). Abundance is measured in 
terms of accumulated sequence lengths per clade.
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Supplementary Figure S10: Taxonomic composition of simArt49e

Taxonomic composition of the simulated metagenome sample simArt49e using Krona (Ondov et 
al., 2011). An interactive version can be found in the supplementary files (simArt49e.krona.html). 
Abundance is measured in terms of accumulated contigs lengths. The reads for this dataset were 
simulated using equal coverage for every strain, so differences in the data proportions result from a 
variable genome size and assembly bias.
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Supplementary Figure S15: Taxonomic composition of SimMC/AMD

Taxonomic composition of the FAMeS simulated metagenome sample SimMC/AMD using Krona 
(Ondov et al., 2011). An interactive version can be found in the supplementary files 
(SimMC.krona.html). Abundance is measured in terms of accumulated contigs lengths.
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Supplementary Figure S16: Taxonomic composition of SimHC/soil

Taxonomic composition of the FAMeS simulated metagenome sample SimHC/soil using Krona 
(Ondov et al., 2011). An interactive version can be found in the supplementary files 
(SimHC.krona.html). Abundance is measured in terms of accumulated contigs lengths.
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Supplementary Figure S23: Parallel speedup of program taxator
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Execution time analysis with taxator for parallelized processing with multiple CPU cores. 
Taxonomic placement of sequence segments with taxator on input alignments for sequences of 
length 1000 bp (syn1000 data-set aligned against mRefSeq47 with LAST). The speedup was 
calculated using wall clock time for a parallelized run relative to serial execution with one CPU 
thread. With multiple threads, there is always one producer thread (consumer-producer model). 
Thus for more than two threads, multiple consumers work on the input data in parallel. An 
approximate linear scale-up was observed up to 15 threads and saturation effects appear when using 
20 CPU cores on our system.

, with

: serial execution time

: execution time using p threads and CPU cores
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Supplementary Figure S24: Effect of input sequence length and segmentation on taxator-tk 
processing time.
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(b)
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We processed approximately the same number of sequences of length 100, 500 and 1000 bp with 
taxator-tk (syn100,syn500,syn1000), once with the segmentation procedure being enabled (a) and 
once with segmentation disabled (b). The run-time increases for both cases are approximately linear 
with the input length, where the slope depends on the completeness of the reference sequence data. 
With all reference data available, the run-time increases more than linear, as there is no 
segmentation of queries during computations. For all other cases, segmentation substantially 
decreases the execution time.
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Supporting Data

The simulated contigs, features files and scripts to reproduce the results are deposited under:
DOI:10.5281/zenodo.201076
The CAMI reference sequence data and corresponding taxonomy used in this article is available as
refpack “microbial-full_20150430” for the software taxator-tk.

Supplementary Methods

Poisson approximation for absolute abundance

When sequencing reads have been mapped to the contigs, we can quantify the number of reads that
covers each position of each contig. This is the vector x with len(x) = L. We model the positional
read coverage using a Poisson event model and assume that the positions are independent according to
the Lander-Waterman statistics so that the joint likelihood is a product of positional likelihoods. Ad-
ditionally, we scale the likelihood to a single event by taking the geometric mean. After simplification,
the formula almost looks like the the Poisson over the mean contig coverage.

L(θ | x) = L

√√√√ L∏
i=1

θxi

xi!
e−θ =

(∏L
i=1 θxi∏L
i=1 xi!

e−θL

) 1
L

= θ̄

L

√∏L
i=1 xi!

e−θ (1)

The data term in the denominator is a constant factor which is not dependent on θ. It is the geometric
mean over the xi! values which we approximate using the arithmetic mean x̄ of the positional contig
coverage values.

L

√√√√ L∏
i=1

xi! ≈
(

1
L

L∑
i=1

xi

)
! = x̄! (2)

The approximation is good if the variance of the xi is low. We use the approximation to avoid to
handle other values than the mean which is usually computed. Since the term is a data constant, it is
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irrelevant for model comparison where only θ differs among the genomes. The approximated likelihood
using mean values is the standard Poisson formula.

L′(θ | x) = θx̄

x̄!
e−θ (3)

The log-likelihood is used in the MGLEX implementation for computational reasons. It is directly
visible that the calculation is linear in the input.

ℓ′(θ | x) = − log x̄! + x̄ log θ − θ (4)

MLE for Poisson

The multi-sample log-likelihood is the weighted sum over the sample log-likelihoods using mean vector
ai with length len(ai) = M . This corresponds to the geometric mean in the exponential likelihood
formula.

ℓ(θ | ai) = 1
M

M∑
j=1

− log ai,j ! + ai,j · log θj − θj (5)

We select θ to maximize the joint log-likelihood f(θ) on the training data a. The joint likelihood is
a weighted sum of the log-likelihood values of all N contigs. Each contig’s weight wi is the contig
length.

f(θ) =
N∑

i=1
wi · ℓ(θ | ai) =

N∑
i=1

wi · 1
M

M∑
j=1

− log ai,j ! + ai,j log θj − θj (6)

The partial derivative of f with respect to θj for all j ∈ {1...M} is given by

∂f

∂θj
=

N∑
i=1

wi

M

(
ai,j

θj
− 1

)
(7)

We find the zeros of f to determine the MLE θ̂j .

N∑
i=1

wi

M

(
ai,j

θj
− 1

)
= 0 ⇔

N∑
i=1

wi ai,j

θj
=

N∑
i=1

wi ⇔ θj =

N∑
i=1

wi ai,j

N∑
i=1

wi

(8)

We see that the estimates for θj maximize the joint log-likelihood because the second partial derivative
with respect to θj is always negative.

∂2f

∂θ2
j

= −
N∑

i=1

wi ai,j

M θ2
j

(9)
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Binomial approximation for relative abundance

Similarly to the Poisson approximation for absolute abundance, we derive the Binomial approximation
via a product of positional Binomials. Vector x with length len(x) = L holds the positional read
coverage of a contig with length L for one sample and vector s with same length holds the sum of
positional read counts for the position i of the contig across all samples. There must be more than
one sample to apply this model. We write the likelihood normalized to a single event as

L(θ | x) = L

√√√√ L∏
i=1

(
si

xi

)
θxi (1 − θ)(si−xi)

= L

√√√√ L∏
i=1

(
si

xi

)
· L

√√√√ L∏
i=1

θxi · L

√√√√ L∏
i=1

(1 − θ)(si−xi)

= L

√√√√ L∏
i=1

(
si

xi

)
· θx̄ · (1 − θ)(s̄−x̄)

(10)

The geometric mean of positional binomial coefficients (first term) is again a constant factor which is
not dependent on θ. We approximate this term using the arithmetic mean.

L

√√√√ L∏
i=1

(
si

xi

)
=

L

√
L∏

i=1
si!

L

√
L∏

i=1
xi! · L

√
L∏

i=1
(si − xi)!

≈
1
L

L∑
i=1

si!

1
L

L∑
i=1

xi! · 1
L

L∑
i=1

(si − xi)!

≈
1
L

L∑
i=1

si!

1
L

L∑
i=1

xi! ·
(

1
L

L∑
i=1

si − 1
L

L∑
i=1

xi

)
!

=
(

s̄

x̄

)
(11)

The approximation is good if the differences in the coefficients are small. We use the approximation
to avoid to handle other values than the mean which is usually computed. Since the term is a
data constant, it is irrelevant for model comparison where only θ differs among the genomes. The
approximated likelihood using mean values is the standard Binomial formula.

L′(θ | x) =
(

s̄

x̄

)
θx̄ (1 − θ)(s̄−x̄) (12)

The log-likelihood is used in the MGLEX implementation for computational reasons. It is directly
visible that the calculation is linear in the input.

ℓ′(θ | x) = log
(

s̄

x̄

)
+ x̄ log θ + (s̄ − x̄) log(1 − θ) (13)
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MLE for Binomial

The multi-sample log-likelihood is the weighted sum over the sample log-likelihoods using mean vector
ri with length len(ri) = M . This corresponds to the geometric mean in the exponential likelihood
formula.

ℓ(θ | ri) = 1
M

M∑
j=1

log
(

Ri

ri,j

)
+ ri,j log θj + (Ri − ri,j) log(1 − θj) (14)

Ri is the sum of the abundance vector ri.

Ri =
M∑

j=1
ri,j (15)

Because both Ri and ri,j can be real numbers, we need to generalize the binomial coefficient to positive
real numbers via the gamma function Γ.

log
(

n

k

)
= log Γ(n + 1) − log Γ(k + 1) − log Γ(n − k + 1) (16)

We select θ to maximize the joint log-likelihood f(θ) of the training data r. The joint likelihood is
a weighted sum of the log-likelihood values of all N contigs. Each contig’s weight wi is the contig
length.

f(θ) =
N∑

i=1
wi · ℓ(θ | ri)

=
N∑

i=1
wi · 1

M

M∑
j=1

log
(

Ri

ri,j

)
+ ri,j log θj + (Ri − ri,j) log(1 − θj)

(17)

The partial derivative of f with respect to θj for all j ∈ {1...M} is given by

∂f

∂θj
=

N∑
i=1

wi

M

(
ri,j

θj
− Ri − ri,j

1 − θj

)
(18)

We find the zeros of f to determine the MLE θ̂j .

N∑
i=1

wi

M

(
ri,j

θj
− Ri − ri,j

1 − θj

)
= 0

⇔ (1 − θj)
N∑

i=1
wiri,j = θj

(
N∑

i=1
wiRi −

N∑
i=1

wiri,j

)

⇔ 1
θj

N∑
i=1

wiri,j =
N∑

i=1
wiRi

⇔ θj =

N∑
i=1

wiri,j

N∑
i=1

wiRi

(19)
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We see that the estimates for θj maximize the joint log-likelihood because the second partial derivative
with respect to θj is negative for our estimates θ̂j for all j ∈ {1...M}.

∂2f

∂θ2
j

= −
Riθ

2
j − 2ri,jθj + ri,j

(θj − 1)2 θ2
j

(20)

−
Riθ̂

2
j − 2ri,j θ̂j + ri,j(

θ̂j − 1
)2

θ̂2
j

< 0 ⇔
N∑

i=1
wiri,j <

N∑
i=1

wiRi (21)

The last inequality is true by definition of Ri (assuming ri,j ̸= Ri for simplicity).

Frequency model for nucleotide composition

The frequency model assumes independence of features so that the likelihood can be written as a
product of likelihoods for all features. The feature vector x for a contig contains nucleotide features
such as all the absolute counts for all possible 5-mers. The length len(x) is M . The total sum of
counts for the contig is S.

S =
M∑

i=1
xi (22)

The likelihood is normalized to a single event via the geometric mean.

L(θ | x) = S

√√√√M∏
i=1

θxi
i =

M∏
i=1

θ
xi
S

i =
M∏

i=1
θ

x′
i

i (23)

Therefore, we directly use the normalized features.

x′
i = xi

M∑
j=1

xj

(24)

The log-likelihood is used in the MGLEX implementation for computational reasons. It is directly
visible that the calculation is linear in the input.

ℓ(θ | x′) =
M∑

i=1
x′

i log θi (25)

MLE for frequency model

We select θ to maximize the joint log-likelihood f(θ) on the training data c. The joint likelihood is
a weighted sum of the log-likelihood values of all N contigs. Each contig’s weight wi is the contig
length.

f(θ) =
N∑

i=1
wi · ℓ(θ | ci) =

N∑
i=1

wi ·
M∑

j=1
ci,j log θj (26)
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We consider the constraint that sum(θ) = 1 because these are relative frequencies in each genome.

M∑
j=1

θj = 1 (27)

Using the Lagrange method, we set up a function to maximize the joint data log-likelihood f(θ) under
the given constraint.

Λ(θ, λ) = f(θ) + λ

 M∑
j=1

θj

− 1

 (28)

The partial derivative of Λ with respect to θj for all j ∈ {1...M} is given by

∂Λ
∂θj

=
N∑

i=1

wi ci,j

θj
+ λ (29)

We find the zeros of Λ to determine the MLE θ̂j .

∂Λ
∂θj

= 0 ⇔ θj =

N∑
i=1

wi ci,j

−λ
(30)

Substituting θj in Suppl. Equation 27 gives

− λ =
N∑

i=1
wi

M∑
j=1

ci,j =
N∑

i=1
wi (31)

The last simplification works because we work with normalized features that sum to one. Finally, we
substitute −λ in (1) for the MLE.

θ̂j =

N∑
i=1

wi ci,j

N∑
i=1

wi

(32)

Multi-layer frequency model for sequence similarity

We adapted the simple frequency model to weighted taxa by transforming the associated weights
(i.e. alignments scores) into a set of sparse vectors xl, one for each taxonomic rank. There are L such
layers. The model likelihood is a product of observation probabilities, like in the standard simple
model, but the layers are also connected by multiplication.

L(θ | x) =
L∏

l=1

len(xl)∏
j=1

θ
xl,j

l,j (33)

The small difference to the simple model in the previous section is that there are no sequence length
weights and that the feature vectors are not normalized. The multiplication of layers is a simplification
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because we know that taxonomic ranks are not independent. However, the model proved to be simple
and effective for our purposes.

MLE for multi-layer frequency model

Once the assumption of layer independence has been made, the problem simplifies to L independent
simple frequency models with separate feature vectors and model parameters. The MLE derivation
for each of these models is equivalent to the previous section. Tl is the number of features on level l.

θ̂l =

N∑
i=1

ti,l

Tl∑
j=1

N∑
i=1

ti,l

(34)

Metagenome simulation

We chose genomes according to the CAMI2015 (www.cami-challenge.org) medium complexity toy
dataset which contained 450 different strains. Because some of the strains were simulated and had
no accessible genome data, we reduced the dataset to 400 genomes with corresponding accessions.
These comprised both finished and draft genomes. We sampled the abundance distributions from
a lognormal with expectation value one and variance one, which produced abundance value in an
reasonable range and formed relative abundance by normalization (Supplementary Table 1, column
S1). We derived three secondary samples (Supplementary Table 1, columns S2, S3, S4) by separately
applying continuous (exponential) growth to a randomly chosen set of genomes which each constituted
100 genomes (25%) in the primary sample using the following formula.

abundance′(genome) = abundance(gnome) · 2growth_rate(genome) (35)

We modeled the change of the community composition in reaction to variation of environmental
parameters, for instance if the growth medium is altered with no space restrictions then community
members will grow according to their genomic potential. In our simplified growth model we choose the
growth rate uniformly at random between one and ten regardless of the actual genome. We generated
three secondary abundance profiles using the described procedure. We then simulated HiSeq Illumina
reads for each sample using the ART simulator with read length 150 bp, insert size 270 bp and insert
size standard deviation 27 bp. This corresponds to a common experimental setting because the reads
are likely to overlap in the read assembly step. We chose a large yield of 15 Gb per sample to also
cover genomes with low sample abundance (see Supplementary Table 1).

Feature generation

All features are represented as separate text files, which can be compressed. Each line corresponds to
a sequence but does not contain sequence identifiers. Therefore, it is required that the number and
order of lines are identical in all features files.

Sequence weights

We used the following GNU awk v4.0.1 script to calculate the length of each FASTA entry which we
saved as contigs.seqlen.
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#!/usr/bin/awk -f
BEGIN { id="\000" } # > not allowed in FASTA header
/^>/ {

if( id != "\000" ) {
printf "%s\t%s\n", id, sum;

}
id=substr( $0, 2 );
sum = 0;

}
! /^>/ { sum+=length($0) }
END { printf "%s\t%s\n", id, sum }

5-mer frequencies

We derived 5-mer frequencies for the gzip-compressed FASTA sequences using the program
fasta2kmerS using the following GNU Bash syntax

zcat contigs.fna.gz |
fasta2kmersS -i <(cat) -f >(cat) -j 5 -k 5 -s 0 -h 0 -n 0 |
tr '\t' ' ' > contigs.kmc

Taxonomic annotation

We generated alignments using NCBI BLAST+/blastn v2.2.28+ in taxator-tk tabular format and
filtered out all species level alignments using program alignments-filter from taxator-tk v1.3.3 which
effectively removes the genomes of the same species from the reference sequences. Next we ran the
program taxator with the LCA algorithm using only the best hits and processed the resulting GFF3
file. We used the alignment score as weight for each taxon and combined the annotations for each
contig. Finally, we shortened the taxon paths using numbers and applied the described accumulation
scheme to project alignment score onto higher-level taxa (see Table 1).

Average read coverage

We aligned each sample’s simulated read data to the artificial contigs with Bowtie v2.2.7 and converted
the resulting SAM files to sorted BAM

bowtie2-build contigs.fna contigs.bowtie2
bowtie2 -x contigs.bowtie2 -1 forward.fq.gz -2 reverse.fq.gz |
samtools view -@ 5 -b - < input.sam | samtools sort -@ 5 - out

and then calculated the average read coverage using BedTools v2.25 and GNU awk v4.0.1

genomeCoverageBed -ibam out.sorted.bam -g contigs.seqlen -d -split |
awk 'BEGIN{IFS=OFS=FS="\t"}

{if($1 == last){ s+=$3; c+=1;}
else{if(s){print last, s/c; s=$3}; c=1; last=$1}}
END{print last, s/c}' > out.twocol.cov

Contigs which recruited no reads are omitted by BedTools, therefore zero values must be added
afterwards by comparison to the sequence length file. Finally, we merged the coverage columns in
Bash using
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paste -d ' ' <(cut -f 2 < 1.twocol.cov) <(cut -f 2 < 2.twocol.cov) [...] > out.cov

Performance measures

In order to evaluate the quality of the predictions and to pick the optimal β parameter for the posterior
estimation, MGLEX implements two measures: a mean squared error (MSE) and the mean pairwise
coclustering (MPC) probability. Both require as input a label probability matrix which defines to
which genome (column) each sequence (row) belongs, in terms of probabilities. In our simulation,
the genome column corresponding to the source genome contained a one, all other columns a zero.
A prediction probability matrix of the same form is required for comparison. In the case of ML
predictions, this matrix also contains only ones and zeros and continuous values for the posterior
estimation. Because sequences typically have different lengths, the user must provide a file with the
sequence lengths (see AWK script for sequence weight file generation).

Mean squared error (MSE)

The mean squared error is the square root of the average squared difference between the label and
the prediction matrix per contig (a value between zero and one). It is weighted by the length of the
sequence.

MSE =

√√√√ 1
4
∑N

i=1 wi

N∑
i=1

wi

M∑
j=1

(Li,j − Pi,j)2 (36)

Here, N is the number of sequences, M the number of genomes, w is a vector with the sequence
lengths, L the label probability matrix and P the prediction probability matrix.

Mean pairwise coclustering (MPC)

The mean pairwise coclustering probability reports how likely a pair of sequences chosen from any
genome among the real genomes, are found in the same predicted genome. The MPC averages over
both, the pairs in the genomes and the genomes, regardless of their size. Since all sequences in
our evaluations have the same length, we report the unweighted version of the MPC. The MPC is a
probability between zero and one. It is easier to interpret than the MSE but requires more computation
because it needs to consider all possible sequence pairs.

MPC = 1
|C|

|C|∑
i=1

 1
|Ci|(|Ci| − 1)

∑
s1,s2∈Ci

s1 ̸=s2

p(s1|Ci)p(s2|Ci)

 (37)

Here, the ith genome is a set Ci which contains sequences si and C is a set which contains all genomes
Ci.

Genome bin posterior

We calculate the bin posterior of a contig over the genome bins by normalization of the different
likelihood values for each of the considered bins, so that their values sum to one. We assume, that
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the bin posterior is uniform over all G genome bins, so there is no additional weighting, for instance
by genome size. L(genome | contig) is a vector which holds the likelihood of a specific contig for every
genome bin. Then, the posterior is given by

P (genome | contig) = L(genome | contig)
G∑

n=1
L(genomen | contig)

(38)

Relative likelihood bin comparison

We derived a percentage similarity quantity S for two genome bins A and B, based on mixture likeli-
hoods.

S(A, B) =
Z

√√√√√√ N∏
i=1

(
2 Li(θA) Li(θB)

L2
i (θA) + L2

i (θB)

)L2
i (θA)+L2

i (θB)
Li(θA)+Li(θb)

(39)

with normalization constant

Z =
N∑

i=1

L2
i (θA) + L2

i (θB)
Li(θA) + Li(θb)

(40)

Interestingly, when we interpret this quantity as a probability, a connection to the Kullback-Leibler
divergence DKL, also called relative entropy, can be constructed. The Boltzmann formula (Suppl.
Equation 41) establishes a general connection between entropy H and probability P.

H = log P (41)

When we substitute the probability P in Suppl. Equation 41 with S(A, B) from Suppl. Equation 39,
we get

H(A, B) = − 1
Z

N∑
i=1

(
L2

A+L2
B

LA+LB

)
log L2

i (θA) + L2
i (θB)

2 Li(θA) Li(θB)

= − 1
Z

DKL(L̂∥Lswap)

(42)

Suppl. Equation 42 is the negative Kullback-Leibler divergence over the sample data, which measures
the loss of information when the suboptimal model with swapped parameters is used instead of the
MLE parameter model, divided by the summed likelihood of the observed data.

Program versions

The results in this paper are based on MGLEX v.0.1.1. For the generation of taxonomic annotation,
we used the BLAST alignment pipeline in taxator-tk v1.3.3e with refpack microbial-full_20150430,
which includes reference nucleotide sequences and a corresponding version of the NCBI taxonomy.
We also compared the submodel performance on simulated data with external programs. These are
Centrifuge v1.0.3b, a sequence classifier based on sequence similarity, and NBC v1.1, a similar program
based on short k-mers (nucleotide composition).
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Supplementary Tables

Supplementary Table 1: Taxa in the simulated dataset and corresponding relative abundances for the
primary sample S1 and the three secondary samples S2, S3 and S4.

Name S1 (%) S2 (%) S3 (%) S4 (%)

Acaryochloris CCMEE 5410 0.27 0.07 0.08 0.08
Acetobacteraceae bacterium AT-5844 0.04 0.01 0.01 0.01
Acholeplasma laidlawii PG-8A 0.12 0.79 0.04 0.04
Acidaminococcus fermentans DSM 20731 0.16 0.04 0.05 0.05
Acidaminococcus BV3L6 0.29 0.08 0.21 0.92
Acidovorax ebreus TPSY 0.09 0.03 0.03 0.03
Acidovorax KKS102 0.21 0.96 1.23 0.06
Aciduliprofundum MAR08-339 1.12 0.31 0.34 0.34
Acinetobacter baumannii AB_TG2028 0.83 1.08 0.25 0.25
Acinetobacter baumannii Naval-113 0.13 0.25 0.18 0.04
Acinetobacter baumannii ZWS1122 0.05 0.06 0.01 0.01
Acinetobacter genomosp. 13TU NCTC 8102 0.06 0.02 0.02 0.12
Acinetobacter johnsonii ANC 3681 0.02 0.00 0.00 0.13
Acinetobacter nosocomialis 28F 0.07 0.02 0.02 0.02
Acinetobacter schindleri NIPH 900 0.01 0.00 0.05 0.06
Acinetobacter schindleri TG19614 0.08 0.20 0.34 0.32
Acinetobacter CIP 64.7 0.25 0.07 0.08 0.08
Actinobacillus minor NM305 0.23 0.06 0.07 0.07
Actinoplanes SE50/110 0.51 0.14 0.16 0.15
Actinopolyspora mortivallis DSM 44261 0.19 0.05 0.06 0.06
Aeromonas MDS8 0.16 0.04 0.05 0.29
Aggregatibacter actinomycetemcomitans AAS4A 0.02 0.00 0.01 0.01
Aggregatibacter actinomycetemcomitans SCC393 0.06 0.02 0.02 0.02
Alicyclobacillus acidocaldarius Tc-4-1 0.02 0.01 0.02 0.01
Alistipes CAG:53 0.14 0.04 0.28 0.04
Alloprevotella rava F0323 0.26 0.07 0.08 0.08
alpha proteobacterium LLX12A 0.07 0.02 0.02 0.02
alpha proteobacterium SCGC AAA015-O19 0.04 0.15 0.01 0.35
alpha proteobacterium SCGC AAA536-G10 0.62 0.17 0.19 5.38
Alteromonas macleodii `Ionian Sea U8' 0.05 0.04 0.01 0.01
Amphibacillus xylanus NBRC 15112 0.10 0.03 0.09 0.03
Amycolatopsis mediterranei U32 0.07 0.02 0.02 0.02
Anaerococcus hydrogenalis ACS-025-V-Sch4 0.03 0.01 0.06 0.01
Anaerococcus hydrogenalis DSM 7454 0.18 0.05 0.06 0.06
Anaplasma marginale Florida 0.01 0.00 0.01 0.00
Anaplasma marginale Gypsy Plains 0.74 0.20 0.23 4.79
Anaplasma marginale St. Maries 0.52 0.14 4.64 0.16
Anoxybacillus SK3-4 0.15 0.04 0.05 0.05
Arthrobacter FB24 0.14 0.04 0.04 0.04
Arthrobacter TB 23 0.25 0.07 0.08 0.08
Azospirillum CAG:239 0.06 0.02 0.02 0.08
Bacillus amyloliquefaciens DC-12 0.34 0.09 0.11 0.10
Bacillus anthracis A0193 0.54 3.44 1.17 3.68
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Bacillus anthracis A1055 0.16 0.10 0.05 0.05
Bacillus cereus Rock1-15 0.04 0.01 0.04 0.04
Bacillus cereus Rock4-2 0.30 0.23 0.09 0.09
Bacillus cereus VD014 0.56 0.15 0.17 0.17
Bacillus pumilus ATCC 7061 0.14 0.37 0.04 0.04
Bacillus 37MA 0.14 0.04 0.20 0.04
Bacillus EGD-AK10 0.24 0.06 0.07 0.07
Bacillus WBUNB004 0.31 0.08 0.09 0.23
Bacillus WBUNB009 0.37 0.10 0.11 0.11
Bacillus subtilis gtP20b 0.14 0.04 0.98 0.15
Bacillus subtilis S1-4 0.46 0.13 0.14 0.14
Bacillus subtilis 6051-HGW 0.10 0.03 0.03 0.03
Bacillus thuringiensis BGSC 4CC1 0.12 0.03 0.04 0.04
Bacteriovorax DB6_IX 0.11 0.03 0.03 0.03
Bacteroides faecis CAG:32 0.06 0.05 0.33 0.02
Bacteroides fragilis CAG:558 0.08 0.06 0.03 0.03
Bacteroides 4_1_36 0.20 0.05 0.29 0.06
Bacteroides CAG:443 0.27 0.07 0.08 0.08
Bacteroides CAG:714 0.04 0.01 0.01 0.03
Beijerinckia indica ATCC 9039 0.06 0.02 0.22 0.07
Bifidobacterium longum CAG:69 0.02 0.02 0.01 0.01
Bizionia argentinensis JUB59 0.31 0.09 0.10 0.27
Bordetella bronchiseptica Bbr77 0.17 0.05 0.05 0.05
Borrelia burgdorferi 29805 0.48 0.13 0.15 0.15
Brachyspira hampsonii 30599 0.10 0.03 0.03 0.03
Bradyrhizobium DFCI-1 0.11 0.06 0.03 0.03
Bradyrhizobium S23321 0.30 2.08 0.09 0.09
Bradyrhizobium WSM2793 0.03 0.06 0.01 0.01
Brevibacillus laterosporus PE36 0.05 0.14 0.02 0.39
Brevibacterium casei S18 0.40 0.54 0.12 0.12
Brevibacterium mcbrellneri ATCC 49030 0.58 3.30 0.77 0.18
Brevundimonas abyssalis TAR-001 0.37 2.08 0.11 0.11
Brevundimonas BAL3 0.18 0.05 0.06 0.06
Brucella abortus 68-3396P 0.22 0.06 0.07 0.07
Brucella abortus NI274 0.17 0.25 0.20 0.05
Burkholderia bryophila 376MFSha3.1 0.04 0.01 0.01 0.01
Burkholderia mallei 2002721280 0.25 0.07 0.08 1.08
Burkholderia pseudomallei 668 0.16 1.10 0.05 0.05
Burkholderia pseudomallei DM98 0.13 0.04 0.04 0.04
Burkholderia CCGE1001 0.09 0.03 0.90 0.03
Burkholderia WSM4176 0.05 0.01 0.02 0.02
butyrate-producing bacterium SM4/1 0.27 2.17 0.08 0.08
Butyrivibrio crossotus CAG:259 0.07 0.02 0.06 0.02
Caldicellulosiruptor bescii DSM 6725 0.51 0.14 0.16 0.16
Caldivirga maquilingensis IC-167 0.06 0.02 0.02 0.02
Candidatus Accumulibacter phosphatis UW-1 0.25 0.07 0.08 0.08
Candidatus Photodesmus katoptron Akat1 0.20 0.57 0.06 0.22
Candidatus Poribacteria WGA-A3 0.06 0.02 0.02 0.02
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Candidatus Saccharibacteria RAAC3_TM7_1 0.34 0.75 0.10 0.10
Capnocytophaga F0502 0.08 0.02 0.02 0.02
Carnobacterium WN1359 0.29 0.29 0.09 0.09
Catellicoccus marimammalium M35/04/3 0.33 0.57 0.10 0.36
Chitinophaga pinensis DSM 2588 0.24 0.06 0.33 0.07
Chlamydia psittaci WC 0.05 0.01 0.02 0.20
Chlamydia trachomatis IU888 0.02 0.00 0.02 0.01
Chlamydia trachomatis L2b/Ams2 0.05 0.01 0.01 0.04
Chlamydia trachomatis RC-J/953 0.72 0.20 0.22 0.22
Chloroflexi bacterium oral isolate Chl1-2 0.35 0.09 0.11 0.11
Chloroflexi bacterium SCGC AB-629-P13 0.32 0.09 0.10 1.65
Citrobacter rodentium ICC168 0.08 0.02 0.02 0.02
Citrobacter KTE151 0.04 0.04 0.01 0.25
Clostridium acetobutylicum EA 2018 0.18 0.05 0.06 1.13
Clostridium carboxidivorans P7 0.23 0.25 2.18 0.07
Clostridium ATCC BAA-442 0.32 0.09 0.10 1.42
Clostridium CAG:269 0.38 0.10 0.83 1.36
Clostridium CAG:452 0.21 0.06 0.06 0.06
Clostridium CAG:567 0.44 0.12 0.14 0.53
Clostridium SY8519 0.10 0.03 0.03 0.03
Clostridium tyrobutyricum DSM 2637/ATCC 25755/JCM 11008 0.88 0.24 4.86 0.27
Collimonas fungivorans Ter331 0.19 0.05 0.33 0.06
Coprococcus comes CAG:19 0.10 0.03 0.09 0.03
Corynebacterium pseudotuberculosis 316 0.02 0.00 0.00 0.00
Corynebacterium pseudotuberculosis Cp162 0.08 0.02 0.02 0.20
Corynebacterium pseudotuberculosis I19 0.07 0.02 0.02 0.02
Corynebacterium KPL1855 0.82 4.06 0.25 0.60
Corynebacterium KPL1859 0.09 0.09 0.23 0.03
Corynebacterium KPL1998 0.09 0.03 0.03 0.26
Cronobacter sakazakii 701 0.11 0.03 0.03 0.03
Cupriavidus basilensis B-8 0.11 0.10 0.03 0.03
Cyanothece CCY0110 0.08 0.02 0.03 0.02
Cyclobacterium qasimii M12-11B 0.13 0.04 0.04 0.50
Desulfococcus oleovorans Hxd3 0.10 0.03 0.12 0.03
Desulfovibrio aespoeensis Aspo-2 0.22 0.06 0.07 0.07
Desulfurivibrio alkaliphilus AHT2 0.18 0.05 0.05 0.05
Dictyoglomus turgidum DSM 6724 0.39 0.11 0.12 0.12
Eggerthia catenaformis OT 569/DSM 20559 0.33 0.09 0.10 0.40
Emticicia oligotrophica DSM 17448 0.31 0.09 0.10 0.10
Enterobacter R4-368 0.07 0.02 0.02 0.02
Enterococcus flavescens ATCC 49996 0.08 0.02 0.02 0.02
Enterococcus GMD4E 1.14 0.31 0.35 0.35
Enterovibrio norvegicus FF-162 0.49 0.13 0.15 0.15
Erysipelotrichaceae bacterium 5_2_54FAA 0.27 0.15 0.08 0.08
Erythrobacter litoralis HTCC2594 0.86 0.23 0.26 0.26
Exiguobacterium pavilionensis RW-2 0.11 0.36 0.03 0.03
Facklamia ignava CCUG 37419 0.58 0.51 0.39 0.18
Faecalibacterium prausnitzii A2-165 0.08 0.02 0.02 0.02
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Finegoldia magna BVS033A4 0.07 0.02 0.07 0.02
Firmicutes bacterium ASF500 0.09 0.02 0.03 0.03
Firmicutes bacterium CAG:170 0.17 0.05 0.05 0.05
Fischerella thermalis PCC 7521 0.13 0.04 0.04 0.14
Flavobacteriaceae bacterium S85 0.41 0.11 0.13 0.13
Flavobacterium B17 0.14 0.04 0.04 0.04
Formosa AK20 0.64 0.18 0.20 0.20
Francisella tularensis 80700075 0.08 0.07 0.03 0.12
Frankia alni ACN14a 0.33 0.09 0.10 0.73
gamma proteobacterium IMCC2047 0.09 0.02 0.03 0.03
Gardnerella vaginalis 0288E 0.04 0.01 0.01 0.01
Gardnerella vaginalis 1500E 0.27 0.07 0.08 0.08
Geobacillus JF8 0.11 0.72 0.04 0.03
Gillisia marina 0.41 0.11 0.13 0.13
Glaciecola polaris LMG 21857 0.26 0.07 0.08 0.08
Glaciecola 4H-3-7+YE-5 0.33 0.21 0.10 0.10
Gordonia effusa NBRC 100432 0.09 0.03 0.45 0.03
Gordonia sihwensis NBRC 108236 0.12 0.24 0.04 0.11
Haemophilus aegyptius ATCC 11116 0.48 0.13 0.15 0.15
Haemophilus somnus 129PT 0.31 0.09 0.10 0.10
Haemophilus sputorum HK 2154 0.94 0.26 0.29 0.29
Haloferax BAB2207 0.43 0.12 0.13 0.13
Halomonas KM-1 0.13 0.03 0.04 1.02
Halorhabdus utahensis DSM 12940 0.01 0.00 0.04 0.00
Haloterrigena limicola JCM 13563 0.04 0.01 0.01 0.01
Helicobacter hepaticus ATCC 51449 0.38 0.10 3.30 0.39
Herbaspirillum B39 0.41 0.11 0.12 0.12
Ignavibacterium album JCM 16511 0.39 0.11 0.12 0.12
Isoptericola variabilis 225 0.20 0.05 0.06 0.06
Janibacter HTCC2649 0.43 0.12 0.13 0.95
Kingella kingae PYKK081 0.19 0.05 0.12 0.06
Klebsiella pneumoniae UHKPC01 0.18 1.40 0.06 0.06
Klebsiella pneumoniae UHKPC02 0.14 0.04 1.04 0.04
Klebsiella pneumoniae UHKPC40 0.19 0.05 0.06 1.46
Ktedonobacter racemifer DSM 44963 0.14 0.04 0.04 0.04
Laceyella sacchari 1-1 0.08 0.02 0.02 0.21
Lachnospiraceae bacterium 2_1_46FAA 0.54 1.60 0.17 0.16
Lachnospiraceae bacterium 3-2 0.33 0.09 0.79 0.63
Lachnospiraceae bacterium 5_1_57FAA 0.04 0.22 0.01 0.37
Lachnospiraceae oral taxon 107 str. F0167 0.19 0.35 0.06 0.06
Lactobacillus acidipiscis KCTC 13900 0.04 0.01 0.01 0.01
Lactobacillus acidophilus 30SC 0.38 0.10 0.77 0.11
Lactobacillus acidophilus ATCC 4796 0.04 0.01 0.01 0.01
Lactobacillus casei 21/1 0.22 0.43 0.07 0.07
Lactobacillus casei Lpc-37 0.21 0.06 0.06 0.06
Lactobacillus delbrueckii ATCC BAA-365 0.03 0.01 0.01 0.01
Lactobacillus delbrueckii DSM 20072 0.32 0.09 1.90 2.76
Lactobacillus fermentum CECT 5716 0.42 0.11 0.13 0.13
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Lactobacillus helveticus CNRZ32 0.08 0.20 0.02 0.02
Lactobacillus helveticus R0052 0.10 0.03 0.53 0.03
Lactobacillus iners ATCC 55195 0.06 0.02 0.02 0.06
Lactobacillus iners LactinV 01V1-a 0.11 0.03 0.03 0.03
Lactobacillus plantarum 2165 0.85 0.23 0.26 0.54
Lactobacillus reuteri CF48-3A 0.66 0.18 0.20 0.20
Lactobacillus reuteri MM4-1A 0.23 1.14 0.07 0.07
Lactobacillus salivarius GJ-24 0.42 0.12 0.13 1.37
Lactobacillus ASF360 0.28 0.08 1.93 0.09
Legionella pneumophila str. 121004 0.05 0.06 0.01 0.29
Leifsonia xyli subxyli str. CTCB07 0.04 0.01 0.01 0.01
Leptospira borgpetersenii 200801910 0.20 0.05 0.06 0.06
Leptospira borgpetersenii 200901122 0.24 0.17 0.38 0.16
Leptospira interrogans Fiocruz R154 0.15 0.04 0.05 0.05
Leptospira interrogans L1207 0.11 0.03 0.04 0.03
Leptospira santarosai Oregon 0.59 3.58 0.18 0.18
Leptospira santarosai 2000027870 0.12 0.03 0.24 0.04
Leptospira santarosai HAI1380 0.13 0.04 0.04 0.04
Leuconostoc argentinum KCTC 3773 0.13 0.04 0.09 0.53
Leuconostoc citreum LBAE C10 0.02 0.01 0.20 0.07
Loktanella cinnabarina LL-001 0.23 0.06 0.07 0.07
Loktanella hongkongensis DSM 17492 0.18 0.05 0.06 0.53
Mannheimia haemolytica USDA-ARS-USMARC-183 0.19 0.05 0.06 0.06
marine gamma proteobacterium HTCC2080 0.10 0.06 0.30 0.03
Marinimicrobia bacterium SCGC AAA298-D23 0.26 0.65 0.08 0.08
Marinimicrobia bacterium SCGC AB-629-J13 0.26 0.07 0.08 0.08
Marinobacter EVN1 0.05 0.01 0.43 0.15
Megasphaera genomosp. type_1 str. 28L 0.14 0.04 0.47 0.04
Melissococcus plutonius DAT561 0.39 0.58 0.12 0.12
Mesoflavibacter zeaxanthinifaciens S86 0.11 0.03 0.21 0.03
Mesorhizobium LNHC229A00 0.16 1.18 0.11 0.05
Mesorhizobium LSHC416B00 0.04 0.01 0.01 0.01
Mesorhizobium LSJC264A00 0.04 0.08 0.01 0.01
Methanobrevibacter smithii TS146D 0.14 0.04 0.80 0.04
Methanobrevibacter smithii TS147C 0.14 0.04 0.04 0.11
Methanobrevibacter smithii TS95A 0.09 0.02 0.17 0.03
Methanocella arvoryzae MRE50 0.05 0.13 0.02 0.13
Methanosphaera stadtmanae DSM 3091 0.18 0.05 0.06 0.05
Methylobacterium extorquens PA1 0.10 0.78 0.03 0.03
Methyloglobulus morosus KoM1 0.19 0.05 0.06 1.18
Methylotenera versatilis 301 0.06 0.02 0.02 0.05
Methyloversatilis universalis EHg5 0.17 0.05 0.05 0.05
Microbacterium barkeri 2011-R4 0.12 0.03 0.04 0.04
Microbacterium 11MF 0.13 0.08 0.37 0.04
Microbacterium TS-1 0.10 0.03 0.03 0.03
Mobiluncus curtisii ATCC 43063 0.39 0.11 0.12 0.12
Mycobacterium abscessus 3A-0930-R 0.03 0.01 0.01 0.01
Mycobacterium abscessus 5S-0422 0.58 0.16 0.37 0.99
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Mycobacterium abscessus M139 0.26 0.07 0.08 0.08
Mycobacterium chubuense NBB4 0.18 0.05 0.06 0.05
Mycobacterium intracellulare MOTT-02 0.19 0.05 0.06 0.12
Mycoplasma gallisepticum NC08_2008.031-4-3P 0.05 0.02 0.02 0.02
Mycoplasma gallisepticum NY01_2001.047-5-1P 0.27 0.07 0.08 0.08
Neisseria gonorrhoeae PID18 0.13 0.03 0.04 0.04
Neisseria gonorrhoeae SK-92-679 0.13 0.04 0.04 0.04
Neisseria meningitidis NM1476 0.18 0.16 0.05 0.05
Neisseria meningitidis NM3223 0.16 0.05 0.05 0.15
Neisseria meningitidis NM604 0.27 0.07 0.08 0.08
Neisseria sicca 4320 0.09 0.23 0.03 0.03
Niabella aurantiaca DSM 17617 0.15 0.23 0.32 0.04
Nitrolancea hollandica Lb 0.36 0.78 1.24 0.11
Nocardia tenerifensis NBRC 101015 0.40 0.11 0.12 1.67
Nocardiopsis CNS639 0.74 0.20 0.23 0.23
Nonomuraea coxensis DSM 45129 0.69 1.26 0.21 1.07
Oceanicaulis HTCC2633 0.19 0.05 0.34 0.06
Oceanobacillus kimchii X50 0.74 2.17 0.23 0.86
Octadecabacter arcticus 238 0.06 0.02 0.02 0.02
Paenibacillus alvei TS-15 0.19 0.05 1.36 0.06
Paenibacillus larvae BRL-230010 0.03 0.01 0.01 0.01
Paenibacillus Aloe-11 0.04 0.01 0.01 0.01
Pantoea AS-PWVM4 0.09 0.02 0.03 0.03
Parabacteroides ASF519 0.19 0.05 0.06 0.85
Parascardovia denticolens IPLA 20019 0.42 0.11 2.48 3.38
Parasutterella excrementihominis CAG:233 0.72 0.20 0.22 1.60
Patulibacter americanus DSM 16676 0.07 0.02 0.02 0.55
Patulibacter medicamentivorans 0.45 0.12 1.09 0.14
Pediococcus acidilactici D3 0.07 0.05 0.02 0.02
Pelosinus fermentans A11 0.04 0.01 0.23 0.03
Peptoclostridium difficile P20 0.12 0.03 0.04 0.53
Peptoclostridium difficile P48 0.04 0.01 0.01 0.08
Peptoclostridium difficile P53 0.24 0.07 1.05 0.07
Polynucleobacter necessarius QLW-P1DMWA-1 0.09 0.02 0.03 0.03
Porphyromonas gingivalis JCVI SC001 0.17 0.05 0.23 1.25
Porphyromonas gingivalis W50 0.81 0.22 0.25 0.25
Porphyromonas macacae DSM 20710/JCM 13914 0.11 0.03 0.03 0.03
Prevotella salivae DSM 15606 0.04 0.01 0.01 0.01
Prevotella C561 0.03 0.19 0.01 0.01
Prevotella CAG:1185 0.39 0.11 3.30 0.12
Prevotella CAG:592 0.35 1.04 1.14 0.11
Prevotella CAG:617 0.32 0.09 0.10 0.91
Prevotella CAG:755 0.14 0.04 0.04 0.04
Prevotella CAG:873 0.07 0.02 0.02 0.02
Pseudomonas aeruginosa BWHPSA006 0.10 0.03 0.03 0.03
Pseudomonas aeruginosa LESB58 0.23 0.20 1.02 0.07
Pseudomonas aeruginosa PABL056 0.09 0.03 0.03 0.03
Pseudomonas mendocina ymp 0.10 0.03 0.03 0.18
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Pseudomonas CF161 0.07 0.02 0.02 0.02
Pseudomonas EGD-AK9 0.04 0.01 0.03 0.01
Pseudomonas M47T1 0.28 0.08 0.09 0.39
Pseudomonas TJI-51 0.03 0.01 0.01 0.01
Pseudomonas syringae pv. lachrymans M302278 0.25 0.70 1.23 0.08
Psychrobacter PRwf-1 0.03 0.01 0.01 0.01
Pyrobaculum aerophilum str. IM2 0.32 0.09 0.10 0.10
Pyrobaculum calidifontis JCM 11548 0.03 0.01 0.01 0.07
Pyrococcus furiosus COM1 0.36 0.10 0.11 0.11
Ralstonia solanacearum Po82 0.18 0.05 0.06 0.05
Renibacterium salmoninarum ATCC 33209 0.49 0.13 0.15 0.15
Rhizobium etli Brasil 5 0.02 0.01 0.01 0.01
Rhizobium phaseoli Ch24-10 0.08 0.33 0.02 0.02
Rhizobium IRBG74 0.07 0.12 0.02 0.70
Rhodobacter SW2 0.17 0.05 0.05 0.05
Rhodobacter sphaeroides ATCC 17029 0.47 0.13 0.14 2.85
Rhodobacteraceae bacterium KLH11 1.39 3.41 3.28 0.42
Rhodococcus rhodnii LMG 5362 0.24 1.34 0.07 0.22
Rhodococcus 29MFTsu3.1 0.06 0.02 0.02 0.02
Rhodococcus P27 0.22 0.06 0.07 0.07
Rhodopirellula baltica SWK14 0.55 0.15 0.17 0.17
Rhodopseudomonas palustris BisB5 0.28 0.08 0.08 0.08
Rhodospirillum rubrum ATCC 11170 0.02 0.01 0.01 0.05
Rickettsia helvetica C9P9 0.19 0.05 0.06 0.06
Rickettsia rickettsii str. `Sheila Smith' 0.49 0.32 1.97 1.27
Riemerella anatipestifer RA-YM 0.08 0.02 0.03 0.65
Rudanella lutea DSM 19387 0.72 0.20 0.22 0.22
Ruminiclostridium thermocellum ATCC 27405 0.42 0.11 0.13 0.13
Ruminiclostridium thermocellum YS 0.55 0.15 1.98 0.17
Ruminococcus CAG:382 0.10 0.03 0.03 0.03
Ruminococcus CAG:579 0.88 2.32 0.27 0.27
Saccharomonospora cyanea NA-134 0.13 0.04 0.04 0.04
Salinispora arenicola CNT849 0.86 0.23 0.26 0.26
Salinispora arenicola CNY234 0.61 0.17 0.19 0.19
Salinispora pacifica CNY330 0.52 0.72 0.16 0.16
Salmonella enterica SA-2 0.05 0.01 0.02 0.02
Salmonella enterica CFSAN001588 0.13 0.04 0.89 0.04
Selenomonas noxia ATCC 43541 0.06 0.02 0.02 0.02
Shewanella frigidimarina NCIMB 400 0.04 0.04 0.04 0.01
Shigella boydii 965-58 0.18 0.05 0.58 0.05
Shigella dysenteriae CDC 74-1112 0.20 1.73 0.50 0.45
Shigella flexneri 1485-80 0.11 0.03 0.03 0.03
Shigella flexneri 2930-71 0.11 0.03 0.03 0.03
Simonsiella muelleri ATCC 29453 0.31 0.08 0.09 0.09
Sphingomonas melonis DAPP-PG 224 0.48 0.13 0.15 0.15
Sphingopyxis MC1 0.07 0.07 0.02 0.08
Staphylococcus hominis SK119 0.09 0.03 0.03 0.08
Streptococcus agalactiae GB00264 0.09 0.05 0.03 0.03
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Streptococcus agalactiae MRI Z1-022 0.14 0.04 0.04 0.04
Streptococcus agalactiae MRI Z1-202 0.38 0.90 0.12 0.12
Streptococcus anginosus F0211 0.10 0.03 0.37 0.03
Streptococcus equi 0.37 0.10 1.54 0.11
Streptococcus equi SzS31A1 0.31 0.08 0.09 0.27
Streptococcus ferus DSM 20646 0.15 0.04 0.05 0.05
Streptococcus gordonii CH1 0.26 0.07 1.11 0.08
Streptococcus iniae 9117 0.01 0.00 0.01 0.09
Streptococcus intermedius ATCC 27335 3.19 0.87 0.98 0.97
Streptococcus mutans KK23 0.62 0.17 0.19 0.19
Streptococcus mutans SM6 0.10 0.03 0.03 0.03
Streptococcus pseudoporcinus LQ 940-04 0.03 0.01 0.01 0.01
Streptococcus salivarius 57.I 0.17 0.14 0.05 0.05
Streptococcus sanguinis SK340 0.02 0.06 0.01 0.03
Streptococcus sobrinus DSM 20742/ATCC 33478 0.42 0.11 0.13 0.29
Streptococcus sobrinus TCI-367 1.65 0.45 0.50 0.50
Streptococcus sobrinus TCI-98 0.23 0.06 0.34 0.07
Streptococcus I-P16 0.05 0.01 0.01 0.01
Streptococcus SK140 0.43 0.12 0.13 0.13
Streptococcus suis YB51 0.42 0.11 0.13 0.13
Streptomyces acidiscabies 84-104 0.22 0.26 0.07 0.07
Streptomyces albulus CCRC 11814 0.40 0.11 0.92 0.12
Streptomyces pristinaespiralis ATCC 25486 0.11 0.27 0.03 0.09
Streptomyces CNQ766 0.17 0.05 0.15 0.05
Streptomyces sulphureus DSM 40104 0.13 0.11 0.45 0.04
Streptomyces violaceusniger Tu 4113 0.27 0.08 0.08 0.08
Succinatimonas hippei YIT 12066 0.10 0.03 0.03 0.08
Sulfolobus islandicus REY15A 0.10 0.03 0.44 0.03
Synechococcus PCC 7336 0.42 0.12 0.13 0.13
Synechocystis PCC 6803 0.04 0.01 0.30 0.01
Synechocystis PCC 7509 0.04 0.05 0.01 0.01
Thauera linaloolentis 47Lol/DSM 12138 0.28 0.08 0.08 0.08
Thermococcus onnurineus NA1 0.15 0.18 0.09 0.04
Thermoplasmatales archaeon I-plasma 0.13 0.04 0.04 0.04
Thermosphaera aggregans DSM 11486 0.69 0.74 0.21 1.64
Thermotoga elfii NBRC 107921 0.16 0.04 0.24 0.91
Thermotoga EMP 0.51 0.14 0.16 3.02
Thermus CCB_US3_UF1 0.17 0.05 0.05 0.05
Thioalkalivibrio AKL6 0.36 0.10 0.11 0.11
Thioalkalivibrio ALE20 0.38 0.61 0.12 0.11
Thioalkalivibrio ALJ10 0.60 2.66 0.19 0.18
Thioalkalivibrio ALJ12 0.81 0.22 0.65 0.25
Thioalkalivibrio ALJ24 0.48 3.07 0.15 0.15
Thioalkalivibrio ALJ5 0.10 0.03 0.28 0.47
Thioalkalivibrio ALJ9 0.10 0.03 0.03 0.03
Tyzzerella nexilis DSM 1787 0.16 0.04 0.05 0.05
uncultured archaeon A07HR60 0.67 0.18 2.13 5.67
Ureaplasma urealyticum ATCC 27814 0.32 0.09 1.24 0.10
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Name S1 (%) S2 (%) S3 (%) S4 (%)

Variovorax paradoxus S110 0.08 0.02 0.11 0.07
Verrucomicrobium 3C 1.48 7.16 2.75 0.45
Vibrio cholerae HC-50A2 0.16 0.04 0.05 0.05
Vibrio cholerae HE39 0.08 0.02 0.02 0.02
Vibrio cholerae O1 str. 2009V-1085 0.03 0.01 0.08 0.01
Vibrio crassostreae 9ZC88 0.18 0.05 0.05 0.05
Vibrio gazogenes ATCC 43941 0.96 2.34 0.29 0.29
Vibrio nigripulchritudo ENn2 0.71 0.20 0.22 0.22
Vibrio nigripulchritudo SFn135 0.22 0.06 1.80 0.07
Vibrio nigripulchritudo SOn1 0.46 0.13 0.14 0.14
Weissella koreensis KACC 15510 0.25 0.38 0.25 0.08
Wolbachia endosymbiont JHB 0.39 0.11 0.12 0.12
Xanthomonas axonopodis IBSBF 614 0.06 0.02 0.10 0.02
Xanthomonas axonopodis UA306 0.15 0.04 0.05 0.05
Xanthomonas campestris NCPPB 2005 0.17 0.05 0.05 0.05
Xanthomonas oryzae BLS256 0.18 0.05 0.06 0.06
Xanthomonas SHU166 0.13 0.04 0.04 0.04
Xylella fastidiosa 32 0.18 0.23 0.05 0.05
Yersinia frederiksenii ATCC 33641 0.22 1.08 0.07 1.20
Yersinia pseudotuberculosis B-6863 0.22 0.06 0.07 0.07
Yersinia pseudotuberculosis B-6864 0.12 1.02 0.13 0.19
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Supplementary Figure 1: Genome enrichment for 400 genomes in the three-fold cross-validation. For
each genome, we measured the sensitivity, the percentage of each genome in
the enriched sample, after filtering by a p-value cutoff and summing over the
three data partitions. The solid lines shows the resulting average sensitivity
over all 400 genomes. The variability between genomes is shown as quantiles
in red.
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TECHNOLOGIES

C.1 Abstract

Metagenome research uses random shotgun sequencing of microbial community
DNA to study the genetic sequences of its members without cultivation. This
development has been strongly supported by improvements in sequencing tech-
nologies, which have rendered sequencing cheaper than before. As a consequence,
downstream computational analysis of metagenome sequence samples is now faced
with large amounts of complex data. One of the essential steps in metagenome
analysis is reconstruction of draft genomes for populations of a community or of
draft ‘pan-genomes’ for higher-level clades. ‘Taxonomic binning’ corresponds to
the process of assigning a taxonomic identifier to sequence fragments, based on
information such as sequence similarity, sequence composition or read coverage.
This is used for draft genome reconstruction, if sequencing coverage is insufficient
for reconstruction based on assembly information alone. Subsequent functional
and metabolic annotation of draft genomes allows a genome-level analysis of novel
uncultured microbial species and even inference of their cultivation requirements.

C.2 Introduction

The application of genome sequencing technologies to the study of an entire com-
munity of microbial organisms, as opposed to a clonal culture of an individual
isolate strain, is known as metagenomics (Kunin et al., 2008; Simon & Daniel,
2011). Such analysis allows one to determine genome sequence information for a
vast portion of the microbial world for which cultivation conditions are unknown
or difficult to reproduce under laboratory conditions (Amann, Ludwig & Schleifer,
1995; Hugenholtz, 2002). Even the first metagenome studies, investigating the
Sargasso Sea (Venter et al., 2004) and Minnesota farm soil (Tringe et al., 2005),
were able to demonstrate the enormous potential of the microbial world to serve
as a treasure trove of genes with novel functionalities, as these studies resulted in
the discovery of many thousands of new gene sequences that were only remotely
similar to genes of known function. They also revealed the unexpected complex-
ity of microbial communities in terms of the number of taxa contained therein.
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Since then, much research has explored microbial ecosystems, soil, aquatic and
host-associated, in more detail (Woyke et al., 2006; Warnecke et al., 2007; Turn-
baugh et al., 2010; Suen et al., 2010; Mackelprang et al., 2011), and has revealed
a great wealth of novel genetic information from microbial species that are only
distantly related to well studied model organisms.

Both amplicon sequencing and random shotgun sequencing of microbial commu-
nities are sometimes referred to as metagenomics. Amplicon sequencing, or envi-
ronmental tag sequencing, is used to determine the taxonomic composition and
phylogenetic structure of a microbial community. In amplicon sequencing, infor-
mative marker regions of the genomes from a microbial community are amplified
by polymerase chain reaction, and used as a proxy to determine which phylotypes
or operational taxonomic units (OTUs) are present in a microbial community,
and their relative abundance. Commonly used markers regions are the riboso-
mal genes (Huse et al., 2008) and the ITS (internal transcribed spacer) region
(Jeewon & Hyde, 2007), which is positioned between ribosomal genes. In terms
of numbers and the evolutionary closeness of the distinct species present, micro-
bial community profiles can be correlated across environments and communities,
linked to environmental parameters. They can be indicative of the presence of
genes that are relevant for particular metabolic functionalities (Fuhrman, 2009),
given that the respective genes are already known. However, the gene inventory
and the encoded functionality of most microbial species are largely unknown and
may also vary considerably between strains.

Shotgun sequencing can be used to study the genetic information of microbial
communities by sequencing DNA that has been extracted and randomly sheared
into smaller fragments. Even though subject to different technology-dependent
biases, this procedure allows functional and process-level characterization of mi-
crobial communities as a whole and the reconstruction of draft genome sequences
for individual community members.
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C.3 Next-generation sequencing technologies

DNA sequencing technologies have rapidly advanced over the last five years and
these developments have substantially shaped the way metagenome research is
performed. Post-Sanger sequencing technologies are commonly referred to as
next-generation sequencing (NGS) (Mardis, 2008; Metzker, 2009). In comparison
to Sanger sequencing, NGS methods can sequence DNA more quickly and at lower
cost through massive parallelization. This is generally achieved by amplification
and fixation of millions of individual template molecules or their enzyme counter-
parts on a solid phase prior to sequencing. While Sanger sequencing results in read
lengths of around 800 bp, the commercially available NGS technologies (tbl. C.1)
currently generate reads of approximately 50–75 bp (Applied Biosciences/Life
Technologies – SOLiD), 75–150 bp (Solexa/Illumina – Sequencing by Synthesis),
100–200 bp (IonTorrent/Life Technologies – Semiconductor Chip Sequencing) and
550–1000 bp (454/Roche – Pyrosequencing). The upcoming generation (Schadt,
Turner & Kasarskis, 2010; Thompson & Milos, 2011) of sequencers using single
molecule sequencing produces read lengths of over 1 kb (PacBio, SMRT, 15–20%
assumed error rate (Schadt, Turner & Kasarskis, 2010)) and of 5–10 kb (Oxford
Nanopore technology, 5% assumed error rate). Besides different read lengths and
amounts of sequence data produced, each technology has a characteristic profile
of sequencing errors, resulting from the technology-specific preparation and de-
tection procedures. The choice of an appropriate sequencing technology depends
on the scientific questions asked. For instance, while an 80 bp read is sufficient
to cover a hyper-variable region in the 16S gene (Huse et al., 2008) for analysis
of microbial community composition, de novo recovery of draft microbial genome
sequences by taxonomic binning from a complex organismal mixture requires sub-
stantially longer reads or higher sequencing depth and sequencing of short paired
reads (Turnbaugh et al., 2010; Hess et al., 2011; Mackelprang et al., 2011; Iverson
et al., 2012).
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Table C.1: Throughput and read lengths of different sequencing technologies.
*: Normalized throughput is scaled to a one-hour period and rounded. **: The
throughput scale is compared to Life Technologies 3730 Sanger chemistry based
sequencer and shows the ratio of throughput values in terms of order of magnitude.
***: Numbers are based on vendor information: Illumina Inc. (www.illumina.com),
Life Technologies (www.lifetechnologies.com), Roche/454 (www.454.com). Due
to lack of information on sequencing statistics or commercial availability, Pa-
cific Biosciences (www.pacificbiosciences.com), Oxford Nanopore Technologies
(www.nanoporetech.com) and Helicos Biosciences (www.helicosbio.com) are ex-
cluded.

Manufacturer &
technology

Length
(bp)

Through-
put***

Normalized
through-
put*
(Mb/h)

Through-
put
scale**

Time
per
run

Solexa/ Illumina
Sequencing by
Synthesis

100 –
150

300 Gb/8.5
d – 600
Gb/11 d

1,500 –
2,300

104 8.5 d
– 11 d

Life Technologies/
Applied Biosystems
SOLiD

50 –
75

7 Gb/d –
20 Gb/d

300 – 800 103 -
104

2 d –
7 d

Life Technologies/ Ion
Torrent

100 –
200

10 Mb/2 h
– 1 Gb/2 h

5 – 500 101 -
103

2 h

Roche/ 454
Pyrosequencing

550 –
1000

450 Mb/10
h – 700
Mb/23 h

30 – 45 102 10 h –
23 h

Life Technologies
Capillary Sanger
sequencing

600 –
900

690 Kb/d –
2,100 Kb/d

0.029 –
0.088

100 ~ 7 h
[15]
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C.4 Bioinformatic analysis of metagenome
samples

NGS produces large volumes of sequence data (tbl. C.1). Currently, a single run of
an Illumina HiSeq machine generates up to 600 Gb per run (www.illumina.com),
which is of the order of 104 times the amount of data produced in a similar
timeframe by a Sanger sequencing chemistry based sequencer (tbl. C.1). This, in
turn, results in drastically increased runtimes for all the bioinformatics procedures
applied in metagenomics (Wilkening et al., 2009), such as assembly of sequence
fragments, taxonomic binning, prediction of protein encoding genes, as well as
functional and process-level gene annotation. Together, taxonomic binning and
assembly allow draft genome reconstructions for community members for which
sequencing has recovered substantial amounts of sequence. Assembly corresponds
to the computational process of placing individual reads into longer pieces of
contiguous sequences, known as contigs, based on sequence overlaps and paired
read information. Taxonomic binning sorts the contigs of a metagenome sample
into ‘bins’ that represent the populations or higher-level clades of community
members. Though both tasks are performed independently and evaluate different
types of information, the problem of metagenome sequence assembly is closely
related to taxonomic binning, as both allow the reconstruction of draft genome
sequences. The terms “taxonomic” and “phylogenetic” binning are both used
in the literature, as modern taxonomies such as the NCBI taxonomy (Sayers et
al., 2009) or the ribosomal gene based RDP-II (Cole et al., 2009), GreenGenes
(DeSantis et al., 2006) and ARB-SILVA (Pruesse et al., 2007) taxonomies are
built upon phylogenetic principles. Even though it is less consistent, taxonomic
binning software for shotgun metagenomics most frequently relies on the NCBI
taxonomy, probably due to its widespread use in annotation of public sequence
data.

Similar to the assembly of individual isolated genomes (Miller, Koren & Sutton,
2010), assembly in metagenomics aims to recover long contiguous pieces of se-
quence from the sequence collection of reads that represent parts of the genomes
of individual community members. Massively increased amounts of data, vary-
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ing organism abundances within a sampled community, differing complexities in
terms of the overall number of organisms contained and the presence of multiple
closely related organisms all challenge the sequence assemblers that were origi-
nally designed for isolated genomes. To address these challenges, methods de-
signed for assembly of microbial community NGS data (Laserson, Jojic & Koller,
2011; Peng et al., 2011; Koren, Treangen & Pop, 2011; Pell et al., 2012) are being
developed. Paired-end or mate-pair protocols, which add distance information
between two individual reads, can greatly aid in the assembly process. Assembly
information such as the ordering of contigs within a scaffold can also be used to
check binning quality, and binning has been used to refine assembly in a feed-
back process. In recent studies, the joint analysis of assembly information and
sequence composition allowed the reconstruction of several partial genomes by
taxonomic binning (Hess et al., 2011; Iverson et al., 2012). Thus, a closer inte-
gration of the two approaches appears promising for draft genome reconstruction
from NGS metagenome data.

Following assembly and binning, further bioinformatic analyses include the pre-
diction of genes, as well as functional annotation and reconstruction of poten-
tial pathways. For these steps, dedicated web servers exist, such as MG-RAST
(Meyer et al., 2008), IMG/M (Markowitz et al., 2012) and CAMERA (Sun et al.,
2011). Analysis of the gene content of individual bins allows inference of the func-
tional and metabolic capabilities of individual community members, and allows
a metagenome sample to be studied in its entirety. If read lengths or sequencing
depth are insufficient for assembly, the functional analysis of a metagenome sam-
ple is restricted to what can be inferred without partial genome reconstructions
for individual community members.

C.5 Binning strategies

The term binning was originally coined for the problem of separating the se-
quence fragments of a metagenome according to the microbial populations they
originate from (Tyson et al., 2004; Woyke et al., 2006). The definition has been
extended to include bins that represent all fragments that originate from a com-
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mon higher-level clade, in cases where resolution down to individual populations
is not possible. For placement of sequence fragments into taxonomic bins, at-
tributes which are indicative of the taxonomic origin of a fragment are evaluated.
Different types of information can be used for this purpose: (a) local sequence
similarity to sequences of known taxa (used in similarity-based taxonomic as-
signment), (b) similarity in sequence composition to sequences of a given taxon
(used in composition-based taxonomic assignment) or to other sequences in the
sample (used in composition-based clustering), or (c) similarity in read coverage
and linkage information from assembly for contigs within a metagenome sample.
The underlying rationale of using read coverage is that similar coverage of two
contigs in the sample indicates similar abundance and therefore potentially the
same underlying source population in the community.

How accurately fragments can be assigned to taxonomic bins depends on several
factors. The first is fragment length. Shorter, noisier fragments cannot be as-
signed as accurately as longer fragments of 2 kb or more (Patil et al., 2011). In
particular, assignment of individual reads or of fragments below 1 kb in length
poses significant challenges. Reported assignment accuracies for 100 bp fragments
to a clade at the genus level are 60% under somewhat idealized conditions, with
only reference data from the same species being removed. This, however, means
that 40% of fragments are misassigned (Brady & Salzberg, 2009). Furthermore,
accuracy drops to less than 30% if the reference data is depleted of sequences
from the same genus, meaning 70% of 100 bp fragments are misassigned at the
family level.

Another influential factor for binning accuracy is the community’s complexity in
terms of the number of distinct phylotypes it comprises. Metagenome sequenc-
ing of complex communities, such as those found in soil (Mackelprang et al.,
2011), results in lower sequencing coverage of most populations and therefore
shorter contigs in assembly. This amounts to many short fragments, or even pre-
dominantly unassembled samples, which have to be separated into a multitude
of taxonomic bins. The larger the number of bins, the harder the problem be-
comes, as the chances of randomly assigning a fragment correctly decrease with
increasing numbers of bins. Finally, for taxonomic assignment, the availability of
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reference data from taxa that are closely related to the microbes of the sequenced
community is important for accurate assignment. Similarity-based assignment
of metagenome shotgun sequence data requires homologous reference sequences
from related taxa to be available for a fragment to be assigned; ideally, entire se-
quenced genomes should be available. The sequencing of many isolate genomes of
the human microbiome in the Human Microbiome Project has immensely helped
similarity-based taxonomic assignment of human gut metagenome samples (Qin
et al., 2010; Nelson et al., 2010). A ‘shallow’ (i.e. to high-ranking clades only) tax-
onomic assignment of a sample based on sequence similarities indicates the pres-
ence of many taxa that are only distantly related to isolated sequenced genomes.
If no sequenced genomes from related taxa are available, composition-based as-
signment can be used for higher resolution taxonomic binning. Clustering of
metagenome fragments based on sequence composition does not require reference
sequences and comparably small amounts of non-homologous reference sequences
are required for composition-based taxonomic classification.

Table C.2: Overview of existing web applications for taxonomic assignment and
phylotyping of metagenome sequence samples. Phylotyping methods assign only a
subset of contigs based on taxonomic marker genes.

Name
Phylo-
typing

Tax.
assign-
ment

Funct.
anno-
tation Techniques & web link

CAMERA v.2
(2011)

X — X Reverse Psi-BLAST
http://camera.calit2.net

MetaABC (2011) — X — BLAST, PhymmBL,
MEGAN, Sort-ITEMS
http://bits2.iis.sinica.edu.tw/
MetaABC/

MG-RAST v.3.1.2
(2008)

X — X BLAST/BLAT
http://metagenomics.anl.gov

MLTreeMap
v.2.06.1 (2010)

X — X BLAST, HMMER, RaxML
http://mltreemap.org
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Name
Phylo-
typing

Tax.
assign-
ment

Funct.
anno-
tation Techniques & web link

NBC v.1.1 CLI
(2011)

— X — Naïve Bayesian Classifier
http://nbc.ece.drexel.edu

PhyloPythia
(2007),
PhyloPythiaS
(2011)

— X — (Structured) Support Vector
Machine
http://binning.bioinf.mpi-
inf.mpg.de

TaxSOM (2011) — X — Self-Organizing Maps
http://soma.arb-silva.de

WebCARMA
v.3.0 (2011)

X X X BLAST, HMM search versus
Pfam
http://webcarma.cebitec.uni-
bielefeld.de

C.6 Taxonomic binning based on sequence
similarities

Similarity-based taxonomic assignment utilizes the local similarity of a query se-
quence to sequences of known taxonomic origin. Taxonomic identifiers are com-
monly assigned either by identifying the lowest common ancestor (LCA) from the
taxonomy for the taxa of the most similar sequences found (Patil et al., 2011) or
by using phylogenetic placement methods. Phylogenetic placement methods, such
as pplacer (Matsen, Kodner & Armbrust, 2010), EPA/RaxML (Berger, Krompass
& Stamatakis, 2011) and SEPP (Mirarab, Nguyen & Warnow, 2012) place the
query sequence within a fixed reference tree. The taxonomic label assigned then
corresponds to the LCA of the taxa associated with the first ancestral node’s chil-
dren. Both methods are related to ‘nearest neighbor’ classification. In both cases,
there has to be a search phase in which such similarities are identified. Typically,
local similarities to sequence database entries are searched for with alignment
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programs such as BLAST (Camacho et al., 2009). Searches for gene family or
protein domain motifs in the query sequence can be performed with a reference
collection of profile Hidden Markov Models (HMMs). HMMER 3.0, released in
2010, has a 100-fold increase in speed compared to prior versions, with runtimes
being competitive to blastp (Finn, Clements & Eddy, 2011). Screening a large
metagenome sample with a collection of profile HMMs for marker genes is com-
putationally much less demanding than a full search for similar regions in large
sequence collections (Finn, Clements & Eddy, 2011). This is because the number
of entries to be searched against is typically several orders of magnitude lower.
HMMs are popular in combination with phylogenetic placement approaches, as
the required multiple alignment of a query sequence to the homologs can be di-
rectly deduced from the state path of the sequence through the HMM and the
multiple alignment used in its construction. However, known marker genes or
protein families from reference collections such as PFAM only cover a small part
of the genes found across diverse environments. Therefore, most HMM-based
approaches (Stark et al., 2010; Gerlach & Stoye, 2011; Wu & Scott, 2012) may
be seen as phylotypers of metagenome samples, rather than binning methods, as
they indicate the taxonomic composition of the sample based on placement of
a fraction of the fragments, rather than assigning the entire sample. Searching
for similar sequences in large sequence collections results in a higher fragment
coverage with hits than when profile HMMs are used. Analysis of a metagenome
sequence sample therefore comes with high computational costs, beyond what a
typical desktop computer is capable of. When using a similarity search, one is
therefore confronted with the question of which reference sequences to compare to.
The choice depends on the available time and computational resources. Databases
that are often searched are NCBI RefSeq, a non-redundant nucleotide and pro-
tein collection for medical, functional and diversity studies; NCBI whole genomes;
NCBI nt, a large nucleotide collection; and NCBI nr, a large non-redundant pro-
tein collection (Sayers et al., 2009). Software such as MEGAN (Huson et al.,
2011) allows the output of BLAST to be interpreted for the taxonomic and func-
tional characterization of metagenome samples based on sequence similarity. If
sequenced genomes of related species to the sampled taxa exist, recruitment anal-
ysis has been used (Qin et al., 2010). Here, each read is compared to a set of
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genome sequences and ‘recruited’ to the most similar genome, allowing the iden-
tification of reads of the prevalent species that are closely related to a sequenced
reference collection, if performed with stringent alignment cut-offs (Xie et al.,
2010).

C.6.1 Case study 1: Recruitment analysis

In (Xie et al., 2010), Illumina and Roche/454 sequencing were jointly used to
generate 860 Mb of non-human sequence data from a microbial community of
human dental plaque. All obtained reads were aligned against 50 available ref-
erence genomes for human oral microbes from the Human Microbiome Project
using Mummer, resulting in recruitment of 4% of all reads with more than 97%
sequence identity to one of the reference genomes. This indicates that most of
the sampled microbes originate from species that are too distantly related to the
sequenced reference collection for similarity-based recruitment.

C.7 Taxonomic binning based on sequence
composition

The composition-based approach to taxonomic binning is to utilize the taxonomic
signal contained in fragment-wide GC content, codon usage or the use of short
oligomers (kmers), typically 4–6 bp long. The observation that such properties
tend to vary more across the genomes of different species than within a given one
gave rise to the term genome signatures (Karlin & Burge, 1995; Deschavanne et
al., 1999). Such signatures can also be inferred for higher-level clades, allowing
their use for taxonomic fragment assignment across various ranks (McHardy et
al., 2007).

Taxonomic binning based on sequence composition can be performed with su-
pervised or unsupervised methods. The choice of which to use depends on the
availability of suitable reference data. Unsupervised methods group fragments
with similar composition profiles into clusters, corresponding to individual taxo-



C.7 Taxonomic binning based on sequence composition 199

nomic bins. Inference of the taxonomic label for a bin can be performed based
on taxonomic assignment of marker genes found in the fragments of a bin. To
infer the clustering of fragments, existing methods use, for example, a graph-
cut algorithm or variations of a self-organizing map algorithm (Chatterji et al.,
2008; Weber et al., 2011). A sample can also be binned with supervised methods,
which assign fragments to clades using a model trained with available reference
sequences. Supervised methods tend to have higher accuracy than unsupervised
methods for taxonomic assignment and are more easily applied to complex micro-
bial mixtures with skewed organism abundances. However, they require sufficient
amounts of reference sequences to be identified for the sample populations or
higher-level clades which are to be included in the model. In practice, therefore,
each approach has its own appeal and both are being applied. Methods used for
supervised classification are, for example, (structural) Support Vector Machines
(SVMs) (McHardy et al., 2007), the naïve Bayes classifier (Rosen, Reichenberger
& Rosenfeld, 2011), a k-nearest neighbor classifier (Diaz et al., 2009) and Interpo-
lated Markov Models (Brady & Salzberg, 2009). As composition-based signatures
are a global attribute of sequences, no entire reference genomes are required, but
only sufficient amounts of sequences for inference of a composition-based signa-
ture. For SVM-based classification, this has been found to be around 100 kb per
clade (Patil et al., 2011). Reference sequences can be identified among publicly
available genomes or by taxonomic assignment of conserved marker-genes of the
sample contigs, which allows the respective contigs to be used as training material.
If necessary, fosmids carrying marker genes can be sequenced to generate training
material for interesting sample populations or higher-level clades (Warnecke et
al., 2007; Pope et al., 2010, 2011).

C.7.1 Case study 2: Taxonomic binning by
composition-based taxonomic assignment

In (Pope et al., 2010), a microbial gut community from the Australian Tammar
wallaby was studied by Sanger and 454 sequencing of metagenome plasmid and
fosmid libraries. This microbial community is involved in the breakdown of plant
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biomass consumed by the host animal. Using 16S rRNA analysis, 236 distinct
phylotypes were observed. Of the 16S rRNA sequences, 9% originated from a
novel species, Wallaby group 1 (WG-1), in the family of Succinivibrionaceae.
PhyloPythia, a composition-based taxonomic classifier, was used to train a model
including the WG-1 and other relevant clades for species present in the community.
Composition-based taxonomic assignment of the metagenome sample recovered a
2 Mb draft genome for WG-1. Metabolic reconstruction based on the draft genome
allowed the cultivation requirements for WG-1 to be deduced, leading to isolation,
characterization and a draft genome sequence for the previously unknown species.
It also resulted in the finding that WG-1 contributes to the low-methane emission
phenotype of plant biomass degradation in the Tammar wallaby. The draft genome
sequences from the isolate culture showed 98.9% sequence identity to the WG-1
metagenome bin, and 90% of shared reads and assemblies, indicating accurate
reconstruction of the draft genome from the metagenome sample by composition-
based taxonomic binning.

C.8 Hybrid methods

Several methods combine different types of information to improve predictive
accuracy (Brady & Salzberg, 2009; Hess et al., 2011; Huson et al., 2011; Iver-
son et al., 2012). For instance, read coverage is combined with an analysis of
kmer frequencies in clustering of fragments (Tyson et al., 2004; Hess et al., 2011).
Searches for similar sequences and analysis of linkage information from an as-
sembly are also combined with composition-based taxonomic assignment, if the
computational burden can be borne. This has particular advantages for short frag-
ment analysis. Kmer signatures for fragments below 1 kb in length, particularly
those of individual reads, are noisy, even more so than taxonomic conservation
of sequence similarities (Patil et al., 2011).
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C.8.1 Case study 3: Taxonomic binning based on
clustering by sequence composition and read
coverage

In one of the most in-depth metagenome studies of a particular environment un-
dertaken so far, 286 Gb of paired-end Illumina sequence reads were generated from
a sample of the plant-fiber adherent microbiome from a cow rumen (Hess et al.,
2011). Rarefaction analysis of 16S rRNA indicated the presence of ~1000 distinct
OTUs. Clustering of assembled contigs by agglomerative hierarchical clustering,
based on tetramer frequencies and read coverage, resulted in the formation of
466 taxonomic bins. Fifteen of these were estimated to represent largely complete
genomes (between 60% and 92%), based on their association with fully sequenced
genomes from their respective clades. This estimate was based on the presence of
a minimal set of core genes found in all sequenced genomes from the respective
phylogenetic order.

C.8.2 Case study 4: Taxonomic binning based on
assembly information and sequence composition
(Iverson et al., 2012).

SOLID sequencing of two marine samples generated 58.5 Gb of mate-paired reads
of 50 bps in length. The number of phylotypes observed with16S rRNA analysis
was not specified in detail; however, family-level taxonomic groups were observed
with abundances of less than 10%. From the metagenome data, 300 Mb of contigs
were assembled. Scaffolds – linked sets of contigs assumed to originate from one
genome – were generated by splitting the assembly graph, which links contigs based
on mate-pair information, according to mate-pair linkage scores, read coverage and
tetranucleotide usage. Scaffold clustering by tetranucleotide usage generated 14
partial genome reconstructions from the two samples, for populations ranging in
abundance from 4% to 10 % each in one of the samples. Reassembly of 11 mate-
pair connected scaffolds that are binned together based on similar tetranucleotide
statistics and manual gap closure allowed the recovery of a closed circular 2 Mb
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genome from an uncultured group, the marine group II Euryarchaeota.

C.9 Advantages and disadvantages of different
binning approaches

Which binning methodology to use depends on multiple factors, such as the com-
plexity of the analyzed microbial community, available reference sequences and
computing ressources. For taxonomic assignment of arbitrary sequence fragments
to a particular species based on sequence similarity, completely sequenced refer-
ence genomes of closely related taxa are ideally required, which are often not
available. If no reference data exists for the species of the metagenome sample,
homology-based taxonomic assignment to higher-level clades is more accurate
than composition-based taxonomic assignment for short fragments of 1 kb or less
(Patil et al., 2011). This length corresponds to individual reads with most se-
quencing technologies. The assignment of individual reads in general is, however,
notably less accurate than assignment of longer fragments.

The runtime of sequence similarity searches increases proportional to the product
of the metagenome sample size (number and length of contigs) and the size of the
reference sequence collection. This makes it a computationally very demanding
task for next-generation sequencing data sets. The required computing resources
are not available in many experimental laboratories. If researchers are willing to
submit their data to external facilities, data can be processed by web servers such
as MG-RAST, IMG-M or CAMERA, which offer their computational resources
to the community.

The choice of whether to cluster or classify based on sequence composition de-
pends on availability of some reference data to train a composition-based clas-
sifier. Classification is likely to be more accurate than clustering in taxonomic
assignment. However, if no reference data is avaible, clustering will allow resolu-
tion of taxonomic bins which otherweise would go undetected. If multiple types
of information are included into the binning process, like it is done in hybrid ap-
proaches, this is likely to increase the overall amount and accuracy of assignments.
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Composition-based taxonomic assignment requires less reference sequences than
homology-based assignment. This is because sequence composition is a globally
conserved property, while sequence similarity depends on local sequence conser-
vation between a query and target. Training times of a composition-based taxo-
nomic classifier depend on the method used, but it requires typically considerably
less time than searching a reference sequence collection. Once a composition-
based model for taxonomic classification has been trained, execution times for
classification again typically scale linearly with the metagenome sample size and
are independent of a reference sequence collection. For composition-based clus-
tering, no training phase is needed. The runtime of clustering typically scales at
least quadratically with the sample size, as it often involves pairwise comparisons.

C.10 Future directions

The recent developments in sequencing technologies have considerably pushed the
boundaries in terms of what can be learned from metagenome sequence samples.
The high sequencing depth of microbial communities, in combination with the
application of sophisticated algorithms, has allowed the retrieval of near-complete
draft genomes from the metagenomes of many microbial communities, including
highly complex ones, such as those found in soil (Mackelprang et al., 2011). How-
ever, the size and heterogeneity of the different data types produced by the various
novel techniques have created new challenges, which remain to be addressed. A
prominent one is how to further reduce the computational requirements of search-
ing for local similarities between giga- or even terabase-sized sequence samples
and equivalently large reference sequence collections. Secondly, it remains to be
explored how taxonomic assignment accuracy can be further improved for the
vast majority of microbial community members that are only distantly related to
sequenced isolate genomes. Due to the value of available sequences from related
taxa for the taxonomic binning of a particular sample, efforts such as GEBA
might help in this regard (Wu et al., 2009). The GEBA project aims to construct
a “Genomic Encyclopedia for Bacteria and Archaea” by strategic sequencing of
microbial genomes from all major and minor taxonomic groups. As the cost of
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sequencing has decreased, partial genome reconstruction by single-cell genome se-
quencing is an attractive option for obtaining reference sequences for taxonomic
binning and draft genome reconstruction (Woyke et al., 2010) from metagenomes.
Here, an individual cell from a microbial population within a community is iso-
lated using techniques such as optical tweezers, fluorescence assisted cell sorting
and others, and is then lysed and its genome sequence amplified with multiple
displacement amplification prior to random shotgun sequencing.

Advances in single-molecule sequencing technologies now allow longer reads to
be generated than what was possible using traditional Sanger sequencing. Even
though this promises to resolve several issues associated with short read analysis,
such as high error rates in binning, assembly and functional annotation, the larger
sequencing error of some of these technologies, currently estimated to be around
15%, presents a different substantial hurdle. Therefore, assessing technology-
specific errors and developing technology-specific denoising procedures, such as
have been developed for 454 amplicon data (Quince et al., 2009), will be prereq-
uisite to leveraging the value of these techniques for metagenome research. An
interesting research direction is to investigate whether composition-based binning
is applicable for the analysis of samples with both microbial and viral content.
Composition-based taxonomic binning has been successfully applied for the anal-
ysis of viral metagenome samples, however, bacteriophage codon usage to some
extent reflects properties of the host (Pride & Schoenfeld, 2008; Lucks et al., 2008).
Therefore, classification accuracy and level of taxonomic resolution attainable for
viral taxa will have to be investigated in more detail.

C.11 Summary of key points

NGS technologies generate massive amounts of sequencing data allowing the in-
depth analysis of microbial communities. Taxonomic binning has allowed draft
genomes of microbial species from many environments to be reconstructed, and
the cultivation requirements of a novel uncultured species to be deduced. To
further advance draft genome reconstruction from metagenome samples, the ex-
isting techniques could be further refined by integrating multiple sources of infor-
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