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Abstract 

In this paper; a new tracking algorithm ispmposed. It treats 
the target acceleration as a nonrandom term, and consists 
of a constant velociryfilter; an input estimator and a ma- 
neuver detector implemented in parallel. The new method 
has the same advaqtaes  as the two-stage Kalman esrima- 
tor; which requires lesser amount of computation andpro- 
vides even a better performance when compared with an 
augmented state i$almpnfilter At the same time, the new 
method uses a better tuning parameter and removes a difi- 
culiy in implementation of the hvo-stage Kalman estimator: 
It  is shown rhat the newfilter is a better altemarive to the 
two-stage Kalman estimator on tracking maneuvering tar- 
gets. 
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1 Introduction 

Consider the problem of estimating the state of a linear 
system in the presence of a dynamical bias. Common ap- 
proaches to this problem treat the bias as a part of the sys- 
tem state. This leads to an augmented state filter whose 
implementation can be computationally intensive. To main- 
tain the computational cost at a lower level, Freidland [ l ]  
proposed a two-stage filter scheme that decouples the aug- 
mented filter into two parallel reduced-order filters. The first 
filter, the “bias-free” filter, is formed by ignoring the bias 
term. The second filter, the “bias” filter, provides an esti- 
mate of the bias term. The output of the “bias-free’’ filter 
is compensated by the output of the “bias” filter to recon- 
struct the augmented state filter. After [I], many researchers 
have conhibuted to this problem. Considering the case that 
a bias is driven by a white noise which is uncorrelated with 
the system noise, Ignagni 121 proposed a suboptimal two- 
stage filter. Alouani et al. [3] extended the results of [l]  and 
121 to include a white Gaussian bias that is correlated with 
the system noises. It was proven that under an algebraic 

constraint on the correlation between the system noise and 
the bias noise, their two-stage Kalman estimator is equiva- 
lent to the augmented state Kalman filter. However, since 
this consuaint is not satisfied by almost all real systems, the 
proposed two-stage Kalman estimator is only suboptimal. 
Recently, Hsieh [7] proposed an optimal two-stage Kalman 
estimator, which removes the algebraic constraint but lost 
the parallel filter smcture. The two-stage Kalman estima- 
tor has been applied to maneuvering target tracking prob- 
lems ([41, [5]) by treating the target acceleration as a bias 
term. It consists of two parallel filters. A constant velocity 
filter represents the ‘‘bias-free” filter and a acceleration filter 
represents the “bias” filter. However, this approach has dis- 
advantages. First, a restriction on the tuning parameter must 
be satisfied to gurantee the filter stability. This restriction 
limits the applicability of this method. Second, changes of 
the tuning parameter affect both the constant velocity filter 
and the acceleration filter. which makes it difficult to opti- 
mize. 

This paper proposes a maneuvering target tracking algo- 
rithm with input estimation, and compares its performance 
with the two-stage Kalman estimator. The ,new filtering 
method has a similar smcture to the two-stage tracker. It 
implements a constant velocity filter and an input estima- 
tor in parallel. The input estimator is designed to minimize 
the estimation error covariance for giving input estimator 
convergence speed. The proposed method uses the input 
estimator convergence speed as a tuning parameter. This 
parameter is independent of the system noise, and its physi- 
cal meaning is more clear than that in the two-stage uacker. 
This makes the proposed method more suitable for imple- 
mentation in complex applications. Forthemore, changes 
of the tuning parameter in the proposed me.thod only affect 
the input estimator and not the constant velocity filter. This 
makes the proposed method easier to tune. 

Remainder of this paper is organized as follows. Section 
2 states the problem. A summary of two-stage tracker is 
presented in Section 3. The proposed algorithm is derived 
in Section 4, and the evaluation of its performance is pre- 
sented in Section 5. A maneuvering target trackingexample 
is shown in Section 6. Section 7 provides conclusions. 

.’ 

U.S. Government work not protected by U.S. Copyright 166 

mailto:cychan}@path.berkeley.edu
mailto:me.berkeley.edu


2 Statement of the Pmblem 

The problem is to estimate the state of a discrete time system 
subjected to unknown inputs. The system is described by 

Xk+1 = A k X k + B k T k + w k  (1) 
Y k  = c k x k + v k  (2) 

where Xk E R" is the system state, yk E Rm is the unknown 
input, m < n, yk E R" is the measurement. A k ,  4, and c k  

are time-varying coefficient matrices, and the quantities W k  

and Vk are zero-mean uncorrelated random sequences with 

E [ W j w k r ]  = Q k S I k  (3) 

E [V;Vk'] = R k S , x '  (4) 

This system may represent the dynamics of a maneuvering 
target, where the system state represents the target position 
and velocity. and the unknown input represents the target 
acceleration. Appoaches to this problem fall into two broad 
categories: modeling the unknown inputs as random pro- 
cesses or nonrandom terms. The two-stage Kalman estima- 
tor uses the first approach, and the proposed algorithm uses 
the second. 

3 'bo-Stage Kalman Estimator 

In this approach, the unknown input is modeled by 

yk+l  = y k + W :  ( 5 )  

where w: is a zero-mean random sequence uncorrelated 
with V k ,  and 

(6) E [ w j w k  Y YT ] = @ S j k  

Based on the models given by (I), (2) and (5). an augmented 
state Kalman filter may be used to produce the optimal state 
estimates. However, in order to response quicker to a ma- 
neuver, Qi must maintain at a higher level, and the aug- 
mented filter will provide poor noise reduction when the 
target is not maneuvering. Alouani et al [41 proposed the 
two-stage Kalman estimator to overcome this problem. The 
idea of two-stage Kalman estimator is to deconple the aug- 
mented Kalman filter into two parallel filters. The first filter 
uses a constant velocity target model, the second filter pro- 
duces an estimate of the target acceleration. The output of 
the acceleration filter is used to correct the output of the 
consfant velocity filter as shown in Fig. 1. 

The constant velocity filter is given by 

?k = ) ' - c k ? k l k - ]  (8) 
?kit = ik Ik -1  + G k ? k  (9) 

%+Ilk = Ak?klk ' (10) 

fi Acceleration I-, 
Filter 

Velocity 
Filter 

Figure 1: Two-stage Kalman Estimator 

G k  = p k l k - l c ;  [ c k p k l k - ] C : + R k ] - I  (11) 

pk1k = ( 1 - G k c k ) p k [ k - l  (12) 

pk+l lk  = A k p k I k A :  +Qk (13) 

where 81. represents the estimate of the state process when 
the unknown input is ignored, PI. is the error covariance of 
?.I., and Qk is yet to be determined. The acceleration filter 
uses the residual sequence of the constant velocity filter to 
produce an input estimate as follows 

?klk = ?k1k-,+G; ( F k - j k ? k l k - 1 )  (14) 

b + l l k  = b l k  (15) 
7 - p y  ST, 

' k  - klk-1 k 

[ S k q l k - , $  + c k p k l k -  IC:+ R k ]  (16) 

(17) 

C + q k  = C1k.Q:  (18) 

v k  = ( l - G k c k ) o k  (19) 
s k  = c k o k  (20) 

o k + 1  = A k v k + B k  (21) 

- 7 - '  py 
C l k  = ('-'k'k) klk-I  

where 

The algorithm for compensating the output of the constant 
velocity filter with the output of the acceleration filter is de- 
scribed by 

i k l k  ?klk + S ? k l k  (22) 

?k+lIk = ?k+llk+ok+l?k+llk (23) 

The estimation error covariance is given by 
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the two-stage Kalman estimator is equivalent to the aug- 
mented Kalman filter. 

For given Qk and R k ,  Q: is the tuning parameter in the two- 
stage Kalman estimator. As can be seen from (13), (31) and 
(18). changes of Q: affect both the constant velocity filter 
and the acceleration filter. Since the algebraic constraint 
given by (30) is not satisfied by almost all real systems, 
this two-stage Kalman estimator is only suboptimal. Fur- 
themore, the restriction of (31) introduces an upper bound 
on the choice of Q: to garantee the filter stability, this yields 
a difficulty in implementation of the two-stage Kalman es- 
timator. 

4 Proposed Tracking Algorithm with Input Estimation 

In this approach, the unknown input y, is assumed nonran- 
dom and is estimated in real time. If the input ",'k is known, 
a standard Kalman filter mav be used to Drovide the ontima1 

s k  = c k u k  (41) 
u k + l  = A k V k + B k  (42) 

Since r k  = y k  -ck, f i lk - I  + s k y k ,  i.e., E I r k ]  = s k y k ,  the .%ti- 
mate of yk can be obtained by 

. .  
?k = fixe I r k ]  (43) 

where B k E R m X n ,  m < n, satisfing ' ' 

a s k  = b , : (44) 
is yet to be determined. If there are multiple sensors avali- 
able to measure the target, it is possible to get e [ r k ]  based 
on them. However. in most cases there are not enough sen- 
sors avaliable to get an reasonable estimate. In the proposed 
method the estimate of unknown input is given by 

? k =  ( 1 - A ) v k - l  + A f i k r k  (45) 
where A = diag(al,...,a,,,), and 0 < ai < 1 is the tun- 
ing parameter, which actually determines the input estima- 
tor convergence speed. Substituting (37)-(39) and (45) into 
(32) and (33), the proposed algorithm is obtained as 

fkjk = i k l k  +vk?klk (46) 

2klk = 81k -1  + c k r k  (48) 
4 + l I k  = b+I lk+uk+l?k+l lk  (47) 

?k+Ilk = Ak2kIk  (49) 

?k+llk = ?klk (51) 
b l k  = tk lk-1 + A & ( r k - s k ? k l k - l )  (50) 

Noticed that the filter given by (48)-(49) is actually a con- 
stant velocity filter. The input estimator given by (50)-(51) 
uses the residual sequence of the constant velocity filter to 
provide an input estimate. The actual state estimate is ob- 
tained by compensating the output of the constant velocity 
filter with the output of the input estimator as shown in (46)- 
(47). with 

state estimate as follows 

9+11k = A k h / k A : + Q k  (36) 

where 1;. is the optimal state estimate and P.1. is the error 
covariance of iii.. 

4.1 Derivation of proposed algorithm 
Define 

= i k l k + v k y k  (37) 

, f l+ i lk  = zk+I Ik+Uk+IYk (38) 
r k  = Y k - c k 8 1 k - I  (39) 

with 



4.2 Optimal choice of 
The optimal is chosen in such a way that it minimizes 
the e m r  covariance given by (52)-(57). As mentioned pre- 
viously, the only constraint on p~ is given by (U), this min- 
imizing can be achieved by solving 

which yields 

(59) 

Substituting (59) into (56) yields 

PG = (1-A)pklk-l (1-A)' 

+A [$ (cd'+~C: +Rk)-ISk]-Ih' (60) 

4.3 Maneuver detector 
Since the constant velocity filter and the input estimator are 
connected in parallel, the input estimator can be turned on 
and off as needed. When the target moves with a constant 
velocity, the input estimator is turned off. Whenever a ma- 
neuver is detected, the input estimator is turned on and its 
ouput is used to correct the estimate of the constant veloc- 
ity filter until the maneuver ends. Therefore, the proposed 
method consists of three paralle blocks: a constant velocity 
filter, an input estimator, and a maneuver detector, as shown 
in Fig. 2. 

Input 

Maneuver 

Constant 
+ Velofity 

Filter 

Figure 2: Proposed Tracking Algorithm 

4.4 Comments on the proposed algorithm 
The proposed algorithm has similar structure to the two- 
stage Kalman estimator. Since A determines the conver- 
gence speed of input estimator, from the implementation 
point of view, the proposed method has advantages over the 
two-stage estimator in the following senses. First, the same 
input estimator can be used for a wide range of noise con- 
ditions, while the two-stage estimator has to change Q: to 
match up changes of noise conditions. Second, the tuning 
of the new method only affects the input estimator, but the 
tuning of the two-stage estimator affects both the constant 
velocity filter and the acceleration filter. Third, the restric- 
tion given by (31) yields a difficulty in implementation of 
the two-stage Kalman estimator, and the proposed method 
is free from such restrictions. 

5 Evaluation of Proposed Wacking Method 

In this section, the tracking perfonnance of the proposed 
method is compared with the two-stage tracker. The com- 
parison criterion is, for the same noise condition, i.e., same 
Qk and RL, and the same input estimator convergence speed, 
the method with smaller estimation error covariance is con- 
sidered better. Forthemore, since larger convergence speed 
implies larger estimation error covarince, this also means 
the better method converges faster to achieve the same level 
of estimation enor covariance. Although the results pre- 
sented in this section should be true in general, to eas- 
ily present the results, it is assumed that the system ( I )  
and (2) are pice-wise time-invariant, the noises are pice- 
wise stationary, and the noises in different channels are un- 
correlated. Therefore, we only need to compare both meth- 
ods in one single channel, i.e., 

A = [  l h  ] , I f = [  z ] , r a n k ( C ) = 2  (63) 

Since a maneuver manifests itself as a "large" innovation, 
it can be detected by watching the normalized innovations 
squared 

The input estimator convergence speed of the proposed 
method is given by a, the estimation e m r  covariance is 
given by (52)-(57). From (60) 

(68) 

The input estimator (acceleration filter) convergence speed 
of two-stage Kalman estimator is given by B = 6s. From 
(16)-(18), the relation between B and q y  is obtained as 

a 
2 - a  

EL = r l  (CkpklL-Ic: rk (61) p W = @ = - L - '  
A maneuver is declared if [[&I[ exceeds a given threshold, 
h; and an end of a maneuver is declared if IleLll falls below 
h. me threshold h be pre-selected in such a way that 
for non-maneuvering siNation 

(69) 
I - -  BZ t-l 

P(ll&kll<h) =0.95 (62) 4 - 1 - 8  
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The corresponding estimation error covariance is given by 
(24)-(29) with 

Noticed that P = P and A? = M for gy = 0, and gy << IIMII. 
q y  << llPll should be true in applications, otherwise the noise 
in input would overcome any useful signals and the filter can 
not work properly. Based on above assumptions, A? and P 
can be expressed as follows: 

M = M+#- dM(o) +h.o.t. (72) 
day 

+ h a t .  (73) P = P+qY-- 
dP 6) 

dsy 

Now, we are in the position to state the following 

Theorem 
llPll, nnda < AI, then 

k t A 1  = lmin(eig(GC))I, i f g y  << IlMll, gy << 

MU < MU (74) 

Forthemore, if a < A2 = w, where h = 
hl(2 -AI), then 

P<P (75) 

Proof: see Appendix. 

Since A2 < hl, we have the following 
Corallary Ifa < h2, with the same input estimator con- 
vergence speed, the proposed method has smaller estima- 
tion ermr covariance. 

6 Simulation Results 

A maneuvering target tracking example is presented in this 
section. The tracking performance of the proposed method 
and the two-stage tracker are compared. Consider a target 
moving at a constant velocity from t = 0 to t = 5s. a constant 
acceleration of 0.5g is applied at f = 5 s .  It completes the 
acceleration at t = lOs, and moves at constant velocity until1 
t = 15s. The initial target position and velocity are x(0) = 
2Om andi(0) = 314s. The sampling time is At = 0.1s. and 
the observations consist of target position and velocity. The 
noise covariance matrices are given by 

Q =  [ O ' @  0 0.04 ' 1  R = [ '  0 0.09 ' 1  (76) 

This yields A, = 0.48 and A2 = 0.325. The same Q is used 
all the time in the proposed method, and in the two-stage 
Kalman estimator, Q is replaced by Q whenever a maneu- 
ver is being declared detected. The threshold for maneuver 
detecting is chosen as h = 0.5. 

First, the convergence speed of the input estimator is chosen 
as a = a = 0.3. The corresponding q y  obtained from (69) is 
gy = 0.28. A Monte-Carlo simulation of 300 runs was done 
for the two trackers. Fig. 3 shows the average RMS errors 
in the target position and velocity. As can be seen that the 
tracking performance of these two trackers are very similar, 
but the proposed method has slight improvement on the in- 
put estimate. 

U 
0 ' 0  

Tm (si I 

Figure 3: Average RMS Position Error and Velocity Error with 
a = 0.3 

Second, the input estimator convergence speed is set as 
a = 0.33, which corresponds to gy = 0.3. The simulation 
result is shown in Fig. 4. The two-stage tracker is unstable 
because the constraint (31) is not satisfied. The proposed 
method works well even a > A2 in this case. This implies 
that using the tuning parameter a has advantage over using 
9y. 

Figure 4: Average RMS Position Error and Velocity Error with 
a = 0.33 
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I Conclusions 

A maneuvering target tracking algorithm with input estima- 
tion has been proposed in this paper. It has been shown 
that this new method is a better altenative to the two-stage 
Kalman estimator. The tuning of the new filter is inde- 
pendent of processing and measurement noises, and does 
not affect the constant velocity filter. This makes the pro- 
posed method easy to implement in practical applications. 
As mentioned in the previous section, the difficulty associ- 
ated with the two-stage ”an estimator is the condition 
given by (31) must be satisfied to guarantee the stability. 
The new method is free from such conditions. 

. 
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