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Development and Numerical Solution of
Integral Equations for Electromagnetic

Scattering from a Trough in a Ground Plane
William D. Wood, Jr., and Aihua W. Wood

Abstract—We develop a set of scalar integral equations that
govern the electromagnetic scattering from a two-dimensional
(2-D) trough in an infinite perfectly conducting ground plane.
We obtain accurate and efficient numerical solution to these
equations via the method of moments (MoM). Our numerical
implementation compares favorably to popular methods such as
the finite element/boundary integral (FE/BI) method, generalized
network formulation (GNF), and electric field integral equation
(EFIE) techniques.

Index Terms—Electromagnetic scattering, ground plane.

I. INTRODUCTION

I NTEGRAL equations have been used in a variety of ways
to formulate the scattering from an indentation in a perfectly

conducting ground plane. The first and most widely used tech-
nique, the generalized network formulation (GNF) proposed by
Harrington and Mautz [1], is based on the surface equivalence
principle, in turn based on the vector Green’s theorem [2]. The
GNF is relatively simple to derive and implement, but it suffers
from the problem of spurious resonances at the eigenfrequen-
cies of the indentation. This phenomenon has been noted
by several authors [3]–[5]. Hansen and Yaghjian [6] stud-
ied low-frequency scattering from a two-dimensional (2-D)
trough in a ground plane, but their results are not applicable to
resonant-sized and larger troughs. For large cavities, ray-based
methods have been employed [7], [8], but are not valid for
resonant-sized and smaller geometries. Finally, field-iterative
methods [9], [10] have been pursued for large cavity scattering
problems, but their accuracy is questionable for resonant-sized
geometries.

Asvestas and Kleinman [11] developed a set of coupled
vector integral equations for a three-dimensional (3-D) un-
filled cavity-backed aperture in a perfectly conducting ground
plane. They claimed, but did not prove that these integral
equations are uniquely solvable at all frequencies. Recently,
this approach was generalized to handle cavities filled with a
homogeneous material [12]. In this paper, we derive a related
set of coupled scalar integral equations for a material-filled 2-D
trough in a ground plane. We also present numerical results
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Fig. 1. The geometry of a cavity-backed aperture. The figure shows a 2-D
cross-sectional view, with regions and surfaces defined.� and�c lie in the
xy-plane, and free-space comprises the half-spaceZ > 0.

that show these integral equations are immune to spurious
resonances.

We organize the paper as follows. In Section II, we in-
troduce the geometry and define the basic quantities. In
Section III, we derive the scalar integral equations. Finally,
in Sections IV and V, we present our numerical implementa-
tion and results and compare them to those of hybrid finite
element/boundary integral (FE/BI), GNF, and electric field
integral equation (EFIE) techniques.

II. NOTATIONS & CONVENTIONS

The geometry is shown in Fig. 1. The aperture, it’s
complement in the -plane , the cavity surface , and
the cavity volume are defined as in [11]. The subscript
on a quantity denotes its image across the ground plane. The
upper half-space is filled with free-space whileis filled with
material characterized by constant scalar permittivityand
permeability .

Known incident fields and impinge on the open

cavity, giving rise to the scattered fields and
and the reflected fields and (the fields scattered
by an unbroken ground plane). The scattered fields represent
a perturbation due to the presence of the cavity. The fields
satisfy the same boundary and radiation conditions as in [11].
in addition, we note that the tangential field components are
continuous across .

We employ the half-space 3-D scalar Green’s functions
defined in [11], altered for the time convention.
That is, and

, with and
Paralleling [11], we define the dyadic functions

and
, with
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and . We note that these equations are valid in
two dimensions if we make use of the identity

(1)

where is the Hankel function of the second kind and
.

III. T HEORY AND APPLICATIONS

In this section, we present our main theorems.
Theorem 1: Let be a cylinder parallel to with cross

section . Assume that is piecewise smooth. Let
be the outward unit normal vector on and .
If satisfies the homogeneous wave equation

then

(2)

Proof: Restrict so that lies in the -plane.
Let . Denote

. By (17) of [12],

which equals the right-hand side of (2). Since and
as , it is easy to show that .

On the other hand

which is the left-hand side of (2) and thus completes the
proof.

Theorem 2: Under the same conditions on and as in
Theorem 1, the following identity holds:

(3)

where .
The proof of Theorem 2 is similar to that of Theorem 1 and

is omitted here for brevity.

Fig. 2. A discretized trough geometry. The aperture� (dashed line) is
partitioned intoN1 line segments, while the trough surfaceS (solid line)
is partitioned intoN2 line segments. In this figure,N1 = 3 andN2 = 4.

Theorem 3: Let and be as in Theorem 1. Then the
following identity holds:

(4)

where the upper sign is taken if from the exterior of
and the lower sign from the interior.
The proof of Theorem 3 is a consequence of the theorem

on page 205 of [13].
To apply the above theorems, we consider the cavity-backed

aperture problem with the geometry of an infinite trough
parallel to with cross section bounded by
in the -plane, as shown in Fig. 2. Applying Theorems 1–3
to this problem, letting be , , and in turn, and
using the boundary conditions satisfied by the fields as stated
in Section II, we obtain

(5)

(6)

and

(7)

where .
We now derive scalar equations under TM polarization.1

Let and .
1Scalar equations can be derived in a similar manner under TE polarization.

Here, for brevity, we only demonstrate the TM polarization.
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Then and
. Then

and
, where is the angle between

the positive -axis and the propagation direction of the incident
field.

Correspondingly, we have

(8)

(9)

Substitute (8) and (5) to get a scalar equation. But first, we
consider for , . Note
that has only and components, while is
directed, so we have . Thus, the left
side of (5) reduces to while
the right-hand side of (5) is . Hence, we obtain

for (10)

where . Similarly, we substitute (8)
into (6) and (7) and obtain the remaining scalar equations

for (11)

and

for (12)

IV. NUMERICAL SOLUTION

In this section, we employ the method of moments (MoM)
[14] to find an approximate solution to (10)–(12). Pulse-basis
functions and delta testing functions are used to reduce the
complexity of the matrix element computations.

To demonstrate the MoM implementation of our problem,
we present, without loss of generality, the approximation
scheme for (10). We use the nodes to denote the

coordinates and the arc length of the nodes along
the perimeter of the trough. Let there be segments on the
aperture and on as shown in Fig. 2. We define the
two unknowns in (10)

and

where the pulse function is unity for and
zero elsewhere. We use the delta testing functions

where Thus, (10)
is discretized as

Taking the inner product with the testing functions on both
sides of the equation and using the sifting property of the
delta function yields

(13)

where and .
Using matrix notation we construct the equation at the bottom
of the page. Similarly we produce and using (11)
and (12), resulting in the matrix system where

and
. The nonzero elements

of are found by evaluating the right side of (11) at the
match points. The matrix system may then be solved to find
the expansion coefficients and .

V. NUMERICAL RESULTS

In this section, we present some numerical results for the
case of an unfilled cavity; that is, where . The
first experiment is for a rectangular trough and the results
are compared to those from a hybrid FE/BI technique [15].
We also demonstrate the solvability of the problem using
our formulation and compared it to the GNF approach. Our
second experiment is for a V-shaped trough and the results are
compared to the EFIE implementation [16].

A. Test Case I

We examine a rectangular trough, 1.2 m wide0.8 m deep,
illuminated by a 300 MHz TM plane wave. We use ten pulses
per wavelength, resulting in a 28 28 matrix. These results

...
...

.. .
...

...
...

. . .
...
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(a)

(b)

Fig. 3. Monostatic echo width vs. angle from normal for a rectangular trough
with depth= 0:8� and width= 1:2�. (a) TMx pol. (b) TEx pol. Echo width
is in units decibels relative to a 1-m isotropic scatterer (dBm).

are compared to the results of the FE/BI technique and are
shown in Fig. 3.

This experiment shows an excellent agreement between the
results produced by our integral equation method and that
by the hybrid FE/BI technique; however, the latter involves
meshing the entire cavity area and, thus, is much more
computationally expensive than the former where only the
perimeter of the cavity is discretized.

We note also that conventional integral equation based
methods used to analyze a trough in a ground plane are
based on the generalized network formulation [1] in which
the scattering domain is partitioned into an interior region
(the trough) and an exterior region (the half-space above
the ground plane). An integral equation is written for each
region separately and the two integral equations are coupled by
enforcing field continuity across the aperture. An unfortunate
byproduct of this partitioning scheme is the introduction
of spurious resonances at frequencies corresponding to the
cavity resonances of the interior region. At these frequencies,
the generalized network formulation breaks down and the
resulting coupled integral equations are not uniquely solvable.
In the moment method, the presence of a spurious resonance
manifests itself as an ill-conditioned impedance matrix.

We now demonstrate that the integral equations (10)–(12)
are uniquely solvable even at frequencies which are trou-
blesome for the GNF-based methods. The interior region is
resonant at approximately 225 MHz, corresponding to the
cutoff frequency of the TM and TE rectangular waveguide
modes. Near this frequency, the condition number of the
matrix for the interior region of the generalized network

(a)

(b)

Fig. 4. Condition number versus frequency.

formulation becomes very high, as shown in Fig. 4(a). In
contrast, the condition number for the matrix for the integral
equations used here is very stable, as shown in Fig. 4(b). This
is a direct result of our method of construction, which avoids
the partitioning of the domain as is done in the GNF.

B. Test Case II

We examine a V-shaped trough, 1.2 m wide0.8 m deep,
illuminated by a 300 MHz TM plane wave. The geometry is
illustrated in Fig. 5.

To implement the EFIE method to model a geometry involv-
ing an infinite ground plane, we employ vector background
subtraction (VBS), a standard measurement technique.2 We
design a finite test body to mimic the infinite ground plane.
To reduce the scattering from the test body, a 2000
resistive card of length 4 m is attached on each side of the
perfect electric conductor to form a total length of 24 m. The
results from both our integral equation method and the EFIE
method are shown in Fig. 6. The oscillating effect evident in
the EFIE approximation is a product of the interaction between
the cavity and the edge (R-cards). In particular, the method
fails near grazing incidence due to scattering from the bottom

2Vector background subtraction is a process to isolate the scattering due to
a component of a larger body. First, the complex scattered field from the larger
body with the component removed is determined. Then the complex scattered
field from the larger body with the component installed is determined. The
coherent difference between the two fields is attributed to the component
alone. In actuality, the difference is the sum of direct scattering by the
component and interactions between the component and the larger body. In
many cases, the larger body is designed to minimize these interactions relative
to the component scattering and so they may be neglected.
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Fig. 5. Geometry of V-shaped trough. For the reference solution based on
the EFIE, the ground plane is truncated. The edges of the finite ground plane
are treated with 2000
= R-Card to reduce the truncation effects.

Fig. 6. RCS versus angle for V-shaped trough. The V-shaped trough illumi-
nated by a 300-MHz plane wave incident from an angle�. The reference
solution is from an EFIE-based moment method code, with the ground
plane truncated. The effects of the truncated ground plane are evident in
the oscillation seen in the reference solution caused by interactions between
the trough and the truncation.

of the test fixture. However, the results from the new integral
equations correctly predict the cavity scattering for all angles.
This is due to the fact that the new integral equations are built
on the Green’s function for the conducting ground plane.

VI. CONCLUSION

We have developed a set of coupled integral equations to
describe the electromagnetic scattering from a material-filled
trough in an infinite ground plane. The integral equations
involve only the tangential field components on the bounding
surface of the trough interior. The MoM is used to find a
numerical solution to the integral equations when the trough
is excited by an incident plane wave. The accuracy of the
technique has been demonstrated through comparisons with
other methods such as the GNF, hybrid FE/BI, and EFIE
schemes. Furthermore, we have shown that the new integral
equations are immune to the problem of nonuniqueness due
to spurious resonances.
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