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Abstract 

An important element of an adaptive and reconfig- 
urable guidance and control system is the ability to 
compute the largest area (footprint) on the earth’s sur- 
face that is reachable by the autonomous vehicle under 
the current operating condition. During an abort sit- 
uation when it suddenly becomes necessary to divert 
the vehicle from its original landing site, the knowl- 
edge of this reachable area can assist in choosing a safe 
and available landing site. In this paper, a technique 
based on calculus of variations is applied to find the 
footprint of an autonomous vehicle subject to  operat- 
ing constraints. 

1 Introduction 

Over the past decade, increasing effort on achieving af- 
fordable and reliable access to space has produced a 
number of advances in propulsion, structures, materi- 
als as well as system guidance and control for reusable 
launch vehicles. In the areas of guidance and con- 
trol a variety of methods to  enhance the safety and 
operability of these autonomous hypersonic vehicles 
have been proposed with promising results [l], 121, [3]. 
These methods enable the vehicle to adapt and recon- 
figure under off-nominal conditions that are the result 
of control failures or damage. Because of the high cost 
penalty for additional weights, these autonomous hy- 
personic vehicles do not have much hardware redun- 
dancy. As a result, a single control actuator failure 
can severely affect the vehicle’s performance and safety. 
Control actuator failures therefore along with their ef- 
fects on mission performance and safety must be con- 
sidered in the whole process of trajectory planning and 
retargetting. An important element of the vehicle’s 
safe operation in such contingent flying conditions is 
the ability to compute in real time the largest reach- 
able area on the earth ’s surface given its current condi- 
tions, constraints on skin temperature, structural load, 

and achievable aerodynamics. The reachable area is 
referred as the footprint of the vehicle. The footprint 
information is useful in the event of a system failure and 
the flight path of the vehicle needs to be altered. In this 
paper, we extend the footprint computation methods 
suggested by Schultz [4] and Vinh [5] to enable one to 
compute footprints for vehicles that have experienced 
control effector failures or are experiencing off-nominal 
operating conditions. 

2 Problem Formulation 

An unforseen failure in the vehicle system, such as a 
malfunctioning in the propulsion or hydraulic system, 
during the ascent or reentry phases of the flight can 
make it necessary to  divert the vehicle from its intended 
landing site. With the propulsion system unavailable 
during the contingency, the descent trajectory planning 
and guidance then consist of an entry phase and a ter- 
minal area energy management phase. The landing site 
for the unpowered flight vehicle is chosen according to 
the largest area on the earth’s surface reachable by the 
vehicle. 
Assuming that the vehicle angular orientation is main- 
tained by its inner loop attitude controller, the motion 
of the unpowered vehicle over a non-rotating earth can 
be modelled as a point mass: 

Where 

h : Altitude 
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8 : Longitude 
$ : Latitude 
v : Velocity 
y : Flight path angle 
$J : Heading angle 
m : Mass of the vehicle 
R, : Earth’s Radius 
p : Gravitational Parameter 

The total energy of the unpowered vehicle is strictly de- 
creasing because of the non-conservative forces acting 
on the vehicle ,most notably, the aerodynamic drag. 
The vehicle footprint then consists of points on the 
earth’ surface at which the total energy decreases to 
a set value. When its energy reaches this value, the ve- 
hicle then enters the final part of its trajectory called 
terminal area energy management phase. Combining 
its velocity v and altitude h in an energy-state approx- 
imation [6] ,  a reduced order model can be obtained to 
simplify the vehicle description. The specific energy of 
the vehicle can be expressed as 

(7) 

From Equations 1,  4, and 7, one can derive an expres- 
sion for the time rate of change in the vehicle’s energy: 

Assuming that the vertical forces acting on the vehicle 
are in equilibrium and its vertical motion frequency dy- 
namics are much faster its horizontal motion dynamics, 
the flight path angle can be taken to be near zero, i.e., 
y M 0. Moreover, since the acceleration normal to the 
velocity vector is small, i.e., (U? M 0) and v # 0, the 
time-rate of change of the flight path angle can then be 
taken to be essentially zero, i.e., 3 x 0. From Equation 
5, we have 

we can combine Equations 9 and 10 into Equation 11 
to have 

where l j  is the effective acceleration due to gravity 
(nominal gravitational acceleration with centripetal re- 
lief effects) : 

P 212 (j=--- 
R,+h R,+h 

Given the initial velocity v(to) = U,, and initial dti-  
tude h(t,) = h,, the vehicle specific energy E(t )  can 
be calculated according Equation 8: 

1 
E(t )  = E, + dE = 2 + (R,+h)2+dE Ph0 (13) 

The vehicle’s velocity v( t )  can be derived from the cur- 
rent specific energy E(t):  

Ph 
(R,  + h)2 (14) v( t )  = 2E(t) - d 

since the vehicle flight altitude h is small when com- 
pared to  the earth’s radius R,. From the above discus- 
sion, the unpowered vehicle under energy-state approx- 
imations has the reduced-order model x = f (5, U ,  t )  of 
the form: 

e =  

6 , =  

7 j =  

E =  

where z = le, d, 

v sin(+) 
R, + h 

(17) 
zij v cos(+) tan($) 
V R, + h 
-- 

-Dv - 
m 

$, Elr is the vehicle state vec- .~ 
tor. The control inputs U = [p .IT are the air den- 
sity, p = p(h), and the tangent of the bank angle, 
x = tan(a). The optimization objective is to find the 
control vector U = [p  z]  such that, at time t = t f ,  
the crossrange position specified by the vehicle lati- 
tude d ( t f )  is maximized for a given downrange value 
ef = e ( t f ) :  

The initial values of the vehicle states are taken to be 
e(t ,)  = 0, $(to)  = 0, 4(to) = 0 and E(t,) = E,. 

The Hamiltonian function H to be minimized is 

H = G + X T f  (20) 
-6, + Xee + A+$ + X,?j + X,E (21)  = 

The weighting coefficients X are the Lagrangian multi- 
pliers to be determined. The necessary conditions for 
optimality are 

dX dH 
dX dt 

- -- - -  

= o  dH 
dU 
- 

Taking variations of the Hamiltonian function H ,  en- 
forcing the condition dH = 0 at the stationary point of 
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H ,  and the Lagrangian multipliers do not vary at the 
boundary produces 

[H6 t - AT6]i: = 0 

The final heading +(tf), the final down-range position 
f?(tf) are unspecified. The initial and final values for 
the Lagrangian multipliers A(t,) are chosen to  be zero. 
The dynamics of A(t) for to < t < tf can be found from 
Equations 22: 

a H  * d H  
A*=--  A E = - -  

all, aE 

Combining with Equation 18, it can be shown that 

Ae(t) = 0 (24) 
~ , ( t )  = 1 - cos(ef -e) (25) 
A+(t)  = -ms(4) sin(0f - e) (26) 

At the optimal control uopt, ' H ( x ,  uopt, A, t )  = 0 and 

H(z1  U o p t ,  A, t )  I H(x7 Uopt + Aul A, t )  (28) 

that is, 

into equation 29, we have 

IO (30) 
Hr(x+opt,A,t)  - Hr(z ,uop t  +Au,A, t )  
E@,  Uopt 1 A, t )  E(2,  Uopt + A U l  4 t )  

From Expression 30, we can define a new Hamiltonian 
function that relates the vehicle states x, its.co-states 
A, control U to its decreasing rate of energy E: 

(31) 
Hr - -4 + At38 + A+$ + A+G H,,, = - - 
E E 

Substituting values for the state rates $, 8, 4, E and 
their co-states Ab, At3, A+ into Equation 31, we obtain: 

1 -U sin(+) - + A ,  Ro+h 
v cos(+) tan(+) 

+Adz(* - Ro+h 
- 

- .5v~S,C&,p + 2mk32(1+22) 
m pS,v2 

(32) 

Hnew = 

For a decreasing total energy ( E  < 0 ) ,  the new Hamil- 
tonian H,,, is to be maximized with the control pa- 
rameters being the air density p and the bank angle 
U. For a hypersonic vehicle under energy-state approx- 
imations, methods suggested by Schultz [4] and Vinh 
[5] are applied. Since the control parameter p does not 
appear in the numerator of H,,,, H,,, is maximized 
when the air density p is minimized. From the drag 
Equation 11, we have 

(33) 
4m2kij2(1 + z2)  J v2SaCdo 

aD - = 0 * popt = 
aP 

The optimum bank angle CT associated with z = tan(o) 
is 

(34) 
with 6 = 8f -8, R = Ro+h. From Equations 33 and 34 
the final downrange Of = O ( t f )  of the vehicle is needed 
apriori t o  generate an optimal bank angle and alti- 
tude popt = p(h)  to  achieve the largest final crossrange 
4f = 4(tf). To generate the vehicle entire footprint, it 
is suggested in [5] to  use the vehicle heading +" = +( to)  
as the sweeping parameters: 0" < $o < 90". The in- 
termediate downrange 0; and crossrange 4; are trans- 
formed by the coordinate transformation to obtain the 
final Of and 4f: 

sin(4f) = sin(4;) cos(+:) - sin(0;) cos(4;) sin(+;) 

Equations 33 and 34 give the optimal crossrange 4(tf) 
for a given downrange Of.  Iterations on the initial val- 
ues of Of may be necessary so that the initial guess 
matches the final value e ( t f )  resulting from the Equa- 
tions 18. 

3 Approximate Solution 

Online footprint computation using the above method 
may be slow because iterations on O f  are necessary. 
An approximate solution to  the maximum crossrange 
calculation was proposed by Vinh [5] for the optimal 
bank angle command signal. 

where 
1 

The advantage of this approximate solution is that it 
does not require an initial guess of e ( t f )  and subsequent 
iterations. This bank angle control was demonstrated 
in [5] with good results. 
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4 Application to a Reusable Launch Vehicle 

In this section, we apply the methods for the foot- 
print calculation to the X-33 reusable launch vehicle. 
The X-33 is an autonomous, reusable launch vehicle 
that has two linear aerospike engines and eight aerody- 
namic control surfaces: inner/outer elevons, rudders, 
flaps as shown in Figure 1. At the beginning of the 
reentry phase, the 2500-slug vehicle attains the veloc- 
ity of 10,000 feet/second at an altitude of 180,000 feet. 
With this initial energy, the unpowered vehicle’s cross- 
range is calculated until its final energy is equivalent 
to the energy at the final speed of 2500 feet/second 
and 50,000 feet of altitude. The air density constraint 
which is related to thermal constraint on the vehicle 
is p < 7.397 x 1o-5slugs/ft3. Similarly, structure- 
related air density constraint has an upper limit of 
3.981 x 10-5slugs/ft3. An important requirement that 

Upper/Lower ’ 
Aerospike Thrdtles 

Figure 1: X-33 Reusable Launch Vehicle 

must be satisfied in calculating the vehicle footprint is 
the maintenance of lift to effective-weight equilibrium 
(L=W) while banking the vehicle: 

where Sa is vehicle planform area and p is the air den- 
sity. The respective normal and axial force coefficients 
CN and CA obtained from the vehicle’s aerodynamic 
table are transformed into the corresponding lift and 
drag coefficients CL and CO: 

CL = COS(~)CN - sin(a)CA 
CD = sin(cr)CN + COS(~)CA 

A root solver based on the Secant method is then used 
to minimize the residual of L- W .  As discussed earlier, 
the new Hamiltonian H,,, in Equation 31 is optimized 
when the vehicle’s drag is minimized. Scanning the al- 
titude that is 20,000 feet above and below the vehicle’s 
current altitude, we look for the next optimal altitude 
command that minimizes the vehicle’s drag subject to 

the constraint L = W .  Once the optimal altitude is 
found, the bank angle command U is calculated using 
Vinh’s control law in Equation 35. As shown in Equa- 
tion 35, the bank angle command is a function of the 
vehicle’s current parasitic drag Coo coefficient and in- 
duced drag parameter k. The parasitic drag coefficient 
C D ~  in Equation 11 for the X-33 vehicle is found from 
the aerodynamic data table by iterating over the vehi- 
cle’s angle of attack a at a given Mach number to  find 
the drag coefficient at zero lift: 

cD = C D ~ l ~ L ( m . ~ o c ~ ) = ~  

A third-order polynomial expression is then used to 
parameterize C D ~  in terms of the vehicle’s velocity to  
give the following Equation: 

C D ~  = -2.8809 x 10-4Mach3 + 7.4321 x 10-3Mach2 
-6.0914 x lO-’Mach + 2.9697 x lo-’ 

The parameter k in Equation 11 can be found by look- 
ing up the values of the lift and drag coefficients from 
the vehicle’s aerodynamic data table and solving: 

5 Rotational Equilibrium Under Failures 

In addition to ensuring that the lift on the vehicle 
equals its weight, rotational equilibrium must also be 
enforced to maintain the vehicle’s attitude. A trim rou- 
tine is used to find the aero-control positions that are 
necessary to balance the base pitching moment pro- 
duced by the wing-body portion of the vehicle. The 
lateral directional moments resulting from the wing- 
body portion of the vehicle are assumed to  be zero ( 
i.e. an assumption of zero steady-state sideslip and 
wing-body symmetry). In the trim routine, the roll, 
pitch and yaw control effectiveness of each aero-control 
surface at a fixed Mach number and angle of attack is 
found from the aerodynamic table using small pertur- 
bations. With B being the pitch control effectiveness 
matrix, 6 the aero-control deflections and MO the base 
pitching moment, a linear programming formulation [3] 
is used to find 6 such that: 

min 6 J = I(B6 - Molll (36)’ 

subject to S 5 6 5 
where and 3 are vectors that represent the lower and 
upper limits of the control effectors. Control surface 
failures such as locked control surfaces are accommo- 
dated by setting the upper and lower limits for the 
locked effectors equal to one another. By solving the 
minimization problem posed in Equation 36, the po- 
tentially undesirable moments produced by locked ef- 
fectors are automatically taken out by the un-failed 
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surfaces whenever it is physically possible to  do so. 
One additional comment regarding Equation 36 is in 
order. The linear programming problem that is posed, 
assumes that the moments are linearly related to sur- 
face deflections. This is rarely the case in practice and 
at best, at a particular flight condition, the moments 
are nonlinear functions of surface deflection and in or- 
der to find the deflections that produce a desired mo- 
ment one must find b that solves the following equation 
subject to  4 5 b 5 

MO = f (6) (37) 

In general, if the solution to  Equation 36 which we will 
call 61p is substituted for b into Equation 37 one will 
find that: 

MO # f(b1,) (38) 
An iterative approach has been developed here that 
solves multiple linear programming problems. The a p  
proach finds a modified value of base pitching moment, 
namely MOmod that produces a control deflection vector 
61p,od that produces 

(39) 

elevons to -'30 degrees to balance the lateral direc- 
tional moments and deflects the body flaps to balance 
the pitching moments produced by the other control 
surfaces and the wing-body. This trimming operation 
is performed at each time step at which the equations 
of motion and control commands are computed, in this 
case, the integration time step is 1 second. Figure 2 
compares the footprints of the nominal and failed vehi- 
cle and one can see that the failed vehicle footprint is 
reduced in size. This is because of the increase in drag 
due to the off-nominal control surface deflections that 
are required to maintain rotational equilibrium. 

The iterative procedure uses the following update rule 
to  compute MOmod. 

MOmodk+I  = M O m o d k  + w ( M O  - f ('[Pmodk 1) (40) 

where k indicates the kth iteration, and w is a param- 
eter that affects the convergence properties. As stated 
previously, a locked control surface can be accommo- 
dated directly through the control allocator by setting 
the upper and lower position limits equal to one an- 
other. This ensures that the remaining control surfaces 
are used to balance the possibly undesirable effects of 
the locked surfaces as well as balance the wing-body 
moments. In most cases, one or more locked surfaces 
create a condition that requires the free surfaces to 
move to off-nominal positions to counter undesirable 
effects of the locked surfaces to maintain rotational 
equilibrium. This ultimately translates into force per- 
turbations that increase the overall drag on the vehicle 
and therefore reduces the size of the vehicle footprint. 

6 Example: Locked Surfaces 

The X-33 aerodynamic model is used in this example 
to obtain representative force and moment data for an 
RLV. The case under consideration uses the techniques 
described above to compute footprints under 'nominal 
conditions and in the case of right inboard and out- 
board elevons both locked at -30 degrees. In order to 
maintain rotational equilibrium, the control allocator 
automatically deflects the left inboard and outboard 

Figure 2: Footprint Comparison Between Nominal and 
Failed Conditions with Right Inboard and Out- 
board Elevons Locked at (-30 deg) 

Figure 3 shows the commanded altitude that yields 
minimum drag from the initial energy to the final en- 
ergy to  yield the largest crossrange . The discrete pro- 
file of commanded altitude arises from the increments 
used in the altitude sweep. A smoother time history 
can be obtained by using smaller altitude increments 
or using results from the coarse sweep to initialize an 
numerical optimizer to find the altitude at which min- 
imum drag occurs. Using the sweeping method to ini- 
tial a numerical optimizer reduces the likelihood of the 
getting trapped at a local minimum. Both approaches 
result in increased computational time. Figure 4 shows 
the time history of the bank angle command to achieve 
the maximum crossrange. The entire footprint of the 
vehicle is then generated by setting the initial heading 
+(to)  from 90 degrees to 0 degree and calculating the 
vehicle trajectory given the initial and final energies. 

7 Effect of Maximum Trimmable Angle of 
Attack 

It should be noted that control surface failures can also 
reduce the range of trimmable angles of attack on some 
vehicles. This can cause a maximum wing-body lift 
coefficient constraint to be replaced by a more conser- 
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Figure 3: Altitude Command for the Maximum Cross- 
range 

Figure 4: Bank Angle for the Maximum Crossrange 

vative maximum trimmable lift coefficient constraint. 
Whether such constraints become active or not is de- 
pendent upon the vehicle; however, loss or damage to 
any of the aero-control surfaces could potentially re- 
duce the maximum trimmable angle of attack. This re- 
duction can decrease the maximum achievable lift that 
strongly influences the cross-range that can be achieved 
by banking the vehicle. In the case studied here, such 
a constraint was never active because the X-33 requires 
less control power to trim at  high angles of attack than 
at low angles of attack. Additionally, minimum drag 
conditions on this vehicle generally occur at high alti- 
tude and at high angles of attack. Nevertheless, it is 
interesting to look at the reduction in the size of the 
vehicle footprint that would result from a hypothetical 
reduction in trimmable angle of attack. Such a case 
can be seen in Figure 5. In calculating the two foot- 
prints shown in Figure 5, the vehicle initial conditions 
remains the same while its maximum trimmable angle 
of attack is reduced from 50 degrees to  7 degrees. 

I , , , , , , . , , 

Figure 5: Footprint Sensitivity to Varying Constraints on 
Maximum Angle of Attack 

8 Conclusion 

Methods are presented that allow one to  estimate the 
area on the earth’s surface that can be reached by 
a reusable launch vehicle experiencing control effector 
failures . The optimal method is based on variational 
calculus and requires iterations on the initial guess. 
The suboptimal method is based on approximations 
but more practical for implementation. A numerical 
example is used to show how the vehicle’s largest reach- 
able area can shrink under failure. Such information is 
required to  select landing sites under failure conditions. 
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