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Spherical Wave Operators and the Translation 
Formulas 

RONALD C. WITTMANN, MEMBER, IEEE 

Abstract-Translation formulas for both scalar and vector spherical 
wave solutions of the Helmboltz equation are developed in a straightfor- 
ward manner using differential operator representations for the modal 
functions and well-known expressions for the scalar and dyadic free-space 
Green’s functions. The expansion coefficients are given in compact 
integral or differential operator forms useful for analytic investigation. 

I. INTRODUCTION 
PHERICAL wave functions, i.e., canonical solutions of S the Helmholtz equation in spherical coordinates, form 

complete sets that can be used as bases to expand more general 
solutions of the Helmholtz equation. The translation formulas 
are examples of such expansions since they express translated 
spherical waves as superpositions of untranslated spherical 
waves. 

Translational formulas are useful when it is necessary to 
expand the fields of a source about some point other than a 
natural center of symmetry. A typical case is the scattering of 
electromagnetic waves by multiple spheres [ 11, [2]. Another 
example occurs in probe-compensated spherical near-field 
scanning [3], [4] where the probe receiving function must be 
written in the test antenna reference frame. 

Friedman and Russek [5] were among the first to give 
explicit statements of translation formulas for scalar spherical 
waves. (See Danos and Maximon [6] for a more complete 
historical discussion.) Their derivation employed integral 
representations (3) and (19) which permitted them to exploit 
the simple translational properties of plane waves. Various 
improvements and a generalization to include vector waves 
were made by Stein [7] and Cruzan [8]. The vector translation 
formulas resulted from an involved computation based on the 
corresponding scalar formulas and the vector wave definitions 
(32) and (44). The expansion coefficients were given by 
complicated expressions that are not easily simplified. 

Motivated by previous work on the spherical scanning 
algorithm [9]-[ 1 11, the translation formula development given 
in this paper employs representations for spherical waves in 
terms of linear differential (translationally invariant) operators 
of finite order ((3, (17), (36), and (45)). While largely 
complementary to the integral representation approach of 
Friedman and Russek, this method offers an attractive feature 
in the fact that the translation formulas are almost trivial 
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consequences of the differential operator representations and 
familiar spherical wave expansions for the scalar and dyadic 
free-space Green’s functions. Vector translation formulas are 
developed directly and easily by generalizing the techniques 
applied in the scalar case. Expansion coefficients are obtained 
as compact integral or differential operator expressions that 
can be evaluated to obtain the conventional results. 

In Section TI translation formulas are derived for scalar 
spherical waves, beginning in Section 11-A with the relatively 
simple standing wave case. The translation formula follows 
from the matching of untranslated and translated functions and 
derivatives at equivalent positions. Traveling waves are 
discussed in Section 11-B where it it necessary to divide space 
into two regions depending on the distances p and r from the 
origin to the source and observation points. The interior 
formula (r < p )  is found through a procedure analogous to that 
used in Section TI-A. This leads to the familiar spherical wave 
expansion for the free-space scalar Green’s function. The 
exterior (r > p )  or interior translation formula can be obtained 
from the differential operator representation and the Green’s 
function expansion. Section I11 largely parallels Section II, 
establishing translation formulas for both standing and travel- 
ing vector waves (Sections 111-A and q-B). Section IV 
illustrates how the vector expansion coefficients can be 
computed in terms of the scalar coefficients. Appendix I gives 
explicit forms for the spherical wave operators. Appendix I1 
discusses the evaluation of (14), an integral involving the 
product of three spherical harmonics. 

Most of the results collected here are not new. A major goal 
of this work has been to devise a simple self-contained 
development of the spherical wave translation formulas that 
represents an improvement over those otherwise available. 
The spherical wave operator techniques demonstrated are very 
powerful and are perhaps worthy of consideration for other 
applications. 

11. SCALAR WAVES 
A .  Standing Waves 

The function 

is a scalar solution of the Helmholtz equation 

Radial dependence is given by the spherical Bessel function 
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j , ,(kr), and the angular dependence is given by the scalar 
spherical harmonic Ynm(f )  (a caret denotes a unit vector). 
Jackson [ 121 may be consulted for the elementary properties of 
these functions. 

The integral representation 

1 
47ri" 

(1) nm(r)=- l Y n m ( i )  exp (ik - r) d& (3) 

is a consequence of a familiar expansion of a plane wave into 
spherical waves [12, eq. 16.1271. The magnitude of k is k = 
w / c ,  and the integration is over 47r steradians: 

j d&= j Z r d $  ir sin 8 dB 

where 8 and $ are the polar angles of k.  Equation (3) expresses 
the spherical wave as a superposition of plane waves traveling 
in all directions. 

The scalar spherical wave operator 6,,, defined in Appen- 
dix I, has the property 

6, exp (ik - r)= Ynm(k) exp (ik r). (4) 

6,, is a linear differential operator of nth order involving 
only the spatial derivatives a,, a,, and a,. In addition, 6,, is 
translationally invariant since it is unaltered by the transforma- 
tion r + r - p. 

A combination of (3) and (4) leads to a differential operator 
representation for U:;: 

sin (kr)  
kr 

= i - "6,, - = i - n  6,,,&( kr). ( 5 )  

Equation (5)  can be verified independently with an inductive 
argument using the explicit form (70) for 6,. The integral 
representation (3) can then be established by reversing the 
steps leading to the differential operator representation (5 ) .  

If u:;(r) is translated by a displacement p,  the result is a 
function u:;'(r) that is given by the relation 

(6) (1)'  
nm (r)=u:A(r-~)- 

Transformations are taken in the active sense here. For 
example, a functionf(r) becomes a new function of the old 
coordinates f'(r). (In the passive sense the function is re- 
expressed in a translated coordinate system f(r  ').) Since 
u:z'(r) is a solution of the Helmholtz equation, it can be 
written in terms of untranslated spherical waves: 

expansion is convergent for all r [ 13, theorem 13, p, 831. The 
A(vp1nm; p)  can be found using the requirement that the 
translated and untranslated functions and their derivatives 
must agree at equivalent points. Instead of working with the 
familiar gradient operator, it is more convenient to apply the 
spherical wave operators defined earlier. 

Fig. 1 presents a physical picture from a measurement point 
of view. In Fig. l(a) a probe at the location - p  interacts with 
a test antenna located at the origin. In Fig. l(b) the entire 
experimental apparatus is translated by a displacement p so 
that the probe and test antenna are located at 0 and p,  
respectively. Clearly, the results of measurements made in 
both orientations should be identical. 

Mathematically, this translational invariance requirement is 
equivalent to the statement 

where for present purposes the test antenna is identified with 
the modal function u:f?l(r) and the probe is represented by the 
operator Pv,. Combining (7) and (8), 

018 

where 6, has been taken inside the summation. Although a 
formal justification will not be attempted here, it can be shown 
by generalizing the arguments of Muller [13, sec. 41 that (7) is 
arbitrarily often differentiable, term by term, with respect to 
x, y,  and z .  As a consequence of (3), (4) and the orthonormal- 
ity of the spherical harmonics, 

Thus the right side of (9) reduces to a single term, and 

= ( - ),47r-"+ "6,. - ,@n,J~( kp) .  (1 1) 

(When r + -r ,  6,, + ( - )Wnm; see (70) in Appendix I.) 
The integral form 

~ ( v p  ~ n m ;  p )  = ( - ) * i - v + n  j Y , , . - ~ ( E )  

Ynm(&) exp (ik p )  d& (12) 

follows from (3), (4), and (11). 
Equations (1 1) and (12) are convenient analytic expressions 

for the coefficients in the translation formula (7). These can be 
evaluated using an expansion of the product of two spherical 
harmonics: 

v = o  ,= - - Y  

This is the desired form for the translation formula. Such an 
(This formula also holds with 6 substituted for Y with the 
restriction that the domain be limited to functions that are 



1080 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 36, NO. 8, AUGUST 1988 

1 test antenna 

probe 

I 

is analogous to (5) and also can be demonstrated by an 
inductive argument. 

A well-known result [15, pp. 338-3391 

(18) 

is the key to obtain an integral representation for u:;(r). 
Equation (18) is a two-dimensional Fourier transform on 
transverse k: 

(a) 

test antenna 

1 dK= jm dk, 1- dk,, K=k,%+k, , f ,  K =  IKI .  

Due to the restriction k = lkl, the z component of the 
propagation vector is not independent but is given by 

-m - m  
probe 

(b) 

antenna at origin, probe at - p .  (b) Test antenna at p,  probe at origin. 
Fig. 1 .  Probe and test antenna are shown in equivalent geometries. (a) Test 

k i K  
k < K  

Substitution of (18) into (17) yields [16] solutions of the Helmholtz equation.) Calculation of the a's 

a > v + n o r a  c Iv - n 1 , i f a  + v + n i s o d d , o r i f  
/3 # p + m. Therefore, the number of terms in (13) is finite; 
in particular, the sum over only has one nonzero contribu- 
tion. Substitution of (13) into (12) and application of (3) yields 
the conventional result [7]: 

= (-  ) ~ 4 a i - " + n  iaa(a0 1 v, - pnm)u $ ( P I .  (15) 
a0 

There is considerable simplification for translation along the z 
axis since, as can be seen from (15), the A's are zero unless 
p = m. 

Equation (1 1) can also be evaluated directly using symbolic 
algebra programs on a computer [14]. This can provide a 
useful cross check of computations based on (15). 

B. Traveling Waves 
Next, consider the function 

Interchange of derivative and integral is valid since the factor 
exp (iyz) ensures uniform convergence. Because dK/yk  
corresponds to di; by change of variables, (3) and (19) are 
identical except for the integration range. Notably, (19) is a 
superposition of plane waves propagating into the z > 0 
hemisphere (y real) plus a contribution from evanescent waves 
(y imaginary). For z < 0 a formula corresponding to (19) 
follows from (18) with the choice of the lower sign. In the 
interest of economy, this paper will give such integral results 
for z > 0 only. The reader can easily modify these for z < 0 
by using the appropriate form of (1 8). 

While the standing wave translation formula (7) holds for all 
r, it is necessary to divide space into two domains when 
considering traveling waves. In the interior region ( r  c p )  the 
translated function must be expanded in terms of the standing 
wave basis u:f?l(r) to avoid singularities at the origin. In the 
exterior region (r > p )  the translated function must be 
expanded in terms of the traveling wave basis u:;(r) to satisfy 
radiation conditions. 

Interior Region: In the interior region the translated 
function U:: can be written 

U :A( r) = h!)( kr) Y f l m ( f )  

where hc,')(kr) is the spherical Hankel function of the first (20) 
kind. If exp (- i d )  time dependence is assumed, the u:;(r) 
are appropriate modal functions for describing waves emanat- 
ing from finite source regions. The operator representation 

Again, this is the desired form for the translation formula. 
The translational invariance requirement (8) becomes 
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A combination of (20) and (21) gives coefficients. However, the exterior formula can be obtained 
from the differential operator representation and the spherical 
wave expansion for the scalar Green's function: From (17) [ ~ , , u ! ~ ( - P ) = C  Ai(aPInm; P) [~ , ,~!~I (o) .  (22) 

Finally, an application of (10) collapses the sum on the right 
side of (22) to a single term and 

(3) 
a0 

nrn(r-p)= i -n6nmhf) (k l r -p l ) ,  

and with (27) 

follows from (4), (18), and (23). 

(13) and (19): Thus 
The compact expressions (23) or (24) can be evaluated using 

dK 
* J yaP(k) exp (ik - p )  - 

y k where 

As in the case of (15), considerable simplification results for 
translation along the z axis since the Ai's are zero unless 
p = m. 

When n = m = 0, (25) reduces to 

Substitution of (26) into (20) gives the spherical wave 
expansion for the scalar free-space Green's function [12, eq. 
16.221 : 

Equations (29) and (30) constitute the exterior region transla- 
tion formula. A,(vp I nm; p)  is identical to A (vp I nm; p),  the 
expansion coefficient for the standing wave case given in (1 1). 

Equation (28) could have been used as a starting point for a 
similar derivation of the interior formulas (20) and (23). The 
traveling wave translation formulas are therefore simple 
consequences of the differential operator representation (1 7) 
and the familiar expansions (27) and (28). Furthermore, since 
j,, (kr) is the real part of h !)( kr), the standing wave formulas 
(7) and (1 1) also follow from (5) and (27) or (28). 

III. VECTOR WAVES 

exp (iklr-pl) A. Standing Waves 
h p ( k  I r - P 1) = 

ikl - l Vector solutions of the Helmholtz equation, rn!A and n;A, 
can be defined to obey the symmetric relationships [17] 

(3) =4u (-)~uy;(r)u",- ,b),  r < p  
V P  

V N  where 

(28) 
m jfA(i) = LU I f ~ ( i ) / J n o = j n ( k r ) X n , ( i )  

Equation (28) follows from (27) since the left side is 
unchanged when r and p are exchanged. 

region does not apply in the exterior region since r > p L 0; 
therefore, (10) cannot be used to project out the expansion 

Exterior Region: The derivation given for the interior Xnm(i) = L Y n m ( f ) / r n .  (32) 

L is the orbital angular momentum operator of quantum 
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mechanics: 

and the X’s are vector spherical harmonics as defined by 
Jackson [12, ch. 161. m:f?l and n:f?l are useful, for example, in 
expanding electromagnetic fields in source-free regions. (A 
third function with nonzero divergence is necessary to 
complete the set. It will be discussed briefly in Section III-C.) 

In Appendix I the vector spherical wave operator 

6,, = [ L 6 , , - C p n , L ] / ~  (34) 

is shown to have the property 

6,, exp (ik r)=Xnm(k) exp (ik * r). (35) 

Equation (5)  together with (31)-(34) leads to the differential 
operator representations 

(36a) (1) mnm(r)=i-”6,,jo(kr) 

From the standpoint of (36), the second term on the right side 
of (34) seems unimportant since it gives no contribution. 
However, this term is necessary to ensure the translational 
invariance of P,,,,. A derivation of the vector translation 
formulas based on the corresponding scalar formulas and (32) 
is complicated by the fact that L depends explicitly on r [ 111. 

The vector spherical waves have the integral representations 

1 
4?rin 

( 1 )  ,,,,,(r)=- j X,m(k) exp (ik r) dk (37a) 

1 
4?rin 

( 1 )  ,,,,,(r)=- 1 ikxX,,(k) exp (ik - r) dk (37b) 

as can be seen if (35) and (36) are applied to (3). Though 
equivalent, (37) is not of the form given by Stratton [17]. 
(Stratton basically applies the definition (32) to (3), effectively 
ignoring the second term on the right side of (34).) 

Because rn:;(r - p)  and n:;(r - p)  are solutions of the 
Helmholtz equation with zero divergence, the translation 
formulas have the form 

+C(vpInm; p)ny;(r)]. (38a) 

+C(vpInm; p)m:;(r)]. (38b) 

Equations (38a) and (38b) can be related by (31): For 

example, since the gradient operator is translationally invari- 
ant. 

The coefficients in (38) can be found with the translational 
invariance argument used in Section 11. Corresponding to (8), 

- ~ : L I ( - P ) = [ @ ~ ~  ~:L’I (o)  (39a) 

[@,, - n : ~ l ( - ~ ) = [ @ ~ ~  n::](O). (39b) 

From (38a) and (39a) 

As a consequence of (35), (37), and the orthonormality of 
vector spherical harmonics, 

1 
4?ria 

[6,, - n$](O)=- 1 Xvp(k) - ikxXa&) dk=O 

(41b) 

and the summation in (40) reduces to a single term. Thus 

B(vp I nm; p )  = ( - ) p + + ’ 4 ? r i  -v+n6Y, - I r  (P,,&(kp). (42a) 

Similarly, beginning with (38b) and (39b), 

C(vp(nm; ~ ) = ( - ) ~ + * 4 ? r i - ” + ~  - Vx6,,-, @,,J,,(kp). 

(42b) 

1 
k 

The integral forms 

B(vp1nm; p)=(-)p+li-v+n XY,-,(k) 

* X,,(k) exp (ik * p )  dk (43a) 

iii x xv,-,(ii) C(vpInm; p ) =  (-)fi+li-v+n 

* X,,,(k) exp (ik p )  dk (43b) 

follow from (3), (4), and (42). 

B. Traveling Waves 
For traveling waves, appropriate modal functions are 
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The differential operator representations 

(45b) 
1 
k 

(3) ,,,(r)=i-" - Vx@,,hhl)(kr) 

follow from (17), (34), and (44), while the plane-wave 
representations 

1 d K  
(3) ,,,(r)=- 1 X,,,(k) exp (ik - r) - , 

21ri" y k  
z>o 

1 d K  
(46b) (3) nnm(r)=- 1 ikxXnm(k) exp (ik r) - , 

2ni" y k  

follow from applying (35) and (45) to (18). Equations (46) are 
consistent with a well-known relationship between spectrum 
and far field [18, eq. 1.2-16bl. 

Interior Region: In the interior region (r  < p )  the 
translation formulas can be written 

+C;(vpInm; p)myj(r)], r < p .  (47b) 

This is the most general form for a source-free region that 
includes the origin. 

Vector translation formulas for the interior (or exterior) 
region can be obtained directly by applying (45) to (27) and 
(28). While these might be useful in certain problems, they are 
not immediately in the form (47) and it is a remarkably tedious 
job to demonstrate the equivalence. The coefficients Bj and C; 
are better obtained using the translational invariance condition 

[@,, nfA](-p)=[@,, nfLI(0). (48b) 

Following the procedure of Section III-A, (47) is substituted 
into (48) and then (41) is used to collapse the summations into 
single terms. The coefficients are 

nm; p )  = ( - )P+147ri - "+W", - p  

@,,,ht)(kp) (49a) 

1 
k 

nm; p)=( - )p+ l4~ i - "+"  - VX@, , - ,  

- @,,hf)(kp) (49b) 

or, in integral form, 

B;(vp(nm; p)=(-)p+l2i-"+" s Xv, -Jk)  

d K  
X,,(k) exp (ik p )  - 

yk 

~ ~ ( v p l n m ;  p )  = (- )*+12i-,+n 1 ii; x ~ , , - ~ ( i i )  

d K  
X,,,(k) exp (ik - p )  -, p - 4>0. (50b) 

If Bi and C; from (49) are substituted into (47), the resulting 

yk  

expression can be rearranged to give 

(5 1 a) (3) ' m,,, (r)=i-"@,,, G ( r l p )  

1 
(51b) (3) ' n,,, ( r ) = i - , ,  - k Vx@,, . G ( r ( p )  

where 

I is the unit dyadic. 
Equations (52) and (53) imply each other since from (54) 

G (r I p)  = G (p I r) and Go = Gjj. To establish (54), note that 
according to (45) and (51), 

@,, G(r I p ) =  @,,hf)(klr-p I). ( 5 5 )  

(Equation (55) is clearly consistent with (54).) With (55) and 
the dipole operators 

it can be shown that 

V x G(rlp) = V  xIh!)(k(r - p  I ) .  (56) 
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Because 

1 

k2 
G(r I p )  =- V x V x G(r ( p ) ,  

(56) leads directly to (54). G(rlp) is a free-space dyadic 
Green's function [ 191, [20]. Spherical wave expansions 
equivalent to (52) and (53) are given by Tai [19, p. 1741. 

Exterior Region: From (51a) and (53) 

mnm (r)=i-"@,,,, - G(rlp)  (3) ' 

(Since k Xnm(k) = 0, there are no terms involving the third 
independent vector spherical harmonic k Yv,,(6>.) After substi- 
tution of the last equation into the previous one, an application 
of (46) yields the translation formula (57a). This method also 
is useful in the scalar case [5]. The integral representation 
approach complements the differential operator approach by 
providing direct derivations of the translation formulas in 
exterior regions. 

C. Irrotational Waves 

function that has nonzero divergence. For example, 
In addition to m and n, Stratton [17] also defines an 1 

1 
k 

Noting that the gradient operator is translationally invariant 
and using (7) yields [21] 

i;A(r) = - v ufA(r). (59) 

=g 9 ~ ( v p l n m ;  p)lyi(r). (60) 
u = o  p =  - - Y  

Similarly, the translation formulas for traveling irrotational 
waves follow directly from the corresponding scalar formulas. 

IV . EVALUATION OF THE COEFFICIENTS 
It remains to evaluate the coefficients given in (49) and (58). 

Only (49) will be considered here, but (58) can be treated in 

+Ce(vpCL(nm; P ) ~ C ( ~ ) I ,  r > p  (57b) 

where 
the same manner (e.g., replace the subscript i with e in (62), 
(65), and (66)). There are several routes that lead to results of @',--+ ' @"m'o(kp) (58a) Be(vp  I nm; p )  = ( - )"+ '4ui -"+" 

1 
k 

varying complexity. Perhaps the most obvious procedure is to 
apply the Cartesian representation (72) for 6,, and a similar 
(but more complicated) representation for V x U',, to reduce 
(49) to a sum of terms involving the scalar translation 

C,(vplnm; p)=(-)p+l4ui-"+" - Vx6, , - ,  

- 6nmjo(kp). (58b) 
coefficient Ai evaluated in (25). It ismore efficient, however, 
to condition (49) first. 

For example, it follows from the definition (34) of the 
vector spherical wave operator that 

Be and Ce are identical to the standing wave coefficients B and 
C given in (42). 

Equation (52) could have been used as a starting point for a 
similar derivation of (38) and (42) or (47) and (49). Thus the 

~ J V ( V  + ~)n(n + 1) 6 , p  en, vector translation formulas are simple consequences of the 
differential operator representation (5 1) and the well-known 

A derivation of the exterior region translation formula is 
also possible using the integral representations (46) [ 111. For 

expansions (52) and (53). =L26-Yp6nm- 6,,L26,,-6, ,L26,,+6,,6, ,L2. (61) 

Substituting (61) into (49a) gives [21 

2 (r-p)>O. 

From (43) and the orthonormality relations implied in (41) it 
follows that B and C may be interpreted as coefficients in the 

- v(v+ l ) + n ( n + l ) - a ( a +  1) 

* 2 2Jv(v+ l)n(n+ 1) 

spherical harmonic expansion i'ya(afiIu, - p n m ) u $ ( p )  

i-"X,,(k) exp (-ik - p ) = z  i-' [B(vplnm; p)Xv,(k) where (23), (25), and the differential equation 
"P 

+ ~ ( v p l n m ;  p)ik x ~ ~ , ( k ) ] .  L2 Y", = n(n + 1) Y", (63) 
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have been used. then 

1 ik ikr 

k ""-m 
and, therefore, with (49b) and (72) [7] 

Similarly, (assuming that V2 = - k2) exp (ikr) 
f ( r )  rym Wf) ~ * 

-VX6,;@ -- [ r @ v p - @ v p r l  @nm (64) 
This rule (which can be motivated by a stationary phase 
evaluation of the integral) holds for the scalar spherical waves 
u::(r); therefore, it is true for (50) which can be expressed as 
a finite sum of such waves using (62) and (65). - ikp 

J v ( v  + l)n(n + 1 )  
C;(W I nm; P I  = 

APPENDIX I 

SPHERICAL WAVE OPERATORS 

Scalar spherical harmonics are given by the formulas [12, 
+XimAj (vpIn ,  m -  1; p ) ]  ch. 31 

For translation along the z axis, B; and Ci are nonzero only 
if p = m. Also (65) reduces to 47r (n+m)!  

and 
- imkp 

A i (~m(nm;  p i ) .  (66) d" 
dx" 

Cj(vrn(nm; p 2 ) =  
J v ( v  + l)n(n + 1) P y x )  = -Pn(x ) .  

In a practical situation it is often possible to choose a 
coordinate system so that translation will be along the z axis to 
take advantage of the simplification. Actually, it is sufficient 
to consider only z axis translations [6]. A more general 
translation can be accomplished by first performing a rotation 
so that the axis of translation coincides with the z axis, then 
translating in the z direction, and, finally, rotating back to the 

P,(x) is a Legendre polynomial. 
Since 

exp ( ik  - r)=exp i [k ,x+k,y+k,z ] ,  

it follows by inspection that 

original orientation. 
Asymptotic formulas for large p can be obtained easily from 

integral expressions for the expansion coefficients. For exam- with 
ple, it follows from (50) that [ l ] ,  [2] 

6,, exp ( ik  * r ) =  Ynrn(k) exp ( ik  - r)  

6 , r n = ( - ) r n ~ n , ( ~ + i i p ) r n ~ ~ ~ ~ ( ~ ) ,  m z 0  

S,,-,=( -)n+"@* nm 

6," is translationally invariant because the spatial derivatives 
a,, 8, and 8, are translationally invariant. The 6 ' s  were 
introduced by ErdClyi [16] in establishing the integral repre- 

The vector spherical wave operators can be found using the 

C;(vp(nm; p )  pTm ( - ) ~ + ~ 4 7 r i - ~ + ~ i B x X , , - ~ ( i )  

exp ( i b )  sentation (19). 

Cartesian form 
X n r n ( i )  ikp (67b) 

zero to order llp unless p = m = f 1. Similar asymptotic Xnrn(k) = 5 [Xim Yn,rn+ I (k) + Xim Y n , m -  I ( & ) I  
For translation along the z axis (67) implies that B; and C; are 

formulas for Be and Ce have the factor exp (ikp)/(ikp) (" 
replaced by sin (kp)/( kp) . 9 

2i +- [A:, yn,rn+ I ( & ) -  hirn ynp- * @ ) I  Equations (67) are examples of the following rule: If 
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where 

~ ; ~ = d ( n  =F m)(n m+ 1). 

With (4), (35), and (71) 

(73) 

The translational invariance of 6 follows from (72) and the 
translational invariance of 6. 

In obtaining (73) the following formulas are helpful: 

These can be found by direct computation with (70). (Operator 
identities in this paper require a domain limited to solutions of 
the Helmholtz equation. This ensures adequate differentiabil- 
ity as well as the fact that V2 = -k2.) The commutation 
relations (74) also mark the 6’s as spherical tensor operators 
[22, p. 821; i.e., they transform under rotation in the same 
manner as the spherical harmonics Ynm. 

Vector spherical wave operators were apparently first 
introduced in [23], [ 101 where they were used to represent a 
receiving antenna as a differential operator that acts on the 
incident field. 

APPENDIX 11 

EVALUATION OF a(@ 1 vpnrn) 
While the underlying theory is quite involved, the needed 

results are well known and are summarized here. The a’s are 
given by [22, eq. 4.341 

v + 1)(2n + 1) 
a(aP 1 vpnrn) = $’ (a(3Ivpnrn)(aOlvOnO) 

4?r(2a + 1) 

(75) 

where the quantities with angle brackets are Clebsch-Gordan 
coefficients. (This relation is often written in terms of the 
more symmetric Wigner 3-j symbols.) (a0 I vpnm) is nonzero 
only when lv - nl I a 5 v + n and p + rn = (3. Also, 
(aOIYOn0) is zero if v + n + a is odd. 

There are closed-form expressions for the Clebsch-Gordan 
coefficients but these are complicated and ill suited for 
numerical evaluation. A better computational approach is to 

use a recursion formula such as [22, eq. 1.8, p. 2241 

where 

v(v+ 1)-n(n+ 1) 
Sa,=b-m)-P a ( a + l )  

(a2- (32)[a2- (v- n)2][(v + n + 1)2- (1121 

a2(4a2 - 1) Ea = 

When p = rn = (3 = 0, (76) reduces to 

o = &  (a-1 ,  01vOnO)+J4,+1 ( a + + ,  OlvOn0). (77) 

Equations (76) and (77) can be used independently (probably 
best in the general case) or they can be combined to produce a 
three-term recursion formula for the a’s. For translation along 
the z axis, (3 = p + rn = 0 and (76) and (77) lead to the 
particularly simple relationship [ 11, [2] 

Ea-1(a-2)-(Ea+Ea+1-4m2)(a)+Ea+2(a+2)=0 (78) 

Starting values for the recursion formulas (76)-(78) are 
where (a) = (a01 v, - rnnm) (a01 &no). 

given by 

a(a(3 I vpnrn) = 0, a> v +  n (79) 

G v p  Gnm a(v+ n, p + rn 1 vpnrn) = 
Gv+ n,p+m ’ 

(2n)! 
n!(n - m)! Gnm = Knm (80) 

Knm is given in (69). Equation (80) can be established by 
comparing the highest order terms in (1 3) or by using explicit 
expressions for the Clebsch-Gordan coefficients [24, eq. 
3.6.121 in (75). 
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